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Explosive molecule sensing at lattice defect sites
in metallic carbon nanotubes†

Manasi Doshi and Eric P. Fahrenthold *

Explosives and hazardous gas sensing using carbon nanotube (CNT) based sensors has been a focus of

considerable experimental research. The simplest sensors have employed a chemiresistive sensing

mechanism, and rely on substitutional doping or structural flaws (vacancy, divacancy, or Stone–Wales

defects) to increase sensitivity. However since chemiresistive sensors often show poor selectivity, further

improvements are needed. Ab initio analysis of the chemiresistive response of five metallic CNT sensors

incorporating substitutional doping or structural flaws suggests that arrays of these devices may be

effectively employed to improve selectivity. In particular, arrays composed of doped or flawed CNTs can

distinguish nitroaromatic and nitramine explosive molecules from each other and from four common

background gases. Array selectivity is improved by capitalizing upon the nonlinear current–voltage

characteristics of the substitutionally doped or structurally flawed CNTs.

1. Introduction

Trace detection of explosive materials1 presents a wide range of
challenges.2 In the gas phase, high sensitivity is often needed to
address low vapor pressures,3 while good selectivity4 is required
to distinguish target analytes from background gases and other
explosive molecules. There is considerable demand for mobile,
low power sensing systems to replace mass spectrometers5 or
other traditional explosive detection devices which can be
bulky, complex, and expensive. Hence recent research on
hazardous gas sensing has placed considerable emphasis on
the development of nanosensors,6,7 including one and two
dimensional nanocarbons.8–10

Published experimental studies have tested carbon nano-
tube (CNT) based devices in gas sensing applications,11–16 and
reported considerable success in detecting a wide range of
molecules, from hydrogen15 to complex nerve agents.16 All of
the papers just cited employed ‘as produced’ carbon nanotubes
(CNTs). By contrast, studies employing ‘pristine’ nanotubes
have generally measured weak interactions with analyte
gases,9,17,18 suggesting that CNT defects play an important role
in determining sensor performance.19 Similarly, recent work20

evaluated the effects of defects on the chemiresistive sensing

properties of Field Effect Transistors (FETs) made from semi-
conducting CNTs. Plasma irradiation was used to intentionally
add defects to the CNTs, and the presence of defects (primarily
vacancies) was confirmed through Raman spectroscopy. The
chemiresistive response to NO2 of the CNT-FETs with added
defects was much greater than those with the baseline level of
defects, again showing that defects improve chemiresistive
response.

A large body of CNT research has investigated lattice
defects, which here refers to both structural flaws and sub-
stitutional deviations from a perfect network of sp2 bonded
carbon atoms. During the growth of CNTs substitutional
‘doping’ may occur when one or more of the carbon atoms
are replaced by atoms of other elements. Nitrogen21,22 and
boron23,24 are the most commonly studied substitutional
dopants. Since CNTs doped by both these elements have
shown good energy storage performance in batteries, con-
trolled processes have been developed to apply such dopants
on demand. The dopant elements produce local changes in
the CNT structure25 which enhance the surface reactivity of
the nanotube26 and may therefore also improve gas sensing
performance. In published experiments, boron and nitrogen
doped double-wall and multi-wall CNTs have shown an
improved chemiresistive sensitivity for NH3 and NO2

detection.26–28 Structural lattice defects (e.g. vacancies, diva-
cancies, and and Stone–Wales defects) are also likely to occur
during CNT production29–31 and are known to change the
electronic properties of the nanotubes.32,33 Their sensitivity
and selectivity effects on chemiresistive gas sensing have
been investigated19,34 and been found to improve CNT per-
formance in NH3, NO2 and H2 detection.
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It is important to note, given the extensive literature on CNT
defects, that much published computational work infers
improvements in sensing performance from property changes
generated by the introduction of defects. Zhang et al.35 studied
the interaction of CNTs, substitutionally doped by palladium
(Pd), with the decomposition products of SF6. Based on calcula-
tions for adsorption energy, changes in the density of states
(DOS) and HOMO–LUMO energy gaps, they concluded that the
nature of the interaction of such CNTs with SO2, H2S, SOF2,
SO2F2, and CF4 will be very species dependent. Similarly
Kuganathan et al.36 computed the adsorption energy, charge
transfer, magnetic moment, charge density, and DOS for SO2

and H2 interaction with CNTs substitutionally doped by ruthe-
nium (Ru). Based on large adsorption energy values, they
inferred that Ru-doped CNTs may be good candidates for SO2

and H2 sensing. Demir et al.37 studied a variety of properties
(adsorption energy, HOMO–LUMO structures, charge density,
DOS) for carbon monoxide interaction with CNTs substitution-
ally doped by platinum (Pt). Based on charge density difference
plots and HOMO–LUMO energy gap data, they concluded that
Pt doped CNTs could be used to detect carbon monoxide.
With respect to structural defects, Andzelm et al.38 studied
adsorption energy, HOMO–LUMO structures, DOS, and
Fourier-transform infrared spectroscopy (FTIR) spectra for
CNTs with Stone–Wales, vacancy, and interstitial defects,
concluding that such nanotubes would perform well as
ammonia sensors.

This paper extends previous computational research on gas
sensing using carbon nanotubes with defects, with the
following focus:
� The target molecules are one nitroaromatic (TNT) and two

nitramine (RDX and HMX) explosives; the response to four
background gases (N2, CO2, H2O, and O2) is also computed, to
determine the relative sensitivity of the CNTs to explosives and
the selectivity of the modeled sensors in identifying various
analytes;
� The modeled CNTs incorporate one of five different

defects, two substitutional dopants (boron and nitrogen) and
three structural defect types (vacancy, divacancy, and Stone–
Wales);
� The five sensor types are evaluated for their performance

as a sensor array, using Principal Component Analysis (PCA) to
estimate the array’s effectiveness in explosive molecule sensing.

Unlike previous work, since the introduction of defects
renders the modeled metallic CNT sensing performance
highly nonlinear, ab initio current transmission calculations
are performed over a range of bias voltages (0.2–0.9 volts), at
an increment of 0.1 volts. This provides an eight-fold
increase in the sensor array degrees of freedom considered
in the PCA, and is aimed at improving the selectivity of the
modeled sensing device, a central concern in chemiresistive
sensing.

Initial computations for each combination of analyte and
sensor type include: (1) adsorption energy, (2) zero-bias con-
ductance, and (3) charge density difference distribution. Next,
changes in the CNT current as a function of the applied bias

voltage are computed and used to evaluate the chemiresistive
sensing properties of the CNT-based array. Principal Compo-
nent Analysis of the current data indicates that the defect
based sensor array will show good sensitivity and selectivity,
for all three explosives and for all four background gases
included in the analysis, in particular distinguishing all
three explosives from each other and from all four
background gases.

The subsequent sections of the paper are arranged as
follows. The next section describes the computational meth-
ods used in the analysis. The section which follows presents:
(1) the ab initio modeling results for the five CNT sensor
configurations and seven analytes of interest, in all combina-
tions, followed by (2) a principal component analysis which
evaluates the performance of the proposed sensor array.
Finally the conclusions section summarizes the results pre-
sented in the paper and offers suggestions for future
research.

2. Computational methods

The ab initio analyses described in this paper were performed
using the open source code suite SIESTA,39 which employs
Kohn–Sham self-consistent density functional theory to com-
pute equilibrium configurations for the nuclear-electronic
structure. A Generalized Gradient Approximation (GGA)
exchange correlation functional with Perdew–Burke–Ernzer-
hof (PBE) parameterization was used in all of the calcula-
tions. A double-zeta polarized (DZP) basis set was assumed
for all of the elements. Brillouin zone k-point sampling
employed a Monkhorst–Pack mesh with an energy cutoff of
300 Ry. The analysis assumed zero temperature and a max-
imum force convergence criterion of 0.04 eV Å�1. The elec-
trical transport properties of the modeled systems were
computed using a non-equilibrium Green’s function (NEGF)
method implemented in the TranSIESTA40 module, and
conductance was computed using the Landauer–Buttiker
formula.41

The substitutional dopants and structural defects modeled
in this paper were applied to a metallic, single walled carbon
nanotube of chirality (5,5), with a unit cell length of 2.46 Å.
Starting geometries for the background gases and explosives
molecules are taken from published work.42–44 The starting
analyte molecule orientations assumed in this paper were
obtained from a preliminary analysis which identified the
minimum energy orientations for analyte adsorption on a
pristine CNT(5,5). A typical atom count for the models is 330.
In the non-transport directions, the scattering zone boundaries
were separated from the nearest nuclei by at least 20 Å, to avoid
any neighboring supercell interactions. In the transport direc-
tion, the scattering zone was bounded by electrodes composed
of pristine (5,5) nanotubes, modeling a conductor of infinite
length.

The results and discussions section applies three metrics to
quantify the performance of the sensor array and evaluate its
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effectiveness. The first two metrics describe the equilibrium
states of the modeled systems at zero bias voltage. The first
metric is the adsorption energy, defined by

DE = Etotal � Esensor � Eanalyte (1)

where Eanalyte and Esensor are the energies of the analyte mole-
cule and the CNT sensor (with defect) in isolation, and Etotal is
the energy of the system after adsorption of the analyte. The
second metric is the change in nanotube conductance asso-
ciated with the adsorption of an analyte

DG = Gsensor+analyte � Gsensor (2)

where Gsensor is the conductance of the CNT sensor (with
defect) before adsorption of the analyte and Gsensor+analyte is
the conductance of the CNT sensor (with defect) after adsorp-
tion of the analyte. Note that the analyte may be either an
explosive molecule or a background gas molecule. The third
metric quantifies the chemiresistive sensing performance of
the substitutionally doped or structurally defective nanotubes.
It is defined as the change in nanotube current associated with
adsorption of an analyte, and is computed for each combi-
nation of analyte and sensor, as a function of the bias
voltage (V)

DI = I(V, sensor, analyte) � Iref(V, sensor) (3)

where Iref (V, sensor) is the current in a sensor under bias
voltage V in the absence of an adsorbed analyte.

Published work indicates that electronic transport through
pristine CNTs occurs without spin polarization for hundreds of
nanometers.45 A computational study46 on CNTs with Stone–
Wales defects showed that the presence of a Stone–Wales defect
does not induce spin polarization as long as the defect density
is lower than one defect per nine unit cells. Our computations
consider one defect per sixteen unit cells of CNT, much lower
than the cited threshold. Computational studies20,47 also indi-
cate that isolated vacancies do not cause spin polarization,
since they undergo a ‘reconstruction’ of the type described later
in the paper. Hence the sensing models described in this paper
do not consider the effects of spin polarization. Finally note
that recently published work48 investigating surface adsorption
processes for the same exchange correlation function, nano-
tube type, background mesh, and convergence criteria applied
here found that van der Waals interaction effects were
negligible.

3. Results and discussion

This section describes the ab initio modeling results for the
response of the five CNT sensors to the seven analytes (three
explosives and four background gases) considered in this
paper. The ab initio modeling results for the sensor current
response are then used, in a Principal Component Analysis, to
evaluate the performance of the sensor array for its sensitivity
and selectivity in the detection of explosive molecules.

Fig. 1 depicts four of the total of 35 modeled sensor-analyte
combinations, showing equilibrium configurations for HMX,
RDX, TNT, and O2 adsorbed on nitrogen-doped, boron-doped,
divacancy flawed, and Stone–Wales defect flawed nanotubes
respectively. Note that color distinguishes the dopant atoms
and the CNT sidewall flaws, at which the analytes are
adsorbed. To clarify the nature of the vacancy, divacancy, and

Fig. 1 Computational models: HMX adsorption on CNT(5,5) with substi-
tutional doping by nitrogen (top left), RDX adsorption on CNT(5,5) with
substitutional doping by boron (top right), TNT adsorption on CNT(5,5)
with a divacancy defect (bottom left), and O2 adsorption on CNT(5,5) with
Stone–Wales defect (bottom right). In the lower row of figures, the carbon
atoms associated with the defects are highlighted in green.

Fig. 2 Schematics descriptions of three defects in a metallic CNT; the
atoms highlighted in blue are either missing (vacancy and divacancy
defects) or realigned (Stone–Wales defect).
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Stone–Wales defects, Fig. 2 provides schematic descriptions of all
three defects on a lattice segment with the same connectivities as
the full lattice which makes up the sidewall. Fig. 3 and 4 plot

adsorption energy (eqn (1)) and the change in zero bias voltage
conductance (due to adsorption, eqn (2)) for all five sensors and
all seven analytes considered in this paper. Modeling results for a

Fig. 3 Computational results for the change in conductance due to analyte adsorption and adsorption energy, for a pristine CNT(5,5) (top row), a CNT
(5,5) with substitutional doping by nitrogen (second row), and a CNT (5,5) with substitutional doping by boron (third row). The lower row shows similar
computational results for O2 and NO2, parameterized by sensor type.
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pristine CNT sensor and for two widely studied hazardous gas
analytes (NO2 and NH3) are also included in these two figures,
for reference in discussions of previous work. Note that

Fig. 3 and 4 break out the O2 and NO2 adsorption results in
separate plots, since the chemiresistive sensitivity to those ana-
lytes is, in comparison to the other species, rather high.

Fig. 4 Computational results for the change in conductance due to analyte adsorption and adsorption energy, for a CNT(5,5) with a vacancy defect (top
row), a CNT (5,5) with a divacancy defect (second row), and a CNT (5,5) with a Stone–Wales defect (third row). The lower row shows similar
computational results for O2 and NO2, parameterized by sensor type.
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Pristine CNT response

In the pristine CNT sensor case, all of the analyte molecules
reduce the CNT conductance, however the change is significant
only for O2 and NO2 (see Fig. 3). The relatively high computed
sensitivities to O2 and NO2 are consistent with experiment49,50

and reflect the strong electron-withdrawing properties of O2

and NO2. With respect to the explosives, TNT produces a
slightly larger change in conductance than the nitramines,
and all three explosives show higher adsorption energies than
the background gases. Consistent with the modeling results,
experiments on pristine CNTs have generally shown low sensi-
tivity and low selectivity;9,51 pristine CNTs have however been
been shown to detect O2

11,52,53 and NH3;54 the conductance
change results presented here are sign consistent with the cited
experiments. Experimental work sensing ammonia55 has
shown a relatively small drop in conductance, also consistent
with the modeling results.

Doped CNT response

As nearest neighbors with carbon in the periodic table, nitrogen
and boron are known to sometimes replace carbon atoms in
CNTs; this effect has been studied in battery applications.56–58

Consistent with experiment,26 the equilibrium analyses con-
ducted here show that both nitrogen and boron can replace
carbon without distorting the CNT lattice. The ESI† provides
charge density difference plots which depict equilibrium con-
figurations for all three modeled explosives, and for an oxygen
molecule, adsorbed on both nitrogen (Fig. S1, ESI†) and Boron
(Fig. S2, ESI†) substitutional dopant sites.

In the case of nitrogen, both in situ doping21,22 and post
treatment methods59,60 have been used to produce substitution-
ally doped CNTs, which have been evaluated in NH3, NO2 and
H2O detection experiments.27 As indicated in Fig. 3, O2 sensing
shows the largest change in conductance and NO2 shows the
largest adsorption energy. The computed change in conductance
for NO2 sensing is sign consistent with experimental studies on
single-wall13,27 and and double-wall28 CNTs. With regard to the
explosives, TNT shows the largest adsorption energy while RDX
shows a change in conductance which differs in sign from those
of the other explosives. Note that such distinctions can be very
important in determining the selectivity properties of sensor arrays.
In the case of boron, substitutional doping has been accomplished
using laser ablation,23 arc discharge,24 chemical vapor deposition,61

and post-manufacturing reactions.62 As indicated in Fig. 3, the
modeling results indicate that O2 and NO2 show the largest
sensitivity. With regard to the explosives, TNT shows the largest
adsorption energy as well as a change in conductance which differs
in sign from those of the nitramines.

Comparing the sensing results for the two substitutional
doping cases, the conductance change results frequently differ
in sign, perhaps since nitrogen n-dopes carbon while boron
p-dopes carbon. The response to oxygen is consistently a large
negative change in conductance. These results would generally
support array selectivity, in the case of oxygen by isolating this
analyte in the sensor response space.

Defective CNT response

The removal of atoms from a CNT can produce vacancy defects
of several types, which can significantly change the electrical,
chemical, and mechanical properties of CNTs.63–65 Of specific
interest here are the changes in electrical conductance due to
the adsorption of analytes at these sites. The ESI† provides
charge density difference plots which depict equilibrium con-
figurations for all three modeled explosives, and for an oxygen
molecule, adsorbed on monovacancy (Fig. S3, ESI†), divacancy
(Fig. S4, ESI†), and Stone–Wales (Fig. S5, ESI†) defect sites.

If only one carbon atom is missing from the sidewall, the
defect is called a monovacancy or simply a vacancy defect. The
mechanical effects of such defects on CNTs have been widely
studied.63,64,66 Recombination of the two-atom coordinated
carbons at the defect forms a pentagonal structure (a Jahn–
Teller distortion20), which has been observed in experiments
and previous computational studies.29,67 Here the conductance
modeling results (Fig. 4) indicate that all three of the explosives
and H2O show a large response to the vacancy defect, and that
TNT and NO2 show the largest adsorption energies. The closest
reported experimental work has been on semiconducting
CNTs, which showed a reduction in the conductance of defec-
tive CNTs upon exposure to ammonia.34,68 The present compu-
tational work, which considers metallic nanotubes, also shows
a reduced conductance.

If two neighboring carbon atoms are removed from the
sidewall, a divacancy defect is produced. Recombination of
the neighboring carbon atoms creates two pentagonal rings
and one 8 membered ring. Divacancy defects are common at
room temperature in CNTs and affect their electrical and
mechanical properties.64,69 The modeling results for sensing
at these defects are shown in Fig. 4. Note that O2 and NO2 show
negative changes in conductance, while the other analytes show
positive changes in conductance. The explosives show relatively
large conductance changes, as compared to most of the ana-
lytes, however as in the case of substitutional doping oxygen
sensitivity is high. Comparing the vacancy and divacancy
defects, there are significant differences in the computed
response. The magnitudes of the adsorption energies and the
magnitudes of the conductance changes are much higher in the
monovacancy case than in the divacancy case, apparently since
monovacancy defects result in a carbon atom bonded to only
two neighbors, instead of three. This creates a highly reactive
site20 which attracts any analyte.

The third defect modeled here is a Stone–Wales defect,
which takes a pentagon-heptagon shape. Two p-bonded C
atoms rotate by 901 along the mid point of their common
bond, converting four adjacent 6 atom rings to two 5 atom rings
and two 7 atom rings.65,70,71 The modeling results shown in
Fig. 4 indicate that the response is strongest to O2, NO2 and
TNT. Among the explosives, TNT shows a change in conduc-
tance which is opposite in sign to those for the nitramines, and
TNT also shows a larger adsorption energy. The present model-
ing work on NH3 and NO2 shows adsorption energies which are
consistent with a previous computational study of Stone–Wales
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defects in graphene.72 Note that the overall analyte response to
the Stone–Wales defect is qualitatively similar to that for a
pristine CNT. In both cases all of the carbon atoms in the
sidewall remain bonded to three other carbon atoms.

Current–voltage characteristics

The preceding discussion has emphasized the somewhat dis-
parate zero-bias conductance characteristics of five chemiresi-
tive sensors defined by introducing lattice defects, of either the
substitutional or vacancy type, to a pristine metallic CNT. Since
such defects would be expected to produce a nonlinear current
response under bias voltage loads, I–V characteristic curves for
each sensor-analyte combination were computed, covering the

bias voltage range 0.2–0.9 volts. Assuming a bias voltage inter-
val of 0.1 volts, this creates a (non-degenerate) eight-fold larger
discrete description of a sensor array response which can be
employed in a ‘pattern matching’ algorithm (such as Principal
Component Analysis) to add sensitivity to a chemiresistive
sensing device. Fig. 5 plots the current–voltage characteristics
of all five sensors, where the plotted response is the current
increment defined by eqn (3). As expected from the zero-bias
conductance results, the current changes for oxygen adsorption
are relatively high, hence they are presented separately on a
sixth plot which includes results for all five sensor types.
Although I–V curves for the nitrogen dioxide and ammonia
analytes were not computed, they could be generated in order

Fig. 5 Current increment versus voltage characteristic curves for CNT(5,5) sensors with substitutional doping or structural flaws, due to adsorption of an
explosive or background gas molecule. The bottom right plot isolates the computational results for oxygen, for all five sensor types.
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to perform a hazardous gas analysis similar to one presented in
this paper for explosives.

As in the case of the zero-bias conductance calculations, the
current response results show disparate trends. In the case of
the nitrogen-doped sensor, the RDX and TNT curves show
opposite signs while the current curve for HMX is near zero.
Comparing the nitrogen-doped and boron-doped sensors, the
current responses for RDX and TNT differ in sign. In the case of
the vacancy and divacancy defect sensors, the response trends
are non-monotonic. In the case of the Stone–Wales defect, the
current response for TNT differs sharply from that of all
the other analytes, including oxygen. Overall the results support
the suggested selectivity analysis approach.

Principal component analysis

An evaluation of the sensor array performance was made by
performing a principal component analysis (PCA) of the data

plotted in Fig. 5. PCA is commonly used73–78 to process output
data from gas sensor arrays or other systems with olfactory
structures. PCA constructs a linear transformation of the origi-
nal sensor output variable space, defining a new system of
ordered orthogonal coordinates, called principal components.
The principal components are ranked according to their ability
to account for the variance in the sensor data, and are
(typically) used to reduce the order of the basis set describing
the sensor output variable space. The reduced order model is
composed of ‘n‘ principal components, where ‘n‘ is the mini-
mum number of principal components required to account for
(typically) 95% of the variance in the sensor output data
set.79–81 The ability of the output data set to distinguish
between the various analytes is measured by their ‘separation
distance’ in the reduced order principal component space; if
the separation distance between any two analytes exceeds a
specified classification threshold, the analytes are considered

Fig. 6 Principal Component Analysis results for sensing of an explosive or background gas molecule, using an array of five CNT(5,5) sensors with
substitutional doping or structural flaws, over a bias voltage range of 0.2–0.9 volts: Cumulative Variance plot (top left), reduced order principal
component space plot (top right), Distance Metric plot (lower left), and Classification Chart (lower right). In the Classification Chart, green squares denote
distinguishable analyte pairs for a classification threshold of 0.322.
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to be distinguishable. This process estimates the selectivity of
the sensor array.

The computational data set developed here was analyzed as
follows: (1) a principal component analysis was performed
using commercial software, (2) the cumulative variance of the
data set was plotted, as a function of the number of principal
components, (3) a reduced order model was defined by deter-
mining (from the cumulative variance plot) the number of
principal components needed to account for at least 95% of
the variance in the data, (4) the separation distance for all
analyte pairs was computed, and displayed on a Distance
Metric plot, and (5) a classification criterion was selected to
identify the distinguishable analytes, and the results displayed
on a Classification Chart. The Distance metric (Djk) used here to
describe the separation of the jth and kth analytes in an
n-dimensional, reduced order principal component space is

Djk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

x
ð jÞ
i � x

ðkÞ
i

� �2s
(4)

where xi
( j) and xi

(k) denote the ith principal component coordi-
nates of the jth and kth analytes. As a preliminary step in the
PCA, the current data shown in Fig. 5 was scaled, dividing each
sensor current by a baseline value which is the current trans-
mitted by a pristine metallic nanotube (with quantum conduc-
tance 2G0) at a bias of one volt. Hence the principal
components, distance metrics, and classification threshold
used in this paper are dimensionless.

Fig. 6 (top left) shows the cumulative variance plot for the
CNT sensor data set; only two principal components are needed
to account for 95% of the variance in the sensor output data set.
Fig. 6 (top right) shows the separation of the seven analytes
(three explosives and four background gases) in the reduced
order principal component space. Note in the Distance Metrics
(Fig. 6, lower left) the clear separation of oxygen from all the
remaining analytes, the close proximity of the N2 and CO2

coordinates in principal component space, and the distances
separating the three explosive molecules from all of the other
analytes. As indicated in Fig. 6 (lower right), where green
squares denote distinguishable analyte pairs, if a classification
threshold of 0.322 is chosen for this data set the sensor array
shows excellent selectivity. All the explosives can be distin-
guished from all of the background gases, and from each other.
The only indistinguishable analytes are N2 and CO2. A review of
published data on measured sensor currents in hazardous gas
detection experiments11,82,83 suggests that the classification
threshold chosen here is reasonable, perhaps conservative,
and that selective detection of explosive molecules using defect
modulated metallic CNTs is feasible.

4. Conclusions

Trace detection of explosives using carbon nanotube based
sensors has attracted much research attention, since it might
produce a light weight, low power, low cost solution to a
hazardous materials detection problem of very wide military,

government, and commercial interest. Chemiresistive sensing
solutions often provide simplicity and robustness, but lack
selectivity. The present paper employs a sensor array to address
the need for selectivity, and applies Principal Component
Analysis to quantify the array’s performance. Recognizing the
importance of a large data set to any pattern recognition based
sensing algorithm, the present work capitalizes upon the non-
linear current–voltage characteristics of the defect-based sen-
sors by analysis of the sensor response over a range of bias
voltages. In the linear sensor case, data collected at more than
one bias voltage would be redundant; in the nonlinear case,
data collected over a range of bias voltages expands the sensor
data set and will in general improve the selectivity of the array.

Building on previous experimental and computational work
on the study of defects in carbon nanotubes, and their effects
on chemiresistive sensing performance, the present paper
suggests that sensor arrays which capitalize on the nonlinear
response of substitutionally doped and structurally flawed
metallic CNTs may offer opportunities for sensitive and selec-
tive detection of explosive molecules. Although this paper
considers only basic sensing mechanisms, it does motivate
further research exploring the sensing scheme developed here
and extension of the approach to address other hazardous gas
sensing applications. Important opportunities for immediate
extension of the present work include the analysis of nanotube
sensors of other chiralities and the application of machine
learning, as an alternative to PCA, in the interpretation of
sensor data. The present work considered single wall (5,5)
CNTs in order to minimize the modeled atom count and
thereby reduce computational cost. Other chiralities might
offer surface curvature or other properties with sensing advan-
tages. With regards to data analysis, machine learning
methods84–86 merit close attention as a possible means to make
more effective use of sensor array measurements.
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