Crystal facet and surface defect engineered low dimensional CeO$_2$ (0D, 1D, 2D) based photocatalytic materials towards energy generation and pollution abatement

S. Sultana, S. Mansingh and K. M. Parida*

Surface defect engineering and crystal facet engineering are two important strategies which effectively enhance the efficiency of a photocatalyst by modulating its physiochemical properties. To date, surface defect and morphology dependent photoactivity has been explored by using different nanostructured photocatalysts. Among them CeO$_2$ based materials have recently received foremost interest, due to their easily tunable surface structure and low formation energy for surface defects. Therefore, in this review we have comprehensively summarized the recent achievements and progress in surface defect enriched low dimensional nanostructured CeO$_2$ and CeO$_2$ based heterostructure photocatalysts towards clean fuel generation reactions such as water splitting, CO$_2$ reduction, N$_2$ fixation and organic/inorganic environmental pollutant removal applications. The present review highlights the design of CeO$_2$ with particular crystal facets and morphology and the positive impact of the crystal facets on the construction of different CeO$_2$ based heterostructure materials (0D–2D, 0D–1D, 1D–2D, 2D–2D, 0D–3D, etc.) with other low dimensional photocatalysts. Next, the surface defects, crystal facets and heterojunctional interfaces responsible for improved photoactivity are briefly discussed with proper experimental evidence and the mechanism along with the theoretical concept is explained. Further, this review sheds light on the current challenges and future perspectives in this research area.

1. Introduction

Energy shortage and environmental pollution are pressing concerns that adversely impact the sustainable development of our society. Hence, the development of green, sustainable and energy-efficient methods for energy production and pollutant detoxification is of utmost concern. With regard to this, semiconductor photocatalysis has gained enormous popularity as it can convert solar energy into some useful energy feedstocks and also act as a boon for remediation of environmental pollutants. However, a major difficulty faced in this area is the low efficiency of the photocatalyst. The efficacy of a photocatalytic system generally depends upon three mechanistic features such as appropriate excitation, bulk diffusion and surface charge transfer. In order to achieve the higher efficiency of a photocatalyst, all these three properties have to be controlled in a single platform. With the development of modern technology and advanced characterization techniques,

Dr Sabiha Sultana received her bachelor’s degree (1st Rank) from Utkal University, Bhubaneswar, in the year 2012 and MSc in Chemistry from Ravenshaw University, Cuttack, in the year 2014. Then, she joined as a PhD student under the supervision of Prof. Kulamani Parida at the Centre for Nano Science and Nano Technology, SOA Deemed to be University, Bhubaneswar – 751 030, Odisha, India. E-mail: paridakulamani@yahoo.com, kulanmaniparida@soa.ac.in; Fax: +91-674-2581637, Tel: +91-674-2379425

Dr Sriram Mansingh received his BSc (2nd Rank), MSc and MPhil (1st Rank) from Utkal University, India. Then, he completed his PhD degree at the Siksha ‘O’ Anusandhan (Deemed to be University) Bhubaneswar, India, under the guidance of Prof. Kulamani Parida. His current research mainly focuses on the development of nanostructured materials such as metal oxides, metal sulphides, and phosphides, and their application towards water splitting, N$_2$ fixation and organic/inorganic pollutant detoxification. He has published 24 research articles in various international journals and one patent.
the terminologies surface defect engineering and crystal facet engineering have come to light very recently.13–15 It is found that either of these two approaches is a game changing entity for enhancing the reactivity and selectivity of a photocatalyst by modulating its physical and chemical properties.

Crystal facet engineering can efficiently modify the kinetic parameters responsible for the improved charge pair transfer and separation parameter and reaction rates of a photocatalytic reaction. In brief, morphologies with different exposed facets have different atomic rearrangement and co-ordination, and hence different morphologies exhibit different surface electronic structures (band gap, band edge potential, etc.), electrical conductivity, surface built-in electric field, reaction centers and reactant adsorption sites.16–19 By simply changing an exposed plane to another one, there is a drastic change in the photoactivity and selectivity of a photocatalyst for a photocatalytic reaction15, so there is an increased interest in morphology tuning and crystal facet engineering. While considering a multicomponent system, crystal facet engineering in nanostructured hybrids is quite complicated, as a heterostructural interface is evolved between the individual components. Those hybrids possess individual components with their own crystal planes of different orientation as well as a distinct interface with different band energy alignment. In most of the cases, proper band alignment at the interface between two individual components is found to be very crucial for interfacial charge transfer and separation. Hence the rational design of photocatalytic systems with active surface planes and suitable interfaces is very challenging.20–26 The Arienzo group prepared TiO\textsubscript{2} with (001) and (101) exposed facets by using a morphology directing agent. Both theoretically and experimentally, they proved that the 001 surface is more active for photocatalytic oxidation reaction while the exposed 101 surface is a reductive surface, as it didn't directly assist the oxidative process.22 In another example, Bomio et al. prepared a PbMoO\textsubscript{4} photocatalyst with predominant 111, 100, 011 and 110 facets by using a template directing agent. They found that the 001 surface exhibited the lowest activity for RhB photodegradation as the surface acts as a recombination centre of photogenerated electrons and holes.23 Further, Zhu et al. prepared 010 and 011 facet exposed BiVO\textsubscript{4}. They found that the morphology and the distinct facets play a vital role in the anisotropic charge distribution at the photocatalyst surface. For the 011 facet the surface photovoltage signal was 70 times higher than that on the 010 facet; hence the former could be a better photocatalyst.24 Further, Naresh et al. explained the interaction of two exposed facets of two individual components in a heterostructure. They reported that 110 exposed Cu\textsubscript{3}O (rhombic dodecahedra) was a more active photocatalyst towards MO degradation than 111 exposed Cu\textsubscript{3}O (octahedral), while cubic 100 exposed facet Cu\textsubscript{3}O is photocatallytically inactive. But when these are made into heterostructures with 200 exposed ZnS, Cu\textsubscript{3}O(111)/ZnS(200) performed well in comparison to Cu\textsubscript{3}O(110)/ZnS(200). The reason was attributed to the unfavourable band alignment within Cu\textsubscript{3}O(110) and ZnS(200), showing the lowest charge separation efficiency.25 Hence photocatalytic activity is also strongly related to the exposed facet as well as their interfacial interaction.

Surface defects are another interesting feature which has a positive role in enhancing the photocactivity of a photocatalyst; hence defect engineering is catching more scientific significance for modifying the properties of a photocatalyst. In general, defects are created in a slightly reductive environment where the periodic arrangement is broken with little lattice distortion, and this can change intrinsic semiconductor properties such as orbital hybridization, conductivity, atom coordination number, and light absorption ability and can also change the electron density around the Fermi level.27–30 Basically there are two types of defects, \textit{i.e.} bulk defects and surface defects, and among these two, surface defects enhance the charge separation efficiency of a photocatalyst while bulk defects act as a recombination center for photogenerated charge carriers.31,32 The surface defects are again classified into many divisions on the basis of dimension such as point defects, line defects, planar defects and volume defects. Surface anion vacancies (oxygen, sulphur and nitrogen) are regarded as the most explored type of vacancy which are employed in photocatalysis to modify the activity of the photocatalyst by enhancing its light absorption ability and charge transfer and separation efficiency and drive the surface reactions.33,34 Moreover, in a multicomponent nanohybrid, additional defects, \textit{i.e.} interfacial defects, are found which enhance the photocactivity by accelerating the interfacial charge pair separation.35 However the controlled design of desirable vacancies in single and multicomponent photocatalysts without complete lattice distortion is very demanding. Hence, many studies have been concentrated on the design of a photocatalytic system with the combination of both surface defects and exposed crystal facets. For example, Li et al. prepared an oxygen vacancy enriched BiOBr(001) nanosheet and tested its effectivity towards the photocatalytic nitrogen reduction reaction. They found that the

Prof. Kulaman Parida is a globally distinguished scientist in the area of materials science, catalysis and nanotechnology. He superannuated as a Chief Scientist and a Professor of Academy of Scientific and Innovative Research (AcSIR) from CSIR-IMMT, Bhubaneshwar, in 2014. His adoration for Chemistry and passion towards research couldn’t let Prof. Parida sit idle after retirement. With the same devotion and dedication, Prof. Parida (Director) started the ‘Centre for Nano Science and Nano Technology’ a research unit of Siksha ‘O’ Anusandhan (deemed to be university), Bhubaneswar. His research interests include the design and development of advanced materials encompassing a wide variety such as metal oxides/phosphates/sulfates, cationic and anionic clays, perovskites, MOFs, carbon based materials including graphene, \textit{g}-C\textsubscript{3}N\textsubscript{4} and naturally occurring materials such as manganese nodules, manganese nodule leached residues, and manganese oxides of natural origin for fine chemical, energy and environmental applications. He has published more than 500 research articles and 10 review articles in renowned international journals. He has 18 524 citations to his credit with an h-index of 72 and an i10-index of 326. He has 27 national and international patents to his credit and is the author of four book chapters. For more details: https://kmparidaimmt.weebly.com/.
oxygen vacancy centres successfully activated the adsorbed nitrogen on BiOBr by π-back donation and significantly promoted the interfacial electron transfer from BiOBr to the activated nitrogen.\(^4\) In another report, Zhang et al. designed a defect enriched WO\(_3\) nanosheet and found that the as-prepared photocatalyst efficiently coupled sunlight into aerobic coupling of amines to the corresponding imines with excellent stability and enhanced the kinetic rate 6 times compared with defect deficient WO\(_3\). They deduced that defect engineering can serve as a versatile approach to refine the photocatalyst.\(^5\) Apart from the surface defects, interfacial defects in a heterojunction photocatalyst also play a vital role in photocatalysis. Zhang et al. successfully prepared a heterostructure between MoS\(_2\) QDs and ZnIn\(_2\)S\(_4\) in a 2-D architecture with interfacial S-vacancies. The vacancies acted as electron traps and avoided the vertical transmission of electrons.\(^6\) Hence the heterostructure exhibited a high photocatalytic hydrogen evolution rate, which was higher than that of neat systems without vacancies.

Rare earth cerium oxide (CeO\(_2\)) is considered as one of the most attractive metal oxides which can easily be tuned into different shapes with desired exposed facets. Further, another feature, i.e. surface defects, can easily be formed with very slight energy expense at the CeO\(_2\) surface. Due to these special features, it is often used as a catalyst in various catalytic applications such as solid oxide fuel cells (SOFCs), ultraviolet adsorbents, glass polishing materials, water gas shift reaction, PROX (CO oxidation), oxygen sensors, selective organic transformation, photocatalytic water oxidation and pollutant degradation.\(^7\) In addition to this, CeO\(_2\) has other special features such as cost-effectiveness, high stability, low toxicity and specific physical and chemical characteristics, such as high oxygen storage capacity (OSC), oxygen ion conductivity and fast shuttling of oxidation state (Ce\(^{3+}\) → Ce\(^{4+}\)), which makes it an ideal candidate for photocatalysis.\(^8\) In brief, the rare earth CeO\(_2\) has a crystal structure of triclinic, tetragonal or cubic phase. However, mostly CeO\(_2\) crystallizes in the cubic fluorite structure with a space group of \(Pm\overline{3}m\) \((a = 0.541134 \text{ nm})\) over the temperature range extending from room temperature to its melting point.\(^9\) The fluorite structure consists of a face centred cubic unit cell of Ce\(^{4+}\) while eight oxygen anions occupy the tetrahedral interstitial sites. As a result, each Ce\(^{4+}\) is octahedrally coordinated by eight oxygen anions while each oxygen ion is tetrahedrally coordinated by four Ce\(^{4+}\) cations forming a CeO\(_6\) cluster as the basic unit. In cubic CeO\(_2\), mainly three exposed planes (111), (110) and (100) are observed, but due to thermodynamic restrictions, CeO\(_2\) predominantly exposes the (111) plane, as it is very stable and requires low surface energy. The (111) surface plane is terminated by three-fold co-ordinated oxygen atoms, while the polar (100) surface is terminated by two-fold co-ordinated oxygen atoms. The (110) surface is terminated by a CeO\(_2\) plane with three-fold co-ordinated oxygen and six-fold co-ordinated cerium atoms.\(^9\)

Surface defects especially oxygen vacancies are termed as the most important feature of CeO\(_2\), which regulates all its properties. In a slightly reductive environment or at a low partial pressure of oxygen, surface defects (oxygen vacancies, interstitial metal defects) are generated on CeO\(_2\), as they require low formation energy. In brief, surface defects in CeO\(_2\) are generally created when the on plane oxygen is released from the lattice yielding a CeO\(_2\)-type cluster with the concomitant oxygen vacancy formed in the crystal lattice. Further, these vacancies are accompanied by localization of the electrons left behind in the Ce 4f state leading to the formation of two Ce\(^{3+}\) ions. Hence, altogether oxygen vacancies and Ce\(^{3+}\) are termed as surface defects on CeO\(_2\) as shown in Fig. 1(a).\(^10\) The reaction of defect formation is as follows,\(^11\) where \(V_O\) is the oxide ion in the lattice, \(V\text{_}O\) is the charged oxygen vacancy and \(e^-\) represents the electrons in the conduction band:

\[
V\text{_}O + \text{e}^- \rightarrow V\text{_}O^\text{_}\text{_} + 1/2O_2(g)
\]

In addition to the doubly charged oxygen vacancy, singly charged and neutral vacancies are also present in the defective CeO\(_2\) lattice.\(^12\) Huang et al. reported a neutral oxygen vacancy (\(V\text{_}O\)) centre in CeO\(_2\) with very low formation energy in an oxygen-deficient environment. It acts as a deep donor with negative U (repulsive potential) behaviour leading to excellent photoactivity. In addition to this, easy shuttling of Ce\(^{3+}\rightarrow\text{Ce}^{4+}\) helps to generate an anion Frankel defect which enhances oxygen storage as well as release capability.\(^12\) Further, to know the structure and geometry of oxygen vacancies, Esch et al. thoroughly studied the defect formation and nature of defects from STM images and DFT calculations. They found that two types of oxygen vacancies are predominantly formed: the first type is the simple one oxygen vacancy which appears as a depression surrounded by three lobes, shown by the magenta triangle in Fig. 1(b), and the second type, which is called the subsurface vacancy, appears as triple protrusions centred on third layer oxygen sites [shown by the cyan triangle in Fig. 1(b)]. The delocalization of the electron left behind determines which type of vacancy can be formed on CeO\(_2\). Hence, a permutation and combination of single and subsurface oxygen vacancies creates different dimeric and trimeric vacancy clusters with different orientation, which causes a major structural rearrangement in the crystal lattice of CeO\(_2\).\(^12\)

Next is the optical property of CeO\(_2\). Theoretically the optical band gap of CeO\(_2\) is 6–8 eV because of the transition between O 2p and Ce 5d states.\(^13\) And, the experimental result reveals a bandgap of around 3 eV due to the charge transfer spectra of Ce\((iv)\)–O\((ii)\), while the band gap may vary from 3.2 to 2.8–2.7 eV. The drastic change in the band gap and in the colour from yellow to blue-black arises only due to the presence of surface defects in CeO\(_2\).\(^14\) The change is due to the oxygen vacancy, which creates a Ce\(^{3+}\) state; thus the energy of the 4f orbitals shifts towards lower potential and hence shortens the bandgap. The density of state (DOS) of Ce 4f for Ce\((iii)\) is larger than that of Ce\((iv)\) in the positive energy range, which indicates that Ce\((iv)\) can be more easily excited than Ce\((iii)\) under light irradiation, which suggests that the oxygen vacancy enhances visible light absorption.\(^15\) In addition to the optical property, the oxygen vacancy of CeO\(_2\) also has a profound effect on the electrical as well as magnetic character. With the increase in oxygen vacancy concentration, the movement of the oxygen atom becomes...
easier in the crystal, as the vacancy easily migrates throughout the lattice via a vacancy hopping mechanism at an elevated temperature, and hence the crystal has a high electrical conductivity.56–58 This increased diffusion rate in the lattice is a probable cause of the increase in catalytic activity.58 Chen et al. reported that the intrinsic surface defects also have a direct relationship with the magnetic behaviour of CeO\textsubscript{2}. They found that an increase in the local oxygen vacancies and Ce3+ concentration directly increases the magnetism of CeO\textsubscript{2} nanoparticles. However, after a certain concentration of Ce3+ the magnetic properties gradually decrease and vanish completely. The reduction of magnetic moments may be due to ion pair formation by oxygen vacancies which favours antiferromagnetism. Further, from the X-ray magnetic circular dichroism measurement and theoretical analysis, they found that the electrons in Ce bear magnetic moments and show magnetism via bound magnetic polars which are constituted by oxygen vacancies and an oxygen mediated super-exchange framework (Ce3+–O–Ce3+).5 Therefore it is confirmed that oxygen defects and shuttling of oxidation states in CeO\textsubscript{2} lead to some peculiar changes in optoelectronic, electrical as well as magnetic properties.

Another interesting feature of ceria is its morphology variation; ceria can be easily tailored to different morphologies such as nanorods, nanotubes, nanocubes, nanopolyhedra, and nanosheets with exposed active facets. Moreover, particle size and morphology have a prominent effect on the intrinsic surface defect formation in CeO\textsubscript{2}. From the literature survey, it was found that the smaller the particle size is, the higher the surface to volume ratio will be, and hence the more defects there will be. Additionally, designing a particular shape or exposure of a specific plane in CeO\textsubscript{2} decides...
the formation and concentration of defects. Based on the DFT calculation, the (100) plane exhibits the lowest energy for vacancy formation, while the (111) crystal plane requires more energy. So based on this, nanostructures of (100) and (110) exposed facets contain more surface defects than (111) oriented surface structures.60–64 Wu’s group evaluated the surface defects and their relationship with the photocactivity of different exposed planes of three types of CeO\textsubscript{2} nanostructures such as nanorods, nanocubes and nano-octahedra. \textit{Via} UV-Raman spectroscopy and O\textsubscript{2} adsorption analysis, they found that both oxidized and reduced CeO\textsubscript{2} of nanorod morphology ((110) + (100)) has the most intrinsic defects followed by nanocubes (100) and nano-octahedra (111). Furthermore, the team observed that some defects are of one electron containing singly charged species while some are two electrons containing doubly charged.63 Recently by combining experimental and theoretical results, Oliveira and his group concluded that CeO\textsubscript{2} consisting of the (111) exposed plane contains only one vacancy, due to the presence of the [CeO\textsubscript{2}–V\textsubscript{0}] cluster, while (100) and (110) crystal planes exhibit two vacancies, because of the presence of the [CeO\textsubscript{2}–2V\textsubscript{0}] cluster. In the samples consisting of (100) and (110) facets with two vacancies, there is a resonance between the vacancies which stabilizes the interaction between electrons and holes. Moreover, the one vacancy containing facet shows higher stability for the formed holes only, which reduces the electrical resistance to some extent. Hence the morphology containing (100) and (110) planes shows higher photocactivity and lower electrical resistance than the (111) plane containing morphology.54 In most cases, surface defects, exposed planes and morphology of CeO\textsubscript{2} are the key factors that decide the enhancement in catalytic as well as photocatalytic activity.52–64 However, the vacancies can easily be healed in an oxidative environment (O-rich) and sometimes act as hole trapping centers which retards photo-efficiency. Importantly, designing a specific facet exposed system is very challenging. So fabricating CeO\textsubscript{2} based nanomaterials with controlled surface defects and a well compatible merged facet interface is getting more attention and interest.

Therefore more emphasis has been given to the construction of hybrid/heterostructure based photocatalytic systems for potential application in the photocatalysis field. So far many such CeO\textsubscript{2} based photocatalytic systems have been made and from the recent studies it was found that the construction of heterostructure photocatalysts of different morphologies, with other visible light semiconductors, is a feasible and effective method to improve the photogenerated electron–hole separation which ultimately improves the photocatalytic efficiency under visible light. In this approach, a wide bandgap metal-oxide semiconductor, \textit{i.e.} CeO\textsubscript{2}, is often combined with a narrow bandgap semiconductor such as other metal oxides, sulphides, phosphides, and selenides to form a heterostructure oriented system.45–48 Further, the \textit{in situ} generation of surface defects helps to minimize the hole–electron recombination and provides a strong interfacial surface for reactant binding and the corresponding dissociation, resulting in improved photoefficiency. Regarding this concept, several articles corresponding to the CeO\textsubscript{2} based photocatalytic systems have been published in the field of solar fuel generation and pollutant removal, which we have discussed in the application section.

Nanostructured CeO\textsubscript{2} has witnessed numerous possible scientific advancements and has always been the centre of attraction in photocatalysis, as summarized in Fig. 2. Currently, extensive studies have been made towards developing efficient CeO\textsubscript{2} based photocatalytic systems by adopting different advanced strategies such as surface interface tuning and defect engineering. Hence, there are several reviews on CeO\textsubscript{2} covering areas such as its properties, synthesis, nanostructure and catalytic application.27,39,45–48 However, a systematic review on the current progress and growth trend of exposed facet and defect mediated CeO\textsubscript{2} based materials is highly needed to update the scientific society with regard to photocatalysis. So in this review, we have specifically discussed the strategic updates and the latest progress in exposed facet, morphology dependent CeO\textsubscript{2} with defect engineering and then CeO\textsubscript{2} based heterostructured materials towards various photocatalytic applications. In brief, the review elaborates the basic concepts and the design strategy of lower dimension (2D, 0D, 1D, 3D) CeO\textsubscript{2} with particular crystal facets and broadly summarizes the synthetic strategy involving CeO\textsubscript{2} based materials with a distinct

![Fig. 2 Complete schematic illustration of CeO2 based materials' property tuning and applications.](image-url)
morphological interface such as 0D–2D, 0D–1D, 1D–2D, 2D–2D, 0D–3D, etc. Further, it also narrates the detailed defect chemistry of such heterointerface systems in different photocatalytic applications such as water splitting (H₂ and O₂ evolution), CO₂ reduction, N₂ reduction, and pollutant removal (dyes, phenolic derivatives, antibiotics and heavy metals) along with elucidation of morphology dependent activity correlations. At last, we throw some light on the challenges encountered and provide future direction for improvement of CeO₂ based materials to achieve benchmark efficiency.

2. Crystal facet engineering and defect designing

During the last two decades, several synthetic methods have been reported for the preparation of nanostructured CeO₂. Generally the methods used for the synthesis of shape and size selective CeO₂ with appropriate exposed active planes are precipitation, hydrothermal treatment, surfactant/capping agent-assisted solvothermal method, thermal decomposition, sol–gel combustion, template-directed synthesis, sonochemical method, microemulsion technique, electrochemical deposition and many more. More often two or more methods are combined to prepare facet orientated CeO₂ as summarized in Fig. 3(a). Sun et al., Zhang et al. and Wang et al. have thoroughly explained the hidden mechanism and the science behind the adopted strategy toward designing different shape-selective nanostructured CeO₂. Hence, in this section, we have briefly summarized some of the essential points for the synthesis of lower-dimensional facet oriented CeO₂ and cited some latest examples of the corresponding synthesis.

The controlled nucleation and growth rate of CeO₂ crystals determines the formation possibility of a particular facet, size and shape. Hence, appropriate additives such as precipitating agents/mineralisers [NaOH, urea, HMT, ammonia, etc.], template [soft, hard and self], surfactant/capping agent, organic ligands, polymers, etc., are often used to manage the exposed plane, shape and size of nanostructured CeO₂. For example, the commonly used solutions to obtain facet oriented CeO₂ are NaOH solution (cubes, rods, wire (110)), PO₄³⁻ (octahedral, rod), and NH₄H₂O (nanowires). In addition to these, the concentration of precipitants and the reaction temperature and time are also important for obtaining different exposed facets. Oliveria et al. prepared CeO₂ of different morphology by simply varying the synthesis time via microwave-assisted hydrothermal synthesis. They found that when using cerium nitrate and NaOH, at first they obtained sheet like morphology, and after a certain time these sheets were elongated to form nanorods while after some time polyhedron type morphology was obtained followed by nanocubes. Further, it was reported that anions like Cl⁻, NO₃⁻, SO₄²⁻, and PO₄³⁻ mainly coming from the cerium precursor and the added precipitants have also influenced the morphology and the properties of CeO₂. For example, Jiang et al. prepared CeO₂ nanocubes and nanorods by using two different cerium precursors; for nanocubes, they used cerium chloride while for nanorods they used cerium nitrate. After the hydrothermal treatment at 110 °C for only 24 h, from both cerium precursors in NaOH solution, they got rod like morphology, while a further higher temperature treatment (180 °C) yielded nanocube type morphology with only the chloride containing precursor. In another report by Zhu et al., 110 exposed facet nanorods were prepared from cerium chloride and NaOH via hydrothermal treatment at 140 °C for 18 h, while 100 exposed nanocubes were prepared from the same concentration of NaOH with cerium nitrate precursor at 180 °C for 24 h. The controlled design of one kind of exposed facets requires more complicated reactions; hence in most of the cases nanostructured ceria is prepared by controlling the most active plane while other facets are also present but in a dormant form. Therefore a number of systematic studies on morphology oriented low dimensional nanostructured ceria with one (in some cases more than one) active facet have been carried out. From the conclusive research

Fig. 3 (a and b) Strategy for crystal facet designing and defect engineering.
experiments it was found that by controlling the dimension of nanostructured CeO$_2$ the desired active crystal facets can be controlled simultaneously. For example, by making 1-D nanorods or nanowires, 110 + 100 exposed facets are controlled wisely, while high surface to volume ratio 100 planes are controlled by making 2-D nanosheet and 3D-nanocube like structures. For example, Imagawa and Lin et al. prepared 100 exposed facet CeO$_2$ nanoplates by using oleic acid and oleylamine, while Hao et al. prepared monodispersed 100 exposed ceria nanocubes by a simple hydrothermal method by using decanoic acid as an organic surfactant. In another report, a 200 exposed crystal facet CeO$_2$ nanocube was prepared by Yang et al. using tert-butyl amine as the facet directing agent. Next, Liu et al. reported another CeO$_2$ morphology, i.e. an octahedron with a predominant 111 exposed facet, via a hydrothermal method followed by high pressure. Hence, the synthesis of lower-dimensional CeO$_2$ with controlled exposed facets requires conceptual designing and experimental evidence, which we have briefly discussed in the below segments.

In addition to crystal facet engineering, surface defect designing is another crucial strategy for remodifying the photocatalyst property. Doping is considered as an effective strategy to generate defects in CeO$_2$; however, dopants form deep impurity levels within the forbidden band of semiconductors, where they act as recombination centres and impair photocatalytic activity. So in this review we have excluded the doping concepts and their impact on CeO$_2$ based materials. Further, a number of synthetic methods such as chemical reduction, light irradiation, vacuum activation, inert atmosphere (N$_2$, Ar, H$_2$) calcination, etc. are often combined with the general nanostructured CeO$_2$ preparation methods to achieve higher defect density at the surface as schematically presented in Fig. 3(b). Moreover, the different exposed facets exhibited different energy for vacancy formation. In general it is found that the 110 and 100 planes exhibited higher energy for surface vacancy formation while the 111 plane required a minimum energy. Among 110 and 100, 110 CeO$_2$ has lower energy for vacancy formation than 100 CeO$_2$. So via controlling the facets one can control the defects in CeO$_2$. To further enhance the vacancy concentration, additional treatments as mentioned above are considered. For example Zhang et al. prepared oxygen vacancy enriched CeO$_2$ nanorods by a one step hydrothermal method followed by in situ reduction treatment. Briefly, they used the cerium precursor and NaOH along with NaBH$_4$ and treated the solution hydrothermally. NaBH$_4$ here acts as a reducing agent and in situ generates oxygen vacancies during the growth of nanorods. And in some cases NaBH$_4$ treatment was carried out after the complete preparation of CeO$_2$ to increase the surface defect concentration. Next, Zhao et al. prepared defective CeO$_2$ NRs by a simple hydrothermal method followed by calcination in different atmospheres (such as argon, a mixture of argon and hydrogen gas and air atmosphere) at 800 °C. Via systematic analysis through XPS, they found that in an Ar–H$_2$ atmosphere maximum surface vacancies were produced, due to the reducing nature of hydrogen gas. Further, Aslam et al. synthesized nanosized CeO$_2$ by using Triton X-100 as a surfactant via a solution combustion method followed by 500 °C calcination.

They found that when the as-prepared CeO$_2$ was additionally treated with direct sunlight, some CeO$_2$ was formed on the CeO$_2$ surface. This defective CeO$_2$ exhibited enhanced absorption in the visible region and its band gap reduced from 2.9 to 2.6 eV. Hezam et al. reported another O$_2$ enriched CeO$_2$ via a sunlight assisted combustion method. They found that more defects are present in CeO$_2$ prepared by the sunlight assisted combustion method compared to that by the conventional solution combustion method.

3. Synthesis of nanostructured CeO$_2$ and CeO$_2$ based materials

3.1 Zero-dimensional CeO$_2$

In recent years 0D quantum dots (QDs) have attracted great attention due to their size-derived properties which keep them one step ahead of their corresponding normal nanoparticles. The quantum confinement effect modulated extraordinary opto-electronic properties and prominent active sites make zero-dimensional materials promising candidates in a variety of applications including photocatalysis, electrocatalysis and biocatalysis. Different synthesis methods like non-hydrolytic sol–gel, hydrothermal, microwave-assisted solvothermal methods, etc. with suitable capping agents have been reported for the synthesis of CeO$_2$ QDs. In this context, Xin et al. proposed a synthetic route to prepare monodisperse CeO$_2$ QDs by heating a cerium precursor in triethylene glycol (TEG). In short, they obtained uniform monodisperse 5 nm QDs via a facile low cost, poloy condensation route which is based on the hydrolysis of the cerium alkoxide complex at an elevated temperature in the presence of an organic solvent (TEG) as shown in Fig. 4(a). The prepared CeO$_2$ QDs show good redispersion ability and a high specific surface area. Further, Hassan and co-workers suggested two methodologies for the preparation of different size CeO$_2$ QDs. In the typical hydrothermal process, they used a mixed solution of cerium precursor along with a particular molar concentration of bases (NaOH, NH$_4$OH) and obtained 7 nm size QDs. While in the next strategy, they obtained 3 nm QDs via the non-hydrolytic sol–gel method by using the cerium precursor in polyamine and then adding the organic capping agent diphenyl ether to control the size of the nanoparticles. Moreover, in the above processes, more than one metal precursor was used in addition to the surfactant/capping agents which is quite essential for restricting the growth of QDs. In light of this, Lehne et al. used a single metal–organic precursor, i.e., a heteroleptic alkoxide complex of cerium, to obtain highly crystalline CeO$_2$ QDs with a narrow size distribution via the microwave-assisted solvothermal synthesis in N-methyl pyrrolidine. Adding more to the text, for the biomedical application of quantum dots, their synthesis, storage and self-agglomeration were considered as serious parameters for their effective utilization. Hence incorporation of a suitable capping agent or organic moiety over the surface of QDs is an apparent solution. Arumugam's group synthesized 2.4 nm CeO$_2$ QDs capped with the anionic group 2-amino-3-chloro-5-trifluoromethyl pyridine (ACTP). From XRD it...
was observed that capped as well as uncapped QDs exhibited a dominant (111) plane as shown in Fig. 4(b), and the QDs' orientation was along the 110 direction. Further, they found another interesting fact, i.e. the synthesized QDs exhibited strong green emission at 295 nm (Fig. 4(c)), which confirms that the synthesized sample was in the quantum range with particle size \(\sim 2.4 \) nm that is below its Bohr radius of 7–9 nm. Furthermore, it was found that due to the dielectric confinement effect the band gap energy values of QDs gradually decreased with the increasing amount of the capping agent, which is a good sign for photocatalysis.\(^6\)

3.2 One-dimensional CeO\(_2\)

One-dimensional (1D) nanostructures (nanowires, nanorods and nanotubes) have been intensively researched due to their fascinating physical and structural behaviour along with high chemical reactivity. Because of their high aspect ratio, they are beneficial for many potential technological applications.\(^{108}\) Different mediators such as mineralizers, organic solvents, and surfactants are used to kinetically control the 1D anisotropic crystal growth and other parameters like temperature, pH, concentration, etc. are also optimized for obtaining a thermodynamically favoured 1D structure.\(^{69–77,104}\) Zhao et al. prepared single-crystalline nanorods via the hydrothermal method (140 °C for 56 h) by using NH\(_3\)-H\(_2\)O as an alkaline agent without the use of any surfactant or capping agent followed by calcination.\(^5\)\(^9\) The study showed that the additional use of a capping agent/surfactant increases the probability of one-dimensional growth at lower temperature and consumes less time.\(^{54–60}\) Further, Cao et al. reported an interesting methodology (etching–dissolution–deposition) for the preparation of hollow nanotubes at low temperature. In this procedure, they first prepared CeO\(_2\) nanorods hydrothermally by using NaOH as a precipitating agent, and then they added a Ce salt precursor to the prepared CeO\(_2\) nanorod suspension under heating to obtain CeO\(_2\) nanotubes. They proposed that the surface Ce\(^{3+}\) underwent hydrolysis and further dissolution at the tips of the nanorods resulting in nanotube formation. Further, the redeposition and crystallization on the outer sides of the nanorods yielded CeO\(_2\) nanotubes of an average diameter of 11.8 nm, as shown in Fig. 4(d and e).\(^70\) In another work, Kuiry et al. prepared CeO\(_2\) nanotubes of diameter 40 nm and length 250 nm by using bis(2-ethylhexyl)sulfosuccinate sodium salt (AOT) as a surfactant in toluene–water solvent through the micro-emulsion technique.\(^72\) Besides, 1D CeO\(_2\) has been synthesized by using some hard templates such as AAO, ZnO, K\(_1.33\)Mn\(_8\)O\(_{16}\) nanowires.\(^{75}\) Furthermore, the electrochemical deposition technique on the outer sides of the nanorods yielded CeO\(_2\) nanotubes with a diameter of 90 ± 10 nm which fits with the diameter of K\(_{1.33}\)Mn\(_8\)O\(_{16}\) nanowires.\(^{75}\) For example, Wu's team first prepared K\(_{1.33}\)Mn\(_8\)O\(_{16}\) nanowires through the hydrothermal technique and then deposited CeO\(_2\) over them by a second hydrothermal treatment. The K\(_{1.33}\)Mn\(_8\)O\(_{16}\) nanowire template was instantaneously removed due to the release of an excess of HNO\(_3\) during the precipitation of CeO\(_2\) in the second hydrothermal treatment, leaving behind CeO\(_2\) nanotubes with a diameter of 90 ± 10 nm which fits with the diameter of K\(_{1.33}\)Mn\(_8\)O\(_{16}\) nanowires.\(^{75}\) Furthermore, the electrochemical deposition technique is now more popular for the growth of 1D nanostructures like nanorods and nanotubes over a conductive substrate.\(^{76,77}\) Lu et al. reported hexagonal CeO\(_2\) nanorods with prominent (110) exposed planes by a facile cathodic electrodeposition technique over a Ti substrate using Ce(NO\(_3\))\(_3\)·6H\(_2\)O, NH\(_4\)Cl, and KCl chemicals at a current density of 0.5 mA cm\(^{-2}\).
They found that the average diameter of the grown nanorods was about 200–400 nm and the length was up to 800 nm as shown in Fig. 4(f and g), while two sets of diffraction spots in the FFT pattern as shown in the inset of Fig. 4(f) confirmed the single crystalline nature with some defects.76 And Zhang et al. fabricated nanorod and nanowire CeO₂ over a Cu substrate by using the same nitrate precursor at a current density of 0.44 mA cm⁻² and 0.88 mA cm⁻² respectively for 2 h at 70 °C. They found well-aligned CeO₂ nanorods with an average diameter of about 200 nm while the diameter of nanowires was about 80 nm.77

3.3 Two-dimensional CeO₂

Recently 2D materials have attracted a lot of interest because of their size-derived special properties such as high conductivity, high mobility, high mechanical strength and large spin diffusion length. Their excellent properties make them an outstanding material for many catalytic and energy applications.109 Metal oxide semiconductors, i.e. CeO₂, with a cubic crystal structure have no intrinsic driving force for 2D anisotropic growth.78 So, the synthesis of 2D CeO₂ is generally carried out by using a template/surfactant/mineraliser for controlling the crystal growth along two or more facets.78–83 Yu et al. synthesized CeO₂ nanosheets via a two-step hydrothermal treatment. At first, the inorganic-organic Ce-EDA hybrid nanorods were prepared by using a hydrothermal reaction at 150 °C between 1,2-ethanediamine (EDA) and Ce(OAc)₃. Then, the hybrid nanorods were again hydrothermally treated at 280 °C to form single-crystal-like CeOH(CO)₃ nanosheets which were further calcined to obtain 2.4 nm thick ultrathin mesoporous CeO₂ nanosheets as schematically represented in Fig. 5(a).79 Further, Yu and his research team described the synthesis of ultrathin ceria nanosheets by using a single surfactant/stabilizer (6-amino hexanoic acid) only. They found that the thickness of the nanosheet was approximately 2.2 nm and the lateral dimension was up to 4 nm as shown in Fig. 5(b and c). In the preparation procedure, at first small ceria nanocrystals stabilized by AHA were formed, and later these crystals were organized into ultrathin nanosheets through 2D self-assembly, followed by an in situ re-crystallization process.78 Huang et al. prepared 2D CeO₂ nanosheets through electrochemical anodic deposition methods (0.2 mA cm⁻² for 60 min at 70 °C) over a substrate by using cerous nitrate and NH₄NO₃.80 Likewise, Wang et al. reported ultrathin ceria nanoplates via a simple and robust solution-phase synthesis method where a soft
surfactant (oleic acid or oleylamine) was used in the presence of a mineraliser (sodium diphosphate or sodium oleate) to prepare highly efficient ceria nanoplates. They concluded that thickness and morphology solely depend upon the reaction time. And the nanoplates possessed a high surface to volume ratio and the desirable high OSC(100) plane.

3.4 Three dimensional CeO$_2$

The three-dimensional nanoarchitecture with a large aspect ratio, high porosity, high surface area and high oxygen storage capacity has emerged as a promising candidate for different types of catalytic oxidation reactions. Generally, template or surfactant-assisted methods are applied to synthesize 3D (prism, octahedron, ordered mesoporous, sphere, hollow architecture, etc.) CeO$_2$ materials. Li et al. synthesized hexahedron prism anchored octahedral 3D CeO$_2$ by using phosphate ions as a mineraliser through a simple hydrothermal method, where the nanorods emerged out from the tinctoried octahedra as shown in Fig. 5(d). The unique hierarchical 3D structure provides selected redox facets and spatial charge separation sites, which are quite effective in enhancing the photocatalytic activity. A pillow like CeO$_2$ microstructure of 10 μm length and 4 μm width was prepared by Han and co-workers by a facile solvothermal method by using a cerium salt and ammonium nitrate as starting materials at pH 10. The obtained CeO$_2$ pillows have a BET surface area of 191 m2 g$^{-1}$ and a pore diameter ranging from 2 to 10 nm. Through a novel hydrothermal method followed by a controlled cationization method, Sun et al. prepared monodisperse flowerlike CeO$_2$ microspheres containing a micro/nanostructure. Because of the simultaneous polymerization–precipitation process open three-dimensional (3D) porous and hollow structures were formed consisting of nanosheets as the petals with an average thickness of about 20 nm. Besides, mesoporous ceria attracts a lot of attention as a versatile catalyst and support specimen because of its high surface area and porosity, because of which it can increase the dispersion of active secondary components. Adding more to it, Ji et al. reported an ordered mesoporous (OM) CeO$_2$ by using cubic $Ia3d$ mesoporous MCM-48 silica where the obtained OM structure CeO$_2$ achieved very high efficiency towards photocatalytic dye degradation. Further, hollow core–shell 3D structures are also investigated due to their peculiar advantageous properties. In this direction, Fang et al. communicated a variety of hollow 3D structures of CeO$_2$ like cubic, polyhedral and spherical through the template-engaged (Cu$_2$O) coordinating etching technique. However, template-free synthesis is more convenient and easy nowadays. Qi and team prepared multi-shelled CeO$_2$ hollow microspheres (Fig. 5(e)) by a simple hydrothermal method followed by calcination without using any hard or soft template. Firstly, the reaction precursor glucose was subjected to a condensation and polymerization process under hydrothermal conditions resulting in carbon microspheres. Subsequently, Ce$^{3+}$ ions got attached to the deprotonated functional groups inside the carbon microspheres in an alkaline environment. Finally, the as-formed carbon microspheres were used as sacrificial templates to obtain triple-shelled CeO$_2$ hollow microspheres via calcination in air as shown in Fig. 5(f).

3.5 Nanostructured CeO$_2$ based materials

Considering the popularity of nanostructured CeO$_2$ in different photocatalytic applications, a wide variety of facet based CeO$_2$ heterojunctional systems such as CeO$_2$–metal oxide, CeO$_2$–metal sulphide/selenide, CeO$_2$–metal phosphide, CeO$_2$–carbonaceous materials, CeO$_2$–metals, etc. have been synthesized and utilized in different energy and environmental applications thoroughly. More importantly, manipulation of the morphology of non-CeO$_2$ based components is very essential regarding the design of efficient interfaced nanostructured CeO$_2$ based composite photocatalysts. This is because the dimensionality of the other units and interfacial contact between them mainly determine the activity of the composites. On the basis of dimensionality and size, CeO$_2$ based composite materials are classified into 0D–2D, 0D–1D, 1D–2D, 2D–2D, 0D–3D, etc. as schematically represented in Fig. 6(a). Their synthetic procedure follows either in situ growth methods or ex situ assembly approaches or the one-pot method. But most often two or more methods are combined in these multistep reaction procedures to prepare different nanostructured CeO$_2$ based materials. For example, small-sized 2D nanosheets can grow vertically or wrap on the surface of relatively large 1D CeO$_2$NRs. Du et al. reported small MnO$_2$ nanosheets decorated over CeO$_2$ nanowires via an in situ growth method. They reported a two-step hydrothermal method in which first CeO$_2$ nanowires were synthesized from Ce(OH)$_3$ nuclei, and then these nanowires were dispersed in KMnO$_4$ solution to obtain the 2D–1D heterostructure. In another method reported by Jiang et al., CeO$_2$ nanorods were derived from the Ce-MOF precursor. As shown in Fig. 6(b and c), ZnIn$_2$S$_4$ nanosheets were beautifully anchored on top of CeO$_2$ nanorods. They carried out the beautiful 2D–1D heterostructure synthesis via a low-temperature solvothermal procedure. As shown in the HRTEM image, a beautiful interface is formed between the 111 plane of CeO$_2$ and the 102 plane of ZnIn$_2$S$_4$ forming a facet merged interface. Additionally, CeO$_2$ nanosheets decorated over Au nanorods were reported by Jia et al., where simple site-selective growth of crystalline CeO$_2$ nanosheets on the end of AuNRs was observed resulting in the formation of a 2D–1D heterostructure. The AuNR capped CeO$_2$ heterostructure was prepared as follows: at first the AuNRs were prepared by using CTAB as a surfactant. Then the nanorods were re-dispersed again in CTAB solution and K$_2$PtCl$_4$ was subsequently added to the above solution followed by the addition of a cerium precursor at moderate temperature. The design of the site-selective heterostructure was based on the following points: (i) the AuNRs have a different crystal structure and curvature difference (at the side and the end), so the less dense molecular chains of CTAB at the ends offer less steric hindrance for the other species to reach the AuNR than those of the sides, and hence PtCl$_4^{2-}$ ions preferentially adsorb at the two ends of AuNRs as shown in Fig. 6(d), (ii) further the ceria precursor is rapidly hydrolyzed into Ce(OH)$_3$ at elevated temperature and is easily oxidized by the pre-adsorbed PtCl$_4^{2-}$ to produce the nuclei for the further growth of CeO$_2$. The preferential adsorption of PtCl$_4^{2-}$ and the autoredox...
reaction between PtCl$_4^{2-}$ and Ce(OH)$_3$ result in site-selective nucleation and growth of CeO$_2$ nanosheets at the end of the Au nanorod heteronanostructure as shown in the TEM images in Fig. 6(e and f). Further, Feng and co-workers prepared a FeOOH/CeO$_2$ heterolayered nanotube (1D–1D) over Ni foam through the electrodeposition technique by using ZnO as a hard template. First, they deposited the CeO$_2$ layer over the ZnO NRs placed vertically over the nickel foam substrate, and then they deposited the FeOOH layer over the top of CeO$_2$ followed by removal of the ZnO template to yield a core–shell type 1D–1D heterostructure.

Compared to other heterostructures, 2D–2D materials possess maximum hetero-interfaces and strong physical and electronic
coupling effects, which further facilitate the anti-recombination process and thus contribute to high photocatalytic performance. For example, Wen et al. reported a face to face heterostructure, where they first prepared CeO$_2$ microplates via a sol-gel auto-combustion method and then BiOBr nanosheets were loaded onto the surface of CeO$_2$ with the assistance of ethylene glycol by a facile deposition–precipitation technique. Further, Parida and co-workers prepared a series of 2D/2D-BiOI/CeO$_2$ nanostructures through a simple precipitation technique followed by ex situ coupling. Initially, they prepared a CeO$_2$ nanosheet coupled with a dodecyl sulphide ion layer and then sonicated it in formamide solution. In this process the CeO$_2$ nanosheets got free and rectangular BiOI microplates were introduced onto this resulting in a beautiful face to face 2D–2D heterostructure as shown in Fig. 6(g). Moreover, Zhang et al. delineated a one-pot synthetic strategy to produce vertical 2D–2D Co$_3$O$_4$–CeO$_2$ nanosheets over Ti mesh via the hydrothermal method; then the samples were further selectively calcined in the presence of sodium hypophosphate to produce an efficient CoP–CeO$_2$–Ti hybrid. Furthermore, Yang et al. prepared a 3D–2D core–shell type Bi$_2$O$_3$@CeO$_2$ heterostructure through a simple two-step hydrothermal process followed by high-temperature calcination. They observed that the high-temperature treatment facilitates the outward diffusion of the interior Bi$_2$O$_3$ leading to the formation of a more prominent 3D–2D heterojunction effect for photocatalysis. As shown in Fig. 6(h and i) 2D CeO$_2$ nanosheets are very beautifully attached to the Bi$_2$O$_3$ sphere leading to an efficient heterostructure. Gong et al. prepared a CeO$_2$@MoS$_2$ (3D–2D) hybrid heterostructure via a facile two-step wet chemistry strategy. At first, they prepared CeO$_2$ hollow spheres by a template-assisted method and then few-layered ultrathin MoS$_2$ nanosheets were deposited on the hollow CeO$_2$ spheres through a hydrothermal process.

Furthermore, CeO$_2$ QDs are in the limelight because of their outstanding size-derived properties and visible light absorbing nature; however, the associated drawbacks like self-aggregation and high charge carrier recombination restrict their photoactivity. So CeO$_2$ QDs are often combined with 1D nanorods, 2D nanosheets, 3D, through a simple solvothermal method in the presence of dihydrogen and oxygen. It is a very promising way of water splitting with high absorption efficiency and most importantly absorption of more photonic energy. So in the following section, we have summarized different photocatalytic applications of CeO$_2$ and CeO$_2$ based materials, with a thorough description of the theoretical concept along with some examples.

4. Photocatalytic water reduction and oxidation

Water splitting is a process of breaking water into its elemental constituents such as dihydrogen and oxygen. It is a very promising approach but the process is a multielectron, endothermic uphill...
reaction that requires a high positive Gibbs’s free energy. Thus specific energy such as solar light is required to cleave a high energy H\(_2\)O\(_2\) bond. Generally, 2.458 eV energy is required to split one water molecule to generate one hydrogen molecule, which works under 1.23 V potential difference for the displacement of two electrons. So a photocatalyst that has the ability to decrease the overpotential required to carry out the reaction is the need of the hour.\(^{135-140}\)

4.1 Hydrogen evolution

The hydrogen evolution reaction is a major half-reaction of water splitting which generates sustainable clean H\(_2\) energy. To replace fossil fuels, different fuels have been investigated recently, among which hydrogen has emerged as an appealing clean and green energy resource for future generation energy systems. It has a high energy density as compared to other hydrocarbon fuels and doesn’t release any harmful toxic gases into the environment after its use. Thus, it can minimize pollution as well as reduce greenhouse gas emissions. Currently, most of the H\(_2\) is prepared from either the hydrocarbon steam reforming process or the coal gasification process, which are high energy-consuming processes and require very high temperature processing. So its generation by utilising solar energy through water splitting is the most suitable and promising approach.\(^{135-157}\) In this regard CeO\(_2\) and CeO\(_2\) based materials are explored both theoretically and practically towards the photocatalytic H\(_2\) evolution reaction as summarized in Table 1.

Water splitting over ceria includes 2 major steps: the first is water hydrolysation and the second is H\(_2\) formation. First water molecularly adsorbs by the oxygen atom on the top of the Ce atom of CeO\(_2\)(111), while water adsorbs dissociatively near the oxygen vacancy of defect enriched CeO\(_2\)(111) and in both cases one H of water bonds with the surface oxygen atom. Then water dissociation into hydroxyl takes place and the surface vacancies facilitate the water dissociation step. And finally hydroxyl decomposition occurs and liberates H\(_2\) through an asymmetric process, which involves oxidation of Ce\(^{3+}\) to Ce\(^{4+}\).\(^{158-160}\) Further Mullins et al. did theoretical calculations over both planes of reduced CeO\(_2\)(100) and CeO\(_2\)(111). They found that dissociation is much more favorable on CeO\(_2\)(100) than on CeO\(_2\)(111); however, in the reduced state H\(_2\) generation occurs much more on CeO\(_2\)(111).

<table>
<thead>
<tr>
<th>Materials</th>
<th>Light source</th>
<th>Experimental conditions</th>
<th>Activity</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defective CeO(_2) NRs</td>
<td>300 W Xe lamp</td>
<td>Na(_2)S–Na(_2)SO(_3) sacrificial agent</td>
<td>5.020 (\mu)mol h(^{-1}) g(^{-1})</td>
<td>71</td>
</tr>
<tr>
<td>Single crystalline hexagonal CeO(_2) NRs(110)</td>
<td>300 W Xe lamp</td>
<td>Methanol sacrificial agent, Pt co-catalyst</td>
<td>8.7 (\mu)mol h(^{-1})</td>
<td>162</td>
</tr>
<tr>
<td>Au@CeO(_2)</td>
<td>50 W Xe lamp</td>
<td>Methanol sacrificial agent</td>
<td>4.05 (\mu)mol h(^{-1})</td>
<td>163</td>
</tr>
<tr>
<td>Cd(_2) QDs/CeO(_2)NRs</td>
<td>300 W Xe lamp ((\lambda > 420) nm)</td>
<td>Na(_2)S–Na(_2)SO(_3) sacrificial agent</td>
<td>101.12 (\mu)mol h(^{-1})</td>
<td>130</td>
</tr>
<tr>
<td>CdSe QDs/CeO(_2)NRs</td>
<td>300 W Xe lamp ((\lambda > 420) nm)</td>
<td>Na(_2)S–Na(_2)SO(_3) sacrificial agent</td>
<td>283.32 (\mu)mol h(^{-1})</td>
<td>131</td>
</tr>
<tr>
<td>CdS QDs/CeO(_2)NRs</td>
<td>300 W Xe lamp ((\lambda > 420) nm)</td>
<td>Lactic acid</td>
<td>8.4 (\mu)mol h(^{-1})</td>
<td>165</td>
</tr>
<tr>
<td>CeO(_2) QD-S-doped g-C(_3)N(_4) NR</td>
<td>300 W Xe lamp</td>
<td>Na(_2)S–Na(_2)SO(_3) sacrificial agent</td>
<td>8.73 (\mu)mol h(^{-1})</td>
<td>166</td>
</tr>
<tr>
<td>1D/2D-CeO(_2)/ZnIn(_2)S(_4)</td>
<td>150 W Xe lamp</td>
<td>2,542 (\mu)mol h(^{-1})</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>0D/2D CeO(_2)/ZnIn(_2)S(_4)</td>
<td>300 W Xe lamp ((\lambda > 420) nm)</td>
<td>1,496.6 (\mu)mol h(^{-1})</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>Sn(_2)S(_2)/Ce(_2)O(_3)</td>
<td>300 W Xe lamp AM 1.5G filter</td>
<td>847.42 (\mu)mol h(^{-1})</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>CeO(_2)/ZnS-CuS</td>
<td>300 W Xe lamp</td>
<td>Methanol sacrificial agent</td>
<td>240 (\mu)mol h(^{-1})</td>
<td>168</td>
</tr>
<tr>
<td>CdSe QDs/CeO(_2)NRs 111 facet</td>
<td>300 W Xe lamp ((\lambda > 420) nm)</td>
<td>Methanol sacrificial agent</td>
<td>134.7 (\mu)mol h(^{-1})</td>
<td>169</td>
</tr>
<tr>
<td>CdS/CeO(_2)</td>
<td>300 W Xe lamp ((\lambda > 420) nm)</td>
<td>Methanol sacrificial agent</td>
<td>582 (\mu)mol h(^{-1})</td>
<td>129</td>
</tr>
<tr>
<td>Mn({0.5})Cd({0.5})S QDs/2D CeO(_2)</td>
<td>300 W Xe lamp ((\lambda > 420) nm)</td>
<td>555 (\mu)mol h(^{-1})</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>MoS(_2) QD</td>
<td>300 W Xe lamp AM 1.5G filter</td>
<td>TEOA, 1.5 wt% Pt</td>
<td>0.83 (\mu)mol h(^{-1})</td>
<td>171</td>
</tr>
<tr>
<td>MnO({0.5})Cd({0.5})S QDs/2D CeO(_2)</td>
<td>300 W Xe lamp ((\lambda > 420) nm)</td>
<td>TEOA, 3 wt% Pt</td>
<td>860 (\mu)mol h(^{-1})</td>
<td>173</td>
</tr>
<tr>
<td>MnO({0.5})Cd({0.5})S QDs/2D CeO(_2)</td>
<td>300 W Xe lamp ((\lambda > 420) nm)</td>
<td>TEOA, 3 wt% Pt</td>
<td>30 (\mu)mol h(^{-1})</td>
<td>174</td>
</tr>
<tr>
<td>CeO(_2)</td>
<td>300 W Xe lamp ((\lambda > 420) nm)</td>
<td>TEOA, 1 wt% Pt</td>
<td>2,923.8 (\mu)mol h(^{-1})</td>
<td>121</td>
</tr>
<tr>
<td>CeO(_2)/ZnOnFNTs FTO</td>
<td>300 W Xe lamp</td>
<td>Na(_2)S–Na(_2)SO(_3) sacrificial agent</td>
<td>2.7 (\mu)mol h(^{-1})</td>
<td>175</td>
</tr>
<tr>
<td>CeO(_2) QD-S</td>
<td>300 W Xe lamp ((\lambda > 420) nm)</td>
<td>Na(_2)S–Na(_2)SO(_3) sacrificial agent</td>
<td>7.18 (\mu)mol h(^{-1})</td>
<td>176</td>
</tr>
<tr>
<td>CeO(_2)/ZnO</td>
<td>300 W Xe lamp</td>
<td>TEOA</td>
<td>0.2061 (\mu)mol h(^{-1})</td>
<td>177</td>
</tr>
<tr>
<td>CeO(_2)–ZrO(_2)</td>
<td>300 W Xe lamp ((\lambda > 420) nm)</td>
<td>Methanol sacrificial agent</td>
<td>29.6 (\mu)mol h(^{-1})</td>
<td>178</td>
</tr>
<tr>
<td>W({0.5})Mo({0.5})O(_{17})</td>
<td>300 W Xe lamp ((\lambda > 420) nm)</td>
<td>MB aqueous solution (30 mg L(^{-1}))</td>
<td>47.42 (\mu)mol h(^{-1})</td>
<td>179</td>
</tr>
<tr>
<td>MOF-derived NiO/CeO(_2)</td>
<td>300 W Xe lamp</td>
<td>Na(_2)S–Na(_2)SO(_3) sacrificial agent</td>
<td>1308 (\mu)mol h(^{-1})</td>
<td>139</td>
</tr>
<tr>
<td>CeO(_2)/ZnO</td>
<td>300 W Xe lamp ((\lambda > 420) nm)</td>
<td>73.1 (\mu)mol h(^{-1})</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>CeO(_2)-CuO QDs/graphene</td>
<td>300 W Xe lamp</td>
<td>Methanol sacrificial agent</td>
<td>2481 (\mu)mol h(^{-1})</td>
<td>181</td>
</tr>
<tr>
<td>CeO(_2)/ZnO</td>
<td>300 W Xe lamp</td>
<td>Na(_2)S–Na(_2)SO(_3) sacrificial agent</td>
<td>6.62 (\mu)mol h(^{-1})</td>
<td>182</td>
</tr>
<tr>
<td>Ag–ZnO–CeO(_2)</td>
<td>300 W Xe lamp AM 1.5G filter</td>
<td>Glycerol</td>
<td>18.345 (\mu)mol h(^{-1})</td>
<td>183</td>
</tr>
<tr>
<td>Rod–rod</td>
<td>300 W Xe lamp ((\lambda > 420) nm)</td>
<td>TEOA</td>
<td>221 (\mu)mol in 3 h</td>
<td>184</td>
</tr>
<tr>
<td>MoS(_2)/CeO(_2)-Co(_2)O(_4)</td>
<td>5 W LED lamp ((\lambda > 420) nm)</td>
<td>—</td>
<td>1300 (\mu)mol/5 h</td>
<td>185</td>
</tr>
</tbody>
</table>
than on the former due to the different adsorption sites. On reduced CeO$_2$-f(111) the dissociated water easily reoxidizes the ceria substrate, liberating H$_2$. In accordance with the above prediction different CeO$_2$ based materials were explored in the water splitting reaction as follows. Lu et al. synthesized single crystalline hexagonal CeO$_2$ NRs, directly grown on Ti substrates with highly exposed (110) planes, which showed significant photocatalytic activity for hydrogen evolution (741 μmol g$^{-1}$) in Na$_2$S–Na$_2$SO$_3$ solution. They also tested the hydrogen evolution activity in methanol as a scavenger, where CeO$_2$ NRs exhibited a higher activity than commercial CeO$_2$, CdS as well as P25 due to the presence of exposed 110 active planes; however the yield rate was one fourth of that obtained with the sodium sulphide/sulphite scavenger because of the special redox capacity of the latter. Moreover, they observed a red shift in the absorption edge of CeO$_2$ NRs due to the presence of Ce$^{3+}$ defects, hence harvesting more visible light which may be another cause of enhanced activity, and in addition the presence of Ce$^{3+}$ acted as an intermediate medium which accelerated the hole consumption of the sacrificial agent, hence enhancing the availability of reducing electrons for the water reduction reaction.76 Further, Dong et al. reported another defective CeO$_2$ NR towards photocatalytic hydrogen evolution. They prepared high surface area (65.26 m2 g$^{-1}$) CeO$_2$ NRs by a simple hydrothermal method with a higher percentage of Ce$^{3+}$ (22.53%) and oxygen vacancies (0.74).77 The as-prepared nanorods displayed hydrogen production at a rate of 5.020 mmol g$^{-1}$ h$^{-1}$ under solar light irradiation, and the enhanced activity was attributed to the favourable band structure, which enabled the effective photon energy absorption along with the redox shuttle of Ce$^{3+}$ to Ce$^{4+}$, which retarded the charge recombination.

However nanostructured CeO$_2$ alone doesn’t give appreciable results as compared to others, because of its high recombination rate of photogenerated excitons and the low ability for solar light absorption. Hence, CeO$_2$ is often combined with noble metals162,163 or other photocatalysts/co-catalysts.164–169 Dao et al. developed a novel route for the synthesis of the Au@CeO$_2$ core–shell functionalized with Pt. The Au@CeO$_2$ nanostructure photocatalyst was further tested for the H$_2$ evolution reaction under visible light and it exhibited H$_2$ production efficiency at a rate of 8.7 μmol h$^{-1}$ mg$^{-1}$. The enhanced activity was attributed to the SPR effect of Au, which was helpful for visible light absorption and the corresponding charge carrier generation. Further, the photogenerated hot electrons travel via direct injection and cross tunnelling into the conduction band of CeO$_2$, where they travel to the Pt co-catalyst and reduce the adsorbed H$_2$.162 Further, a number of modified nanostructured CeO$_2$ materials in combination with other low bandgap materials such as metal sulphides112,124,130,131,164–169 have been reported compared to neat CeO$_2$. You et al. synthesized a type II heterojunction composite between CdS NPs and CeO$_2$ NRs and tested its photocatalytic activity towards the hydrogen evolution reaction. Under visible-light irradiation ($\lambda > 420$ nm) the as-prepared 1:1 ratio CdS/CeO$_2$ achieved an optimum H$_2$ evolution rate of 8.4 mmol h$^{-1}$ g$^{-1}$, with a high apparent quantum yield (AQY) around 11.2%. The enhanced activity can be attributed to the promoted lifetime and separation efficiency at the heterojunction interface.165 Recently, Ma et al. reported the H$_2$ evolution activity of CdS QD decorated CeO$_2$ NRs and observed an optimum rate of H$_2$ production, i.e. 101.12 μmol h$^{-1}$ g$^{-1}$ (3 atm% CdS) which was 45 times higher than that of neat CeO$_2$ NRs under light irradiation (300 W Xe lamp $\lambda > 300$ nm) as shown in Fig. 7(a). The enhanced photoactivity for a prolonged period of 60 h was mainly attributed to higher light absorption ability, enhanced charge transfer and separation efficiency and greater lifetime of photogenerated charge carriers due to the presence of the CdS component. The efficient charge transfer mechanism was found to be of the Z-scheme type instead of the heterojunction type charge transfer mechanism as shown in Fig. 7(b) where higher reducible electrons resided at the conduction band of CdS while higher oxidizable holes were quenched by the sulphide/sulphite scavenger over the CeO$_2$ surface. They represented solid evidence of the Z-scheme, where the catalyst responds to both hydroxyl and superoxide radicals in the spin trapping ESR experiment as shown in Fig. 7(c and d) despite the incapability of neat CdS for hydroxyl radical generation, thereby proving that the photogenerated charge separation occurred through the Z-scheme rather than the conventional double charge transfer mechanism.130 Moreover, in addition to CdS, Ma et al. reported CdSe QD decorated CeO$_2$ NRs for photocatalytic hydrogen evolution and they found a rate of 283.32 μmol h$^{-1}$ g$^{-1}$, which is higher than that of the neat component. Further through DFT analysis they found that the 111 exposed facet interwined heterostructure increases the water adsorption ability and creates a lower energy barrier for water dissociation, while the same Z-scheme mechanism was followed by this heterostructure also.131 Wang et al. reported another 0D–2D heterostructure where Mn$_{0.2}$Cd$_{0.8}$S quantum dots were decorated over a 2D CeO$_2$ building block and gave rise to a perfect 0D(101)–2D(111) interface. They used different types of scavengers such as methanol, lactic acid and the sulphide + sulphite mixture and observed that the catalytic efficiency was continuously decreased in methanol and lactic acid solution, while the activity was retained in the sulphide+ sulphite solution. As the photocatalyst contains metal sulphide, upon light irradiation the metal sulphide corrodes down which retards its long term activity in the methanol scavenger solution. Hence, they observed that Mn$_{0.2}$Cd$_{0.8}$S–CeO$_2$ exhibited a maximum hydrogen production rate of 8.73 mmol g$^{-1}$ h$^{-1}$ in the sulphite/sulphide scavenger solution with an apparent quantum efficiency greater than 2 at 400 nm. The introduction of CeO$_2$ prolonged the lifetime of the photogenerated charge pair through the Z-scheme, and thereby increased the charge separation efficiency and lowered the charge transfer resistance.166 Recently, 1D/2D and 0D/2D heterostructures between CeO$_2$ and ZnIn$_2$S$_4$ have gathered attention, as ZnIn$_2$S$_4$ can easily be tuned to two dimensional nanosheet materials.112,124 Jiang et al. prepared ZnIn$_2$S$_4$ nanosheets which were grown in situ on the surfaces of CeO$_2$ nanorods. The 2D/1D composites exhibited a hydrogen production yield of 1496.6 μmol S$^{-1}$ h$^{-1}$ in tandem with the selective oxidation of aromatic alcohol, due to the synergistic advantage of both CeO$_2$ and ZnIn$_2$S$_4$. The combined effect of both the moieties especially that of the excellent ZnIn$_2$S$_4$ nanosheets is
Fig. 7 (a) Photocatalytic hydrogen evolution over CeO$_2$ nanorods and CdS QD decorated CeO$_2$ in 60 h. (b) The possible photocatalytic mechanism exploration of the heterojunction-type and Z-scheme over the CdS QDs/CeO$_2$ nanorod 0D/1D heterostructures. (c and d) The DMPO spin-trapping ESR spectra of CdS QDs/CeO$_2$-3 composites. Reprinted with permission from ref. 130, copyright 2018 American Chemical Society. (e) H$_2$ production of CeO$_2$ nanorods, cubes, octahedra, CN, rCN, cCN, and oCN composites under visible light irradiation after 5 h. (f) Reusability test of the rCN composite. (g) O 1s XPS spectra of CN, rCN, cCN, and oCN. (h) ESR results of rCN, cCN, and oCN. Reprinted from ref. 174 with permission from Elsevier.
helpful for visible-light absorption and CeO₂ nanorod enabled one directional charge transport contributes to higher efficiency of the composite. Moreover, intimate interfacial contacts are formed in the solid Z-scheme heterostructures, which accelerate the charge transfer and separation while retaining the strong reducibility of electrons in the CB of ZnIn₂S₄ nanosheets and the oxidizability of holes in the VB of CeO₂ nanorods.¹¹² Moreover, in situ-MOF derived CeO₂ based materials have also come to light.¹⁶⁹,¹⁷⁰ With respect to this, Wang et al. prepared a CeO₂–ZnO nanoheterostructure from a Ce-doped ZIF-8 MOF as the precursor. Further through an in situ vulcanization process the above heterostructure was converted to CeO₂–ZnS, which showed the best photocatalytic hydrogen production performance. However, further loading of the CuS co-catalyst via an in situ cation exchange method led to a hydrogen production rate of 13.47 mmol g⁻¹ h⁻¹ which was about 1.4 times that of CeO₂/ZnS.¹⁶⁹

Nanostructured CeO₂ has also been modified with carbon-based materials such as carbon, graphene, and g-C₃N₄¹²¹,¹²⁹,¹₇¹–¹⁷⁴ and it was found to show better photocatalytic activity than neat CeO₂. For example, recently Qian et al. reported a new biotemplate oriented synthetic strategy for the synthesis of zero dimensional CeO₂ QDs embedded in a porous carbon tube. The biotemplate carbonization process provided a layer matrix and a small amount of oxygen for QD deposition and growth. The obtained 3D porous CeO₂ QDs/carbon exhibited the highest H₂ evolution rate which was 5.5 times higher than that of the bulk CeO₂ due to the presence of defective CeO₂ along with its quantum dot property. Upon visible light irradiation, the photogenerated electrons and holes were produced at the CeO₂ surface, where the electrons drifted towards the carbon skeleton via the Ce–C bond, thereby accelerating charge pair separation as well as effective utilization of these energetic electrons towards the water reduction reaction.¹²⁹ Next, Zou et al. synthesized CeO₂ nanocubes decorated over g-C₃N₄ nanosheets and described the interaction through hydrogen bonds and a p–π hybrid between CeO₂(100) and g-C₃N₄. Further, the H₂ evolution activity was determined to be 4300 μmol g⁻¹ for 5 h illumination, which was higher than that of pristine CeO₂, g-C₃N₄ and irregular CeO₂ nanoparticles/g-C₃N₄. The same group performed another extensive study and compared the hydrogen evolution activity of morphology dependent (cube, rod and octahedral) CeO₂ coupled g-C₃N₄. They found that the CeO₂ nanorod with an exposed 110 facet when combined with the g-C₃N₄ nanosheet gave a much higher hydrogen production value than the others because of the stronger built-in interface. In brief, they prepared morphology tunable CeO₂ with (110), (100), and (111) exposed planes and found that the crystal planes of CeO₂ greatly alter some of the characteristics in the CeO₂ and g-C₃N₄ heterostructure. They observed that 110 exposed CeO₂ nanorod modified g-C₃N₄ exhibited higher photocatalytic hydrogen production efficiency than other CeO₂ modified samples as shown in Fig. 7(e) and the order was found to be CeO₂ NR(110)/g-C₃N₄ > CeO₂ Cube(100)/g-C₃N₄ > CeO₂ octahedron (111)/g-C₃N₄ > g-C₃N₄. And also the optimally prepared catalyst retained its photocatalytic activity in more than one cycle for up to 20 h (Fig. 7(f)). Furthermore, as shown in Fig. 7(g and h), from the XPS and ESR analysis it was found that the 110 rod shaped CeO₂ possesses more oxygen vacancies and higher Ce⁴⁺ concentration. Hence, the surface oxygen vacancies played a major role in determining the photocactivity. Further from DFT analysis, it was found that nanorod decorated g-C₃N₄ showed significant charge transport and separation at the interface, as the charge was increased in the C and N of g-C₃N₄ while it was decreased in the Ce atom of CeO₂, which led to better charge separation under light illumination than in the other materials.¹⁷³,¹⁷⁴

Further, other metal oxide combined CeO₂ nanostructures have also been explored in the field of the photocatalytic hydrogen evolution reaction.¹⁷³–¹⁷⁷ For example, Zeng et al. reported a CeO₂/ZnO NTs FTO heterojunction through a two-step electrodeposition technique and tested its photocatalytic H₂ evolution activity which was found to be 2.7 μmol cm⁻² h⁻¹. The higher photocatalytic activity was attributed to a larger surface area, more active sites and effective electron–hole separation at the interface between two metal oxides.¹⁷⁷ Recently Shen et al. prepared a novel heterojunction photocatalyst W₁₈O₄₉/CeO₂ via a hydrothermal strategy. Under visible light irradiation, the oxygen vacancy enriched heterostructure exhibited the highest hydrogen production efficiency of about 0.2061 mmol g⁻¹ h⁻¹ which was 1.93 times higher than that of pure CeO₂. According to the DFT calculations, the authors claimed that between CeO₂ and W₁₈O₄₉, the Z-scheme charge transfer mechanism occurred, which retarded the efficient charge recombination, and hence electrons accumulated over the CeO₂ surface and reacted with H⁺ to yield H₂.¹⁷⁷ Apart from all of these, nanostructured CeO₂ is also combined with more than one photocatalyst or co-catalyst towards the productive hydrogen evolution reaction.¹⁸⁰–¹⁸⁵

4.2 Oxygen evolution

The oxygen evolution reaction is another half reaction of water splitting, where water is oxidized to generate oxygen gas in the presence of a catalyst. It is a core process of many energy storage and conversion systems, such as solar cells, fuel cells, metal–air batteries, etc.¹⁸⁶–¹⁹⁷ And for the water electrolysis to produce sustainable H₂ energy, water oxidation is a preliminary reaction. It is a multi-electron and multi-proton reaction, and is therefore kinetically as well as energetically a difficult/sluggish process. This is because for the generation of one molecule of O₂, four protons and four electrons are required. In order to oxidize two water molecules simultaneously, the catalyst must be able to store four electrons–holes close together.¹⁷⁹ So a catalyst which can absorb water and simultaneously oxidize two water molecules is a promising one. Since CeO₂ has the ability to carry out water oxidation smoothly, a number of CeO₂ based materials have been explored in this field which are summarized below.

In general water oxidation over CeO₂ involves two major steps as confirmed from DFT studies. The first step is the sequential dehydrogenation of water, i.e. H₂O → OH⁻ + H → O₂ + 2H. In particular, on CeO₂(110), H₂O is adsorbed on the top Ce site and the adsorbed H₂O dehydrogenates to OH and H. Then the formed OH group dissociates into O and H, as the H migrates to the neighbouring top O site. Further, the formation of O₂ requires an additional step, in which an additional H₂O further dehydrogenates to form the second OH and H. The second OH
then combines with the O from the first H2O molecule to form OOH. The formed OOH species binds to the Ce site in the final state. Meanwhile, O2 is generated by the dehydrogenation of OOH via O–H bond scission.103 Zhang et al. studied the theoretical concept behind the water oxidation process involving normal and defective CeO2(110) nanorods. According to DFT, they found that the presence of oxygen vacancies on CeO2(110) effectively modulates the electronic structure which enhances the charge transfer required for water dehydrogenation and also narrows the band gap. In brief, as shown in Fig. 8(a) the energy profile of defective CeO2 for water dehydrogenation to O is very similar to that of perfect CeO2, but is easier. Moreover, the dissociation of OH is unfortunately very difficult in perfect CeO2 as the formed O and H tend to combine with each other producing OH again. But in the case of defective CeO2, OH dehydrogenation is much easier as the reverse reaction is very slow. Further, the presence of oxygen vacancies on CeO2(110) significantly reduces the activation energy of the rate limiting step (O–O bond formation) of water oxidation, due to the decreased O binding strength. Moreover, the distance between O and the second OH is shortened in the defective CeO2 compared to that of the perfect one, which indicates that lower activation energy is required for the formation of O2 via the OOH pathway in the defective CeO2 as shown in Fig. 8(b). They found that normally in CeO2, the HOOH pathway is not favoured because of its high activation barrier, but the OOH pathway is favoured as described above. In addition to this, defective CeO2(110) possesses a higher rate constant for the rate limiting step which is about 2–3 orders of magnitude higher compared to that of the perfect CeO2(110). They also studied the photocatalytic oxygen generation under visible light of the above materials and found that the NaBH4 reduced CeO2, i.e. defective CeO2 NRs, exhibited the highest photocatalytic activity with the highest oxygen evolution rate (137.7 μmol g\(^{-1}\) h\(^{-1}\)) than the pristine. For the first time, they reported how to control the defects by varying the NaBH4 amount. They found that on adding a particular amount of NaBH4, the vacancy concentration...
is optimized, and a further increase in the NaBH₄ amount decreases the vacancy density, which strongly affects the photocatalytic hydrogen evolution activity.¹⁰³

Jiang et al. reported on the effect of crystal facets on the photocatalytic water oxidation reaction. They prepared CeO₂ of two different shapes, i.e., cube (100) and rod (110 + 100), via a simple hydrothermal method, where for the rod morphology two different types of precursors (nitrate and chloride) were used. Under 5 sun illumination, CeO₂ NRs prepared from the chloride precursor exhibited the highest oxygen evolution rate of 1.70 μmol h⁻¹, which might be due to the presence of surface bound hydroxyl group at the defect sites and two active planes, i.e., 100 and 110, which retarded the photogenerated charge recombination ability.¹⁵ Further, Zhao et al. developed another nanostructured CeO₂, i.e., CeO₂ NRs, by hydrothermal synthesis followed by post-calcination under different atmosphere conditions. They found that Ar–H₂–800 possesses more active oxygen (24.16%) which is directly related to Ce³⁺, and hence it emerged as a better water oxidation catalyst. They concluded that CeO₂ NRs prepared under mixed H₂ and Ar gas at 800 °C exhibit higher photocatalytic water oxidation ability at a yield rate of 707.73 μmol g⁻¹, which was 10 times higher than that of CeO₂ NRs calcined under air at 800 °C. The origin of the enhancement in the activity is mainly due to the increased content of surface oxygen vacancies and paramagnetic Ce³⁺ species under the reduced atmosphere which is helpful for reduction of the energy barrier for water adsorption and the corresponding photooxidation.⁶⁹ Next, Qi et al. synthesized a multi-shell hollow microsphere through a general self-templating method and tested its activity towards photocatalytic water oxidation in the presence of AgNO₃ solution (e⁻ scavenger). They found that the triple shelled CeO₂ hollow microsphere exhibited the highest O₂ evolution activity of 78 mmol gₙcat⁻¹ h⁻¹ which was higher than that of the commercial CeO₂ NPs. This outstanding performance of the catalyst was attributed to the hollow structure which absorbs more incident light because of the multiple reflections by the multi-shell and possesses a larger surface area with more active sites for water oxidation.⁹¹ Further Fang and co-workers synthesized different morphology oriented CeO₂ such as polyhedral, cubic and sphere-shaped nanocages through the template (Cu₂O) assisted method as shown in Fig. 8(c). A very interesting observation was made, i.e., polyhedral CeO₂ (47.5 μmol g⁻¹ h⁻¹) nanocages possessed higher photocatalytic O₂ evolution activity than cubic nanocages (22.4 μmol g⁻¹ h⁻¹) and sphere-shaped nanocages (27.8 μmol g⁻¹ h⁻¹) as shown in Fig. 8(d). As shown in Fig. 8(e), under light irradiation the CeO₂ hollow structure absorbs photons and excites electron-hole pairs; then the photogenerated holes react with water to give molecular oxygen while the generated electrons are quenched by AgNO₃. The activity improvement was ascribed to the polyhedral nanocage containing more active sites, a higher surface area and efficient photogenerated charge transport and separation. Additionally, the light absorption ability is enhanced in this particular nanostructure because of its inner shell which reflects the light properly. Primo et al. decorated gold particulate over quantum sized CeO₂ for activity improvement and efficient light absorption. It was found that 1 wt% gold loaded CeO₂ nanoparticles exhibited the highest oxygen evolution rate, i.e., 105 μmol h⁻¹, which was much more than that of the standard WO₃ photocatalyst (1.7 μmol h⁻¹). This remarkable photocatalytic activity was mainly due to the small size (5 nm) CeO₂, where they controlled the particle size of ceria (5 nm) by means of electrostatic binding of Ce 4p to alginate gel, subsequent supercritical CO₂ drying, and calcination.¹⁹⁸

Other than nanostructured CeO₂, very limited work on modified CeO₂ based materials has come into existence.⁹⁹–²⁰¹ For example, Fang et al. fabricated CoO decorated CeO₂ hollow nanocages for improved water oxidation. With an appropriate amount of CoO₂ loading, the CeO₂ based hollow structure not only possessed a higher ability for light absorption but also showed a high O₂ evolution rate, i.e., 200 μmol g⁻¹ h⁻¹, under visible-light irradiation with excellent durability.¹⁹⁹ Further, Parida and co-workers attempted to exploit new visible light self-healing 1D–2D FeOOH nanorods/CeO₂NS and 3D–2D Fe₂O₃/CeO₂NS hybrids in 2-dimensional nanosheet architecture photocatalysts as shown in Fig. 8(f and g) by a facile hydrothermal method and evaluated their photocatalytic performance towards the oxygen evolution reaction under UV-visible light. The optimised FeOOH/CeO₂NS and Fe₂O₃/CeO₂NS systems exhibit unprecedented photocatalytic activity towards O₂ evolution, i.e., 485 μmol/2 h and 389 μmol/2 h respectively (Fig. 8(h)). The enhanced performance of Fe/CeO₂ is attributed to the 2D structure of CeO₂ which provides the perfect site for growth of iron materials and extends the charge separation process throughout the nanohybrid. Additionally, the formation of a n–n junction across the heterointerface modifies the charge separation and transportation process. Further, the Ce³⁺/Ce⁴⁺ redox cycle acts as an activator which healed photocorrode Fe²⁺ and regenerating the structural damage caused by irradiation.²⁰⁰ Recently, Meng et al. synthesized a new type of molecular catalyst (MC) combined semiconductor heterostructure, i.e., a CoTCPP@CeO₂ nanotube heterostructure. The optimized CoTCPP@CeO₂ nanocomposite exhibited O₂ evolution at a rate of 30 μmol g⁻¹ h⁻¹ with long term durability and was found to be superior to other MC combined CeO₂, for example H₂TCPP@CeO₂ NTs, Co₃O₄@CeO₂ NTs and TCPP@Co₃O₄@CeO₂ NTs, under the same conditions. They proposed that initially, CoTCPP acts as a charge transporter to propel photoexcited electrons to CeO₂ by d–f electron coupling, which effectively suppresses the photo-generated charge recombination. In addition to this, the interfacial charge transfer results in in situ generation of surface oxygen vacancies and CoOOH species, which are found to be the major sites for enhancing water oxidation.²⁰¹

5. CO₂ reduction reaction

The continuous rise in the atmospheric carbon dioxide level and depletion of fossil resources is a pressing concern that is directly threatening the balance of earth’s ecosystems and sustainability of life for future generations. Among various on-going research activities for protection and remediation of the environment and solving the energy crisis, carbon dioxide
capture and subsequent conversion into high liquid fuels including value-added chemicals is regarded as a potential strategy to slow down the alarming climate change and sustainably address the upcoming energy crises. Photocatalytic conversion of CO2 to renewable fuel using solar energy has attracted more attention in the past 3 to 4 decades. Since then, various nanostructured metal oxide photocatalysts have been examined for the reduction of CO2, and great achievements have been made. However, the rational design and synthesis of photocatalysts with high activity and selectivity towards the reduction of CO2 is highly challenging.202,203 CeO2 has been widely used as the catalyst for CO2 reduction, so both theoretical and experimental studies have eventually surfaced in this field, as summarized in Table 2.204–217

The theoretical concept of CO2 adsorption, activation and subsequent reduction over the CeO2 surface is as follows: at first, the CO2 molecule is adsorbed in a horizontal configuration where the O atoms sit on top of the surface of Ce while the C atom sits on the four-fold hollow site of the top layer CeO2. Then the adsorbed CO2 is reduced to either a formate or carboxylate intermediate in the presence of adsorbed hydrogen, while in the absence of any adsorbed hydrogen, the CO2 directly forms carbonyl species. Further, the formed intermediate (formate/carboxyl) undergoes dissociation to form CO species. However, in defective CeO2, CO2 is directly dissociated into CO by donating its one oxygen to the oxygen vacancy. On CO2 activation, the oxygen atom is directly incorporated into the vacant site via a redox mechanism and neutralizes the vacancy to generate the CO intermediate. Both the carboxyl and formate intermediates can produce CO while only the carboxyl intermediate will on further hydrogenation produce methanol on the ceria surface.

The carboxylate pathway is more favourable for hydrogenation due to the presence of surface vacancies. Hence, the theoretical calculation gives full proof evidence for the effective CO2 reduction in both oxidized and reduced CeO2.204,205 In this regard, there are a number of experimental reports on CO2 photoreduction over CeO2 based materials with eye-catching results. For example, Dong and coworkers analyzed the CO2 photoreduction over CeO2 based materials with eye-catching results. For example, Dong and coworkers analyzed the CO2 photoreduction over (110) and (100) surfaces through both experimental and theoretical investigations and proposed a mechanism of CO2 photoreduction over defective CeO2 as shown in Fig. 9(a). They observed that the synergistic effect of both Lewis acid sites (oxygen vacancy) and Lewis base sites (hydroxyl group) was responsible for CO2 activation and its subsequent reduction. Combining the results of CO2-TPD, CO2-adsorption, DRIFTS and DFT studies (Fig. 9(b and c), the authors concluded that the CeO2(100) plane possesses more hydroxyl species than the CeO2(110) plane, which are beneficial for the adsorption and subsequent activation of CO2.

Additionally, they illustrated the CO2 reduction mechanism as follows (shown in Fig. 9(a)): the O atom of the surface hydroxyl group of CeO2 donated electrons to the C atom of CO2 and eventually, the O atom of the CO2 reactant gave its p electrons to the oxygen vacancy of CeO2, resulting in the formation of HCO3− species. Next, the carboxylate (CO2−) radical ion intermediate was formed when the photoexcited electron transferred to the surface HCO3− species which was further confirmed by in situ ESR analysis. Finally, with the formation of OH−, the CO gas was produced from the intermediate carboxylate species. Therefore, the synergistic interactions between the Lewis acidic and basic group are beneficial for CO2 photoreduction.25

Additionally, Jiang et al. prepared defective CeO2 nanorods for the photocatalytic gas-phase CO2 reduction reaction and via

Table 2 Complete results of the CO2 photoreduction performance of CeO2 and CeO2 based heterostructures

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Light source</th>
<th>Reaction conditions</th>
<th>Activity</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeO2(100)/CeO2(110)</td>
<td>300 W Xe lamp</td>
<td>Water, CO2 gas</td>
<td>CH4 0.86 μmol h−1 g−1 1.12 μmol h−1 g−1</td>
<td>84</td>
</tr>
<tr>
<td>Defective CeO2 NTS</td>
<td>500 W Xe lamp</td>
<td>CO2 gas phase reduction</td>
<td>CH2O – 0.702 μmol h−1 g−1</td>
<td>106</td>
</tr>
<tr>
<td>CeO2-CSC</td>
<td>300 W Xe lamp</td>
<td>NaHCO3</td>
<td>0.397 μmol h−1 g−1</td>
<td></td>
</tr>
<tr>
<td>CeO2–3D-gC3N4</td>
<td>300 W Xe lamp</td>
<td>Water, CO2 gas</td>
<td>CH4 – nearly 12 mmol g−1 in 325 min</td>
<td>207</td>
</tr>
<tr>
<td>CeO2–TiO2</td>
<td>300 W Xe lamp</td>
<td>Water, CO2 gas</td>
<td>CO – nearly 70 mmol g−1 in 325 min</td>
<td>208</td>
</tr>
<tr>
<td>TiO2–CeO2</td>
<td>300 W Xe lamp</td>
<td>Water, CO2 gas</td>
<td>CH4 – 2.06 μmol/400 min/100 mg</td>
<td>208</td>
</tr>
<tr>
<td>ZnO–CeO2</td>
<td>300 W Xe lamp</td>
<td>Water, CO2 gas</td>
<td>CH4 – nearly 1100 μmol g−1 in 8 h</td>
<td>212</td>
</tr>
<tr>
<td>Vacancy Cu2O/CeO2</td>
<td>300 W Xe lamp</td>
<td>Water, CO2 gas</td>
<td>CH4 – nearly 1.2 μmol g−1 in 8 h</td>
<td>210</td>
</tr>
<tr>
<td>CeO2/Bi4MoO13</td>
<td>300 W Xe lamp</td>
<td>Water, CO2 gas</td>
<td>CH2O – 32.5 μmol h−1 g−1 and</td>
<td>211</td>
</tr>
<tr>
<td>CdS@CeO2 core/shell</td>
<td>300 W Xe lamp (λ > 420 nm)</td>
<td>Water, CO2 gas</td>
<td>CH3OH – nearly 16.8 μmol g−1 in 3 h</td>
<td>215</td>
</tr>
<tr>
<td>ZnIn2S4 flower/CeO2</td>
<td>300 W Xe lamp (λ > 420 nm)</td>
<td>NaHCO3, H2SO4</td>
<td>CH3OH – 0.542 μmol h−1 g−1</td>
<td>213</td>
</tr>
<tr>
<td>Defect rich g-C3N4@CeO2</td>
<td>300 W Xe lamp (λ > 420 nm)</td>
<td>Water, CO2 gas</td>
<td>CH4 – 3.5 μmol g−1, CH3OH – 5.2 μmol g−1 and</td>
<td>214</td>
</tr>
<tr>
<td>m-CeO2/3D-gC3N4</td>
<td>300 W Xe lamp</td>
<td>Water, CO2 gas</td>
<td>CH4 – 0.694 μmol/50 mg/6 h</td>
<td>215</td>
</tr>
<tr>
<td>CeO2–N-doped graphene–Cu25</td>
<td>250 W Xe lamp</td>
<td>NaHCO3, Na2SO3, CO2 gas</td>
<td>CO 4.69 μmol h−1 g−1 and</td>
<td>216</td>
</tr>
<tr>
<td>CeO2/MOF</td>
<td>300 W Xe lamp</td>
<td>Water, CO2 gas</td>
<td>CH4 3.03 μmol h−1 g−1</td>
<td>217</td>
</tr>
<tr>
<td>CeO2(100)/CeO2(110)</td>
<td>500 W Xe lamp</td>
<td>Water, CO2 gas</td>
<td>CH4 507.3 μmol h−1 g−1</td>
<td>217</td>
</tr>
<tr>
<td>CeO2(110)</td>
<td>300 W Xe lamp</td>
<td>Water, CO2 gas</td>
<td>CO 1.68 μmol h−1 g−1</td>
<td>218</td>
</tr>
</tbody>
</table>
a systematic TEM and HRTEM study they confirmed the lattice distortion and dislocation type surface defects. Further, they found that the prepared CeO$_2$ can generate CO with nearly 100% selectivity with a yield of 24–28 μmol g$_{\text{cat}}$$^{-1}$ after 6 hours of irradiation, which was like a milestone for neat CeO$_2$. However, after the prolonged irradiation (more than 20 h), the photoreduction activity was slowed down, as initially the local strain and oxygen vacancy help to activate adsorbed CO$_2$, but after a certain time, these vacancies were gradually consumed leaving behind massive electrophilic oxygen species over the CeO$_2$ surface which restricts the further photoreduction, thereby slowing down the formation yield of CO. They further found that the activity was recovered when the exhausted CeO$_2$ was again treated with NaBH$_4$ solution resulting in the subsequent defect formation.104 Further, Li et al. reported the first kind of nanostructured CeO$_2$, i.e. hexahedron prism anchored octahedron, towards photocatalytic CO$_2$ reduction. According to the DOS study, there is a slight energy difference between the CB and VB of the (100) plane of the hexahedron prism and the (111) plane exposed octahedron which forms a homojunction between them. This homojunction is mainly responsible for the effective charge pair separation and transfer, where the electrons flow from the higher Fermi level of the hexahedron prism with exposed (100) facets to the (111) octahedron surface and catalyze the adsorbed CO$_2$ as shown in Fig. 9(d), while holes at the 100 surface react with water to generate oxygen. Hence, the hexahedron with a medium denser arm generated the most CH$_4$ by the reduction of CO$_2$ at the rate of 0.86 μmol h$^{-1}$ g$^{-1}$ while in presence of MnO$_x$ co-catalyst the production rate was further increased to 1.12 μmol h$^{-1}$ g$^{-1}$ as depicted in Fig. 9(e).84

Fig. 9 (a) The possible CO$_2$ photoreduction mechanism on the oxygen-defective CeO$_2$(110) surface. (b) and (c) CO$_2$-TPD and CO$_2$ adsorption DRIFTS of the CeO$_2$(110) nanorod and the CeO$_2$(100) nanocube. (d) Schematic illustration of the photogenerated charge transfer mechanism between two exposed planes within prism anchored octahedral CeO$_2$. (e) CO$_2$ photoreduction efficiency showing the best prism anchored octahedron. Reprinted with permission from ref. 84 and 95, copyright 2020, 2015 American Chemical Society. (f) Proposed mechanism of CO$_2$ photoreduction on CuO decorated CeO$_2$. Reprinted from ref. 210 with permission from Elsevier. (g) Photocatalytic CO$_2$ reduction profile of CeO$_2$, g-C$_3$N$_4$ and a series of g-C$_3$N$_4$@CeO$_2$ heterostructures. (h) Plausible photogenerated charge pair separation and transfer and CO$_2$ photoreduction mechanism over the g-C$_3$N$_4$@CeO$_2$ heterostructure. Reprinted from ref. 214 with permission from Elsevier.
Recently Hezam et al. reported a novel preparation method, i.e. solar light assisted combustion synthesis, for the production of 12–18 nm diameter CeO₂ particles containing a high amount of surface defects. Under simulated solar light, the as-prepared O₂−CeO₂ exhibited the highest photocatalytic reduction of CO₂ to CH₄ at 0.702 μmol h⁻¹ g⁻¹ with a quantum efficiency of 0.23% at 350 nm, while the conventional solution combustion assisted CeO₂ displayed only a rate of 0.397 μmol h⁻¹ g⁻¹. From DFT simulation it was found that the generated oxygen vacancy increases its light absorption by narrowing the band gap of CeO₂, and enhances its CO₂ capture ability. Moreover, the mean crystallite size, low crystallinity and mesoporous structure played a crucial role in the selectivity of CO₂ reduction to methanol.²⁰⁶ Further, Ullah et al. carried out photothermal CO₂ reduction over transition metal (Cu, Co) loaded CeO₂ and found that transition metal loaded CeO₂ exhibits the highest activity as well as selectivity towards methane production compared to pristine CeO₂. The improved photocatalytic activity was attributed to the generation of hot electrons from transition metals which directly activate the CO₂ molecule under smooth degradation and further create in situ vacancies in the CeO₂ support which act as localized charge density sites.²⁰⁶

In addition to these, a number of articles have recently been reported for various heterostructures/composites of CeO₂ with different metal oxides,²⁰⁷,²¹¹ metal sulphides,²¹²,²¹³ carbonaceous materials,²¹⁴–²¹⁸ etc. For example, Wang et al. prepared an ordered mesoporous (OM) CeO₂/TiO₂ composite of 2D hexagonal structure with a high specific surface area and hierarchical porosity by using SBA-15 as the template. The introduction of CeO₂ species increased the surface chemisorbed oxygen of the ordered mesoporous TiO₂ and effectively extended the spectral response of the nanohybrid from UV to visible. The composite was effectively utilized for CO₂ photoreduction under simulated solar light with excellent selectivity and catalytic efficiency. The work demonstrated that the 3DOM CeO₂/TiO₂ catalyst showed the highest CO production, i.e. nearly 70 mmol g⁻¹ cat⁻¹, and nearly 11.5 mmol g⁻¹ cat⁻¹ CH₄ during 325 min light irradiation. The higher activity was attributed to the 2D-open pore structure, which allows fast interparticle reactant diffusion, and the presence of CeO₂ which helped in the effective electric field formation through which photogenerated electrons effectively drifted from the TiO₂ surface to CeO₂ where they took part in the photoreduction reaction.²⁰⁷ In another work, Dai et al. synthesized a series of CeO₂/Bi₂MoO₉ microsphere nanocomposites (0D–2D) towards CO₂ photoreduction and studied the inside mechanism. They found that the CeO₂ surface strengthens the bonding of CO₂ and enhances the formation of intermediates like CO₂⁻¹ and HCO₃⁻. Moreover, the heterojunction accelerates electron–hole transfer and separation which ultimately uplifts the reduction activity. For this system, the total yield of CH₄ and CO₂ was 58.4 μmol g⁻¹ cat⁻¹ over 5C-BM, which was about 4.1 and 1.9 times higher than that of the neat CeO₂ (14.1 μmol g⁻¹ cat⁻¹) and Bi₂MoO₉ (30.9 μmol g⁻¹ cat⁻¹), respectively.²¹¹ Again, Dong and co-workers developed a very interesting p–n heterojunction composite of Cu₆O/CoO for photon driven CO₂ reduction. They found that the deposition of Cu₆O over the CeO₂ surface created more surface defects and also accelerated the charge transfer process at the Cu₆O and CeO₂ interface. Furthermore, Cu₆O plays an important role by creating Lewis acid–base sites, while the oxygen vacancy over CeO₂ increases the pace of CO₂ reduction to CO. In brief they systematically studied the reaction pathway and the mechanism as presented in Fig. 9(f), and concluded that first Cu atoms of Cu₆O perfectly bound the carbon atoms of CO₂ molecules via d-orbital electrons leading to the formation of the carboxylate ion. Further, under light irradiation photo-generated electrons transferred from Cu to the C–O bond of carboxylate, and the O atom of carboxylate interacted with the oxygen vacancy Oₓ on the CeO₂ surface, and then the O atom transferred to Oₓ. Finally, the above interaction promoted the breaking of the C–O bond of the adsorbed carboxylate species, and thus the CO molecule was generated.²¹⁰

In addition to oxide heterostructures, metal sulphides have also been used as a component for CeO₂ in the CO₂ reduction reaction. For example, a core–shell structure of CdS@CeO₂ towards visible light assisted CO₂ reduction was reported by Ijaz et al. In the experiment performed, two types of reduction products are observed, i.e. methanol as the major product because of the thermodynamic and kinetic concern and methane as the minor product. The type II heterojunction at the core/shell interface enhances the photogenerated charge pair separation and hence improves the stability of the CdS core as the CeO₂ outer layer inhibits the photocorrosion of CdS. In brief, under the visible light irradiation condition photogenerated electrons and holes were produced on the surface of CdS, and then the electrons transferred from CdS to the conduction band of CeO₂. Further, on the surface of CeO₂ these electrons reduced the adsorbed CO₂ into the negative and metastable superoxide ("CO₂") radicals, which then eventually led to the formation of CH₄ at the rate of 1100 μmol g⁻¹ for 8 h.²¹¹

Liang’s group demonstrated an interesting synthetic strategy for the formation of a hollow heterostructure of g-C₃N₄@CeO₂ with enough oxygen vacancies by using SiO₂ as a template. The catalytic ability of the vacancy enriched heterostructure was tested towards CO₂ photoreduction and the obtained products were CO (16.8 μmol g⁻¹), CH₄ (5.2 μmol g⁻¹) and CH₃OH (3.5 μmol g⁻¹), demonstrating the higher ability of this heterostructure compared to most of the other reported g-C₃N₄ based photocatalysts. Further, the apparent quantum efficiency for CO₂ reduction to methane was found to be 17.1% at 525 nm. They concluded that the reason behind the increment in the performance is mainly due to its unique structure and a delayed charge pair recombination rate as confirmed from SPS analysis (shown in Fig. 9(g)). Although both g-C₃N₄ and CeO₂ showed SPS response the 3D heterostructure exhibited the most intensive response under visible light which confirmed the effective charge carrier separation.²¹² As shown in Fig. 9(h), the separation of excitons occurs at the g-C₃N₄ and CeO₂ interface, while the photogenerated electrons accumulate over the CeO₂ surface where the electrons combine with Ce⁴⁺ to generate Ce³⁺. Further, Ce³⁺ reacts with the gas phase CO₂ to form "CO₂", which is further reduced to yield CO, and hence the yield of CO is very high in this case. Further in the presence of adsorbed H and "CO₂⁻¹" hydrogenation occurs resulting in other products like methanol and methane.
6. Nitrogen reduction reaction (NRR)

NH₃ is considered as an important chemical for both industries (explosive, resin, plastics and fibres) and agriculture (fertilizer). Recently, the global need for ammonia has seen a sharp increment due to its additional application, i.e. as a carbon-neutral fuel and specifically as a potential energy carrier due to its high hydrogen density (17.6 wt%), easy handling/storage and low liquefiable condition (8 bar). Currently, about 150 million tonnes of ammonia is produced per year via the traditional energy-intensive Haber–Bosch process (HB) to satisfy the population’s food requirement and various other applications. This HB process generally operates under extremely harsh conditions, i.e. 400–450 °C and 100–200 atm, and also utilizes 1–3% of global electrical energy (i.e. 3.5 × 10⁴ to 5 × 10⁴ J g⁻¹ N₂H). Moreover, the supplied H₂ comes from natural gas (3–5%), and unfortunately releases a substantial environmental catastrophe. 219–225 To replace the HB process, a suitable catalyst to N₂ reduction is highly essential. Among different ongoing strategies, photocatalytic reduction of N₂ to NH₃ is a very hot topic of research towards the development of renewable technologies. Photocatalytic nitrogen reduction generally operates under mild reaction conditions and utilizes renewable feedstock, i.e. solar light and water. So far many photocatalytic systems have been developed and tested for effective nitrogen fixation. It is found that the materials with intrinsic surface defects are the most suitable candidates for this process.226 In this perspective, CeO₂ with surface oxygen defects and Ce³⁺ has emerged as one of the active catalytic systems for the NRR.226–232

In this context, Qi et al. using first principles calculations investigated the NRR process over CeO₂ and found that defective CeO₂ with Ce³⁺ sites (Lewis acid) facilitates N₂ adsorption (Lewis base) via an acid–base adduct mechanism as shown in Fig. 10(a). The exposed CeO₂ sites on CeO₂(111), (110), (100) can cause N₂ to get adsorbed in a lying down manner, which encourages N₂ activation and thus leads to an efficient reduction. The surface oxygen vacancy weakens the adsorbed N≡N bond strength and lowers the adsorption energy of the N₂H⁺ intermediate as shown in Fig. 10(b) and thereby facilitates further reduction. In brief, in the pristine CeO₂ with (111), (110) and (100) exposed facets, N₂ adsorbs on the surface of Ce sites in a standing up manner indicating weak physical adsorption. Hence the N₂ molecule can’t be activated on the surface of perfect/pristine CeO₂ and further, the energy barrier for the first protonation of N₂⁺ seems to be very high leading to inefficiency of the NRR. However, defective CeO₂(111), (110) and (100) facets containing multiple oxygen vacancies and unsaturated Ce³⁺ Lewis acid cluster sites (tri/bi and tetra-Ce sites) could cause N₂ to be adsorbed in a lying down manner, which further promotes N₂ activation. Moreover, the unsaturated tri and bi-Ce sites could stabilize the intermediate N₂H⁺, while lowering ΔG for the first protonation, and then the alternate mechanistic pathway of ammonia formation proceeds. Further, it was found that the NRR activity over the different planes of CeO₂ is determined by their unsaturated Ce sites which are in the following order: (100) > (110) > (111), as the (100) plane contains tetra and tri-Ce sites.226

Different CeO₂ based electrocatalysts for NRR activity have also been reported so far217–219 with a high production rate and selectivity. For example, Xu et al. prepared oxygen vacancy enriched CeO₂ nanorods and achieved a great enhancement for the electrocatalytic NRR. However, no significant works regarding CeO₂ and CeO₂ based materials have been explored in the field of photo-fixation of N₂ (PNRR). Among the countable research works, Feng et al. prepared a series of ternary photocatalysts CeCO₂OH@g-C₃N₄/CeO₂ by using CeCl₃ and graphic carbon nitride (g-C₃N₄) as reaction precursors via facile in situ self-sacrificing hydrothermal methods. Without using any sacrificial agent, the photocatalyst prepared at 180 °C exhibited the highest nitrogen photoreduction activity, i.e. 1.16 mM g⁻¹ h⁻¹, which was four times that of pristine g-C₃N₄. The enhanced nitrogen photofixation performance was attributed to the surface defects in CeO₂ where Ce³⁺ acts as a chemisorption site for N₂ molecule adsorption and subsequent activation and the heterostructure interface provides a higher charge transfer and separation efficiency.230 In another case, Jia et al. proposed an innovative synthesis idea of the Au–CeO₂ nanostructure, unlike the reported core–shell structure, via a facile wet-chemistry route, where crystalline CeO₂ was selectively grown over the ends of gold nanorods (Au NRs) in the presence of a small amount of bi-functional K₂PtCl₄. A large number of oxygen vacancies were generated in the surface grown ceria which further enhanced the adsorption and the subsequent reduction of di-nitrogen molecules. They tuned their longitudinal plasmon wavelengths finely so that the materials can be adjusted as closely as possible to the laser wavelength as shown in Fig. 10(c). Further, the generation of plasmon-induced hot electrons and the presence of oxygen vacancies enabled the unique structural Au/endo-CeO₂ to function as a photocatalyst for nitrogen photofixation. The obtained nanostructured catalyst under 808 nm laser illumination led to a high rate of production of NH₃, i.e. 114.3 μmol h⁻¹ g⁻¹, which was 6.2-fold more in comparison to the other synthesized core@shell (Au@CeO₂) nanostructure (Fig. 10(c)). As a proof-of-concept, the photocatalytic N₂ fixation ability of the Au/endo-CeO₂ nanostructures was also evaluated under 1 sun illumination and the NH₃ generation rate was found to be 25.6 μmol h⁻¹ g⁻¹.112 The author’s group have also studied different CeO₂ based materials for photocatalytic nitrogen fixation.231,232 For example, 3D/2D-FeSₓ–FeP-CeO₂ nanohybrids with high surface defects were successfully synthesized through an in situ hydrothermal technique followed by a combined sulphidation and phosphidation technique. The as-prepared samples were tested towards PNRR under UV-vis light without the use of any organic scavenger or noble metal co-catalyst. CeO₂ acts as a building block photocatalyst and supports the FeP/FeSₓ particles, and under light irradiation FeSₓ acts as an electron donor and injects photoelectrons on to the CeO₂. Further the presence of oxygen vacancies along with FeP encouraged the productive N₂ activation and photoreduction to ammonia. The key to the remarkable photocatalytic performance was the presence of Fe based materials where FeP serves as the catalytic site for N₂ adsorption and facilitates the photogenerated charge transfer mechanism from CeO₂ to nitrogen as...
shown in Fig. 10(d). The optimized FeP–FeS2–CeO2 displayed a very high ammonia production, i.e. 2.91 mg L⁻¹, without a sacrificial agent whereas in the presence of aqueous methanol solution, the ammonia production rate was increased significantly. This suggests that methanol both acts as a sacrificial electron donor and produces CO₂⁺ which facilitates the N₂ fixation ability. Further, the nitrogen fixation rate was 5.66 mmol h⁻¹ g⁻¹ with selectivity in acidic distilled water under mild reaction conditions (Fig. 10(e and f)).

7. Photocatalytic pollution abatement

The 21st century is the era of rapid development covering all sectors of the world but the serious side effect of this progress may result in an environmental catastrophe. The continuous rise of industrial activities and different technological advancements have damaged the growth of society by releasing their additional waste to water bodies, soil and air without proper treatment causing a serious threat to biodiversity. Mainly the wastewater effluents contain maximum contaminants in the form of various organic pollutants such as dyes, phenolic compounds, antibiotics, halogenated hydrocarbons and inorganic toxic pollutants such as highly dangerous heavy metals and radioactive nuclides. These pollutants are highly toxic and take a very long time to degrade naturally. So the effective removal and degradation of these pollutants have taken many years of research. A variety of technologies such as chemical oxidation, adsorption, electrochemical conversion, and biodegradation have been used so far but most of them are highly energy demanding and cannot
be used on a regular basis.240-245 However, the photocatalytic detoxification process has emerged as a more efficient, cost-effective and green strategy which has the ability to clean up all the detrimental pollutants from wastewater as well as air bodies. In this technique, highly energetic radicals such as hydroxyl, superoxide, and hydrogen peroxide along with photogenerated electrons and holes are produced which effectively convert the organic/inorganic pollutant to a non-toxic form very quickly.246-248 With regard to this, many researchers have developed different photocatalytic materials for their effective utilization towards pollutant removal from different sources.

In the context of the environment cleanup process, various nanostructured CeO\textsubscript{2} and CeO\textsubscript{2} based materials have been reported for air purification and wastewater treatment by efficient photocatalytic degradation/mineralization of different dyes (RhB, MB, acid orange, eosin yellow, etc.),249-274 antibiotics,275-284 and organic pollutants (phenol-based materials),285-289 as summarized in Table 3. Morphology alteration enhances the surface defects such as Ce3+ state and oxygen vacancies, which increases the light absorption parameter with a red-shifted absorption edge and also retards the photogenerated electron–hole recombination rate. Further, these sites act as strong binding and dissociation sites for adsorbate molecules, and hence act as good sites for the photocatalytic degradation process. And it was also found that these CeO\textsubscript{2} materials generate more radical species (hydroxyl and superoxide) because of the prolonged lifetime of excitons and the presence of surface defects. Recently, Amoresi \textit{et al.} studied the photocatalytic decolourisation efficiency of RhB over different morphology oriented CeO\textsubscript{2}. According to theoretical models and experimental studies, it was found that the photocatalysis rate varies with the morphology and exposed planes. Since the electron density is different for different planes and is of the order (110) > (100) > (111) > (311), different morphologies showed different photocatalytic activity. For the bean (100) shaped morphology, h+ are the dominant species and for rods (110) it is e−, while e−/h+ are equally responsible for the photocatalytic activity of hexagon (311). For the (111) dominant morphology, OH* act as the major species for degradation purposes, since they have strong e−/h+ interaction. Hence different morphologies exhibited different photoactivity for a selected pollutant molecule.62

Dye degradation

Zhang \textit{et al.} reported CeO\textsubscript{2} hierarchical nanowires (Fig. 11(a)) and nanorods (Fig. 11(b)) grown on Cu substrates for the photocatalytic degradation of methyl orange (MO) and found that as compared to CeO\textsubscript{2} NPs, the 1-D nanostructure exhibited higher degradation efficiency. Both CeO\textsubscript{2} HNRs and HNWs removed 98.2% and 99.3% of MO under light irradiation for 180 min, revealing a performance which is substantially higher than that of the commercial CeO\textsubscript{2} NPs (68.8%) and P25 (89.5%) as shown in Fig. 11(c) respectively. The high performance in comparison to CeO\textsubscript{2} NPs was achieved only due to their hierarchical 1D nanostructure derived active sites, resulting in a shorter diffusion length of photogenerated holes and increased surface areas. Further, of the two 1-D structures, although both the materials possessed a 3.2 eV band gap, the nanowires exhibited higher absorption in the wavelength range between 400 and 750 nm (Fig. 11(d)), suggesting higher photonic energy absorption.77 Further, Yu \textit{et al.} reported uniform single crystalline hexagonal CeO\textsubscript{2} nanosheets for RhB degradation and found that the degradation efficiency of the above nanosheets was more than that of the conventional CeO\textsubscript{2} nanoparticles. The activity improvement was attributed to their 2D nanosheet structure which suppressed the charge pair recombination and their intrinsic single-crystal structure which decreased the charge transfer resistance, thereby yielding much stronger reducible electrons.79 Further, Arul \textit{et al.} synthesized 3D hierarchical rose-flower-like CeO\textsubscript{2} where CeO\textsubscript{2} nanosheets are stalked to form a flower. Under UV light irradiation, the flower like catalyst showed a degradation rate of 65% for the AO7 dye. The 2D NSs provided better diffusion of generated holes and reduced the agglomeration of the 2D NSs which was responsible for the enhanced activity.249 In another experiment, Yuan \textit{et al.} reported hierarchical CeO\textsubscript{2} sheets for the photocatalytic decomposition of toxic acetaldehyde. They found that CeO\textsubscript{2} HSs decomposed acetaldehyde more efficiently than CeO\textsubscript{2} NPs and as well as the well known P25. This superior degradation activity is mainly attributed to the high surface to volume ratio of the catalyst and the presence of surface defects.250 Though nanostructured CeO\textsubscript{2} possesses an impressive degradation property it is active only under UV-light illumination. Hence, the fabrication of a CeO\textsubscript{2} based heterostructure is investigated, which visibly improves the interfacial charge transfer, light absorption and the charge separation and lowers the recombination resulting in enhanced photocatalytic degradation. So far, nanostructured CeO\textsubscript{2} has been combined with different metal oxides,251-257 sulphides,258-262 carbonaceous materials,263-267 etc. for efficient dye degradation. For example, Arul \textit{et al.} reported CeO\textsubscript{2}/Fe\textsubscript{2}O\textsubscript{3} spindles as recyclable photocatalysts for the degradation of Eosin Yellow (EY) under visible light irradiation. The degradation was achieved in a very short duration of time (98% in 25 min) in comparison to neat CeO\textsubscript{2} and Fe\textsubscript{2}O\textsubscript{3} NPs, because of the excellent charge separation and transfer property derived from the heterostructure (Fig. 11(e)). Fig. 11(f) shows the recycling study of the CeO\textsubscript{2}/Fe\textsubscript{2}O\textsubscript{3} heterostructure, where the photocatalyst was found to be very stable and the photocatalytic efficiency was reduced by less than 10% even after 4 cyclic runs. Further they calculated the electrical energy per order of the photocatalyst, a term used to calculate the electrical energy required to remove unit mass of the pollutant. From the calculations, they found that the photocatalyst required much less energy to degrade the EY dye by one order of magnitude. Hence they deduced that the heterostructure possesses greater potential for use as a visible light driven catalyst. They deduced the photodegradation mechanism as shown in Fig. 11(g): upon light irradiation photogenerated electrons migrate from Fe\textsubscript{2}O\textsubscript{3} to the Ce 4f band where they react with oxygen to generate superoxide radicals, while holes migrate from the VB of CeO\textsubscript{2} towards the VB of Fe\textsubscript{2}O\textsubscript{3} yielding hydroxyl radicals. Both the superoxide and hydroxyl radicals were found to be essential for the photodegradation process.252 Another low cost recyclable CeO\textsubscript{2}-metal oxide heterostructure was reported by Tian \textit{et al.}, where CeO\textsubscript{2} nanoparticles assembled on the rough surface of TiO\textsubscript{2}.
Table 3 Complete results of the pollutant degradation performance of CeO$_2$ and CeO$_2$ based heterostructures

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Light source</th>
<th>Reaction conditions</th>
<th>Activity</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeO$_2$ hierarchical NRs</td>
<td>White light, 500 W Xe lamp</td>
<td>20 mg L$^{-1}$ MO, 20 mg</td>
<td>98.2% in 180 min</td>
<td>77</td>
</tr>
<tr>
<td>CeO$_2$ hierarchical NWs</td>
<td>250 W high pressure mercury lamp</td>
<td>1.0 × 10$^{-5}$ mol L$^{-1}$ RhB, 20 mg</td>
<td>Nearly 80% in 120 min</td>
<td>79</td>
</tr>
<tr>
<td>Single crystalline mesoporous CeO$_2$ nanosheet</td>
<td>Ordered meso-CeO$_2$</td>
<td>1000 W Xe lamp ($\lambda > 420$ nm)</td>
<td>70 mg L$^{-1}$ AO 7, 50 mg</td>
<td>95% in 7 h</td>
</tr>
<tr>
<td></td>
<td>Flower-like CeO$_2$</td>
<td>UV light ($\lambda = 365$ nm)</td>
<td>0.3 mM AO 7, 1 cm$^{-2}$</td>
<td>~65% in 10 h</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$ microspheres</td>
<td>1000 W Xe lamp ($\lambda > 420$ nm)</td>
<td>50 mg L$^{-1}$ AO 7, 50 mg</td>
<td>69.7% in 180 min</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$ NSs</td>
<td>450 W Xe lamp ($\lambda > 420$ nm)</td>
<td>26.7 nM MB, 30 mg</td>
<td>90% in 6 h</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$ NCs</td>
<td>310 nm $< \lambda < 400$ nm</td>
<td>RbB, 50 mg</td>
<td>30% in 2 h</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$ lamellar</td>
<td>UV light, 120 W uviol lamp</td>
<td>5 mg L$^{-1}$ MB, 50 mg</td>
<td>96.5% in 60 min</td>
</tr>
<tr>
<td></td>
<td>Octahedral CeO$_2$</td>
<td></td>
<td>5, 20 mg L$^{-1}$ MO, 20 mg</td>
<td>98.1% in 5 h</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$ NTs</td>
<td></td>
<td></td>
<td>92.8% in 5 h</td>
</tr>
<tr>
<td></td>
<td>Au/CeO$_2$</td>
<td>400 W Xe lamp ($\lambda > 400$ nm)</td>
<td>10 mg L$^{-1}$ MO, MB, 2 mg</td>
<td>80% in 6 h, 95% in 5 h</td>
</tr>
<tr>
<td></td>
<td>BiVO$_4$/CeO$_2$</td>
<td>Halogen lamp, visible ($\lambda > 400$ nm)</td>
<td>2 × 10$^{-4}$ M MB, 50 mg</td>
<td>~80% in 30 min</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$/Fe$_2$O$_3$ nanospindles</td>
<td>White, 150 Xe lamp</td>
<td>0.1 mM EY, 1 mg</td>
<td>98% in 25 min</td>
</tr>
<tr>
<td></td>
<td>CuO/CeO$_2$</td>
<td>15 W UV tube</td>
<td>0.15 mM MB, 100 mg</td>
<td>91.3% in 2 h</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$/TiO$_2$ nanobelts</td>
<td>350 W mercury lamp</td>
<td>20 mg L$^{-1}$ MO, 20 mg</td>
<td>100% in 25 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(max. emission 356 nm)</td>
<td>300 W Xe arc lamp ($\lambda > 410$ nm)</td>
<td>87% in 25 min</td>
</tr>
<tr>
<td></td>
<td>rGO/CeO$_2$ NCs</td>
<td>Hg lamp UV</td>
<td>Bph-dye</td>
<td>~72% in 3 h</td>
</tr>
<tr>
<td></td>
<td>rGO/CeO$_2$</td>
<td>Visible light source with intensity 14.5 W m$^{-2}$</td>
<td>1 × 10$^{-3}$ M MB, 30 mg</td>
<td>93% in 5 h</td>
</tr>
<tr>
<td></td>
<td>hollow BiOCl@CeO$_2$</td>
<td>300 W Xe lamp</td>
<td>10 mg L$^{-1}$ CIP, 50 mg</td>
<td>96% in 80 min</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$/Ti$_2$O$_3$/MXene</td>
<td>154 W halogen lamps</td>
<td>3 mg L$^{-1}$ MB, 20 mg</td>
<td>70% in 120 min</td>
</tr>
<tr>
<td></td>
<td>CdS NPs</td>
<td>300 W Xe lamp</td>
<td>40 mg L$^{-1}$ dye, 40 mg</td>
<td>96.68% in 48 min</td>
</tr>
<tr>
<td></td>
<td>Cs$_2$NO$_2$/CeO$_2$ nanoparticles</td>
<td>300 W Xe arc lamp ($\lambda > 400$ nm)</td>
<td>10 mg L$^{-1}$ nitroaromatics, 6 mg</td>
<td>4-nitrophenol ~90% in 3 min</td>
</tr>
<tr>
<td></td>
<td>Flower like CeO$_2$/MoS$_2$</td>
<td>150 W Xe lamp-visible light</td>
<td>25 mg L$^{-1}$ MO, 25 mg</td>
<td>96.1% in 90 min</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$/CuS composite nanofibers</td>
<td>Strip blue LED lamp</td>
<td>3 mg L$^{-1}$ MB</td>
<td>96.38% in 40 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>96.5% in 25 min</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$/g-C$_3$N$_4$</td>
<td>300 W Xe lamp ($\lambda > 400$ nm)</td>
<td>10 mg L$^{-1}$ MB, 100 mg</td>
<td>~98.9% in 3.5 h</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$/g-C$_3$N$_4$</td>
<td>300 W Xe lamp ($\lambda > 400$ nm)</td>
<td>10 mg L$^{-1}$ MB, 25 mg</td>
<td>90.1% in 180 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36 W UV lamp ((0872) with a wavelength of 254 nm</td>
<td>1 MB, 50 mg</td>
<td>96.42% in 70 min</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$/g-C$_3$N$_4$</td>
<td>8 W Xe lamp</td>
<td>10$^{-3}$ M concentration, 10 mg</td>
<td>97% (MB dye) and 96% (Rh-B dye) in 60 min</td>
</tr>
<tr>
<td></td>
<td>Ag/CoO$_2$</td>
<td></td>
<td></td>
<td>~87% in 90 min</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$/f-C$_3$N$_4$</td>
<td></td>
<td></td>
<td>88.3% in 60 min</td>
</tr>
<tr>
<td></td>
<td>Bi$_2$O$_3@g$-CeO$_2$</td>
<td>Xe lamp (350 nm $< \lambda < 780$ nm)</td>
<td>65% in 10 h</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>Shuttle-like CeO$_2$/g-C$_3$N$_4$</td>
<td>500 W Xe lamp ($\lambda > 420$ nm)</td>
<td>10 mg L$^{-1}$ TC, 20 mg</td>
<td>100% in 180 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150 W high pressure</td>
<td>10 mg L$^{-1}$ NOR, 50 mg</td>
<td>88.6% in 60 min</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$/nitrogen-doped carbon quantum dot/g-C$_3$N$_4$</td>
<td>300 W Xe lamp ($\lambda > 420$ nm)</td>
<td>20 mg L$^{-1}$ TC, 100 mg</td>
<td>100% in 60 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xe lamp ($\lambda > 420$ nm)</td>
<td>10 mg L$^{-1}$ TC, 20 mg</td>
<td>100% in 60 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>250 W Xe lamp ($\lambda > 420$ nm)</td>
<td>10 mg L$^{-1}$ CIP, 50 mg</td>
<td>88.5% in 120 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Direct sunlight visible region</td>
<td>50 ppm phenol 200 mg</td>
<td>35% in 180 min</td>
</tr>
<tr>
<td></td>
<td>Defective CeO$_2$</td>
<td>(420–800 nm)</td>
<td>50 ppm chlorophenol</td>
<td>98% in 180 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 ppm bromophenol</td>
<td>96% in 180 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 ppm nitrophenol</td>
<td>99% in 180 min</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$/g-C$_3$N$_4$ nanosheet</td>
<td>300 W Xe lamp ($\lambda > 420$ nm)</td>
<td>10 mg L$^{-1}$ MB, 50 mg</td>
<td>96.42% in 70 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 mg</td>
<td>85.35% in 30 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20 mg L$^{-1}$ TC</td>
<td>100% in 180 min</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$/ZnCo layer-double hydroxide</td>
<td></td>
<td></td>
<td>100% in 60 min</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$/ZnCo layer</td>
<td></td>
<td></td>
<td>100% in 60 min</td>
</tr>
<tr>
<td></td>
<td>CoS/CeO$_2$</td>
<td>25 mg L$^{-1}$ phenol, 50 mg</td>
<td>85.5% in 60 min</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>CeO$_2$/rod/g-C$_3$N$_4$</td>
<td>300 W Xe lamp ($\lambda > 300$ nm)</td>
<td>25 mg L$^{-1}$ TC</td>
<td>96.5% in 60 min</td>
</tr>
</tbody>
</table>
nanocomposites and tested their effectivity towards RhB decolourization efficiency. Among the very best catalysts, 40%BiOI–CeO₂ was proven to be the best and within a very short time 89% decolourization efficiency was achieved for 100 ppm RhB under sunlight. The major cause behind the enhanced photoactivity was found to be the presence of excess surface oxygen vacancies and better charge separation efficiency through the Z-scheme at the interface.¹¹⁷ Further, Gu et al. reported a heterostructure photocatalyst consisting of one-dimensional (1D) CdS nanorods (NRs) and CeO₂ nanoparticles (NPs). They found that the photocatalytic degrada-

Fig. 11 (a and b) SEM micrographs of CeO₂ nanowires and nanorods respectively. (c) Photocatalytic degradation of MO over CeO₂ HNRs and CeO₂ HNWs in addition to that over CeO₂ NPs and P25 with respect to light irradiation time. (d) UV-DRS spectra of CeO₂ nanowires and nanorods.⁷⁷ Reproduced by permission of The Royal Society of Chemistry. (e) Degradation efficiency of the blank EY with CeO₂ nanoparticles, CeO₂/Fe₂O₃ and Fe₂O₃ nanorod catalysts versus irradiation time. (f) Reusability test of the CeO₂–Fe₂O₃ photocatalyst in degrading EY under visible light irradiation. (g) Proposed photodegradation mechanism of CeO₂/Fe₂O₃ CNSs in degrading the EY dye under visible light irradiation.²⁵² Reproduced by permission of The Royal Society of Chemistry. (h) TEM micrographs of CeO₂–g-C₃N₄. (i) Photodegradation efficiency of the MB dye by g-C₃N₄ and CeO₂/g-C₃N₄ catalysts versus light irradiation. (j) Changes in the ultraviolet-visible absorbance spectra of MB dye solutions with optimized CeO₂–g-C₃N₄.²⁶³ Reproduced by permission of The Royal Society of Chemistry.

The heterostructure exhibited 98.59% degradation efficiency of MB within 3.5 h under visible light which was much higher than that of the neat materials. The variation in the optical absorption spectra of MB degradation over 5%CeO₂–g-C₃N₄ is shown in Fig. 11(j). With light irradiation, as the time passed the colour of MB gradually disappeared which confirmed the photodegradation process.²⁶³ Verma et al. reported an in situ CeO₂/rGO nanocomposite prepared through the one step ammonia assisted hydrothermal method for the elimination of MO under visible light. The heterostructure between CeO₂ (0D) and graphene (2D) increased charge separation and transportation ability simultaneously and extended the range of the solar absorption spectrum as well as increased the dye molecule absorptivity over its surface. In brief, under light irradiation photogenerated electrons and holes are produced over the CeO₂ surface; since rGO acts as a sink, electrons drift to the rGO surface and produce superoxide radicals, while the holes at the CeO₂ surface react with water to generate hydroxyl radicals. Through the π–π interaction between rGO and the MO dye molecule, the dyes are efficiently adsorbed over the surface of rGO where they react with both superoxide and hydroxyl radicals to yield the degraded product.²⁶⁷
Antibiotics removal

Nowadays, the excessive use of antibiotics like tetracycline, norfloxacin, enrofloxacin, ciprofloxacin (CIP), etc. is a major headache for society, as these are non-biodegradable and cause adverse effects on the ecosystem. Amoresi et al. verified the morphological effect of different exposed plane CeO$_2$ on CIP drug molecule photodegradation. They found that nanostructured CeO$_2$ with different exposed planes has a site selective tendency for CIP molecule cleavage and yields different degraded products. In brief, the CIP molecule contains multiple functional groups; hence electrostatic potential maps show negative sites corresponding to nitrogen atoms and oxygen atoms of COOH termination and positive sites corresponding to low electron density aromatic rings and cyclopropyl groups as shown in Fig. 12(a). As we have already discussed in the above section, rod and bean morphologies with the (110) and (100) predominant surfaces have a more negative surface layer, hence show higher affinity towards the positive site of the CIP drug during the photodegradation process. On the other hand, the hexagon with the (311) exposed plane and the rod/cube morphology with the (111) exposed plane show good affinity for the negative site of the CIP molecule, as these morphologies contain a more positive surface layer. Further, a number of bismuth based materials along with other low-dimensional materials have been studied with CeO$_2$ towards the elimination of different antibiotics. Recently an efficient hollow BiOCl@CeO$_2$ heterostructured microsphere with type-II staggered-arrangement was reported for the photodegradation of an antibiotic, i.e. tetracycline (TC). The authors observed that the above heterostructure degraded 92% TC within 120 min owing to the distinctive hollow structures and better charge carrier transportation and separation. Due to the matched band energy between n-CeO$_2$ and p-BiOCl an effective p-n junction was formed via Fermi level equilibration, which enhanced the interfacial charge transfer, because of which energetic electrons are now available at the CeO$_2$ surface while holes are present at BiOCl. From the ESR trapping experiment, the authors concluded that both superoxide and hydroxyls were found to be active species, while the higher peak strength of DMPO–O$_2^-$ confirmed the greater participation of superoxide radicals in TC degradation. Liu et al. presented a method of preparation of a 1D–2D heterostructure composite between shuttle like CeO$_2$ and g-C$_3$N$_4$ nanosheets and tested its photocatalytic activity towards norfloxacin degradation. The group found that the composite exhibited higher mineralization efficiency, i.e. 63.8%, than that of neat 1D-CeO$_2$ (31.8%) and g-C$_3$N$_4$ (39.4%) in a duration of 60 min. They found that gradual shedding of functional groups in norfloxacin molecules occurred during the course of reaction and ultimately the molecules decomposed into CO$_2$ and H$_2$O. A series of 2D/2D MoS$_2$/CeO$_2$ heterojunctions were successfully prepared by Ji et al. following a facile hydrothermal method. In comparison to neat MoS$_2$ and CeO$_2$, the optimized MoS$_2$/CeO$_2$ heterojunction (88.5%) exhibited higher photocatalytic performance for ciprofloxacin (CIP) degradation as shown in Fig. 12(b). The enhanced degradation efficiency of the MoS$_2$/CeO$_2$ heterojunction was attributed to its 2D/2D structure. Due to the presence of an effective 2D–2D interface, the photogenerated charge carriers were effectively separated and transferred, and meanwhile, the generated oxygen vacancies broadened the light absorption range of the heterojunction and overall both the factors helped to generate reactive oxidizing species.

Fig. 12 (a) Electrostatic potential maps showing different positive and negative sites for the ciprofloxacin molecule and the attacking affinity of (111), (311), (110), and (100) surfaces of CeO$_2$ towards CIP. Reprinted with permission from ref. 62, copyright 2019 American Chemical Society. (b) Degradation efficiency of the CIP drug in the presence of different MoS$_2$/CeO$_2$ samples under visible light irradiation. (c) Schematic illustration of charge transfer and generation of active species for photodegradation by optimized MoS$_2$/CeO$_2$. (d) Proposed degradation pathway of the CIP drug. Reprinted from ref. 284 with permission from Elsevier.
species for the degradation purpose (Fig. 12(c)). Further, they analyzed the CIP degradation pathway which can be described as follows: as CIP contains a piperazine ring, the generated hydroxyl radicals at first cleaved the piperazine ring to yield B \((m/z = 348)\). Then the degradation reaction continued, where by losing the F and OH groups, C \((m/z = 327)\) was formed. Further, the product D \((m/z = 283)\) was formed from the subsequent cleavage of the carboxyl group. Meanwhile, E \((m/z = 249)\) was formed by the cleavage of the carbon–carbon double bond adjacent to the carboxylic acid group. Finally, F \((m/z = 133)\) was further degraded into smaller molecules, i.e. CO₂ and H₂O. The complete degradation pathway is given in Fig. 12(d).²⁸⁴

Phenolic compound degradation to non-toxic products

Phenolic group organic materials are now the major threat to air, water and soil. In light of this, different CeO₂ based materials were synthesized and tested for the effective removal of these pollutants. For example, Aslam *et al.* studied the photocatalytic degradation of phenolic compounds such as phenol, 2-bromo-phenol (bp), 2-chlorophenol (cp) and 2-nitrophenol (np) over a uniform particle sized \(11 \text{ nm}\) CeO₂ nanostructure upon exposure to the visible region \((420–800 \text{ nm})\) and the complete spectrum of sunlight (Fig. 13(a)) and found an enhanced degradation rate in the full spectrum of sunlight. The exposure to direct sunlight enhanced the defect formation as the irradiated photons help the surface oxygen to escape from the CeO₂ surface as shown in Fig. 13(b). The induction of defects composed of CeO₂ \(x\) states which act as trap and transfer centers for the effective separation of electrons resulted in the formation of reactive oxidative species. Further, they found that Ce³⁺ played a key role in the generation of superoxide anion radicals (Fig. 13(c)) which were held responsible for complete mineralization of 2-NP and 2-CP, while less toxic aromatic intermediates were formed from phenol and 2-BP.²⁸⁵

Further, Ma *et al.* reported a type-II n–n heterostructure containing CeO₂ over g-C₃N₄ nanosheets and tested its efficiency towards bisphenol-A degradation. Under visible light irradiation, only 65% removal efficiency was obtained for the g-C₃N₄ nanosheet and 14.4% for CeO₂. However, the removal efficiency was found to be 93.7% at a time span of 80 min as shown in Fig. 13(d) with an apparent rate constant of 0.0199 min⁻¹ for the type-II heterostructure. The higher efficiency of the heterostructure is mainly due to the efficient photogenerated charge transfer and separation process across the interface of the n–n junction. As the VB potential of n-type CNNS is unable to produce hydroxyl radicals, only the photogenerated superoxide combined with holes actively takes part in the degradation process as shown in Fig. 13(e).²⁸⁶

Recently, Gao *et al.* prepared a CeO₂ incorporated ZnCo layered double hydroxide and employed it for phenol degradation in the presence of peroxymonosulfate. The generated oxidising species such as sulphate, hydroxyl, superoxide and holes were held responsible for the 99.8% degradation of phenol.²⁸⁶ Moreover, Chai *et al.* reported another 1D/2D heterostructure containing CeO₂ NRs and g-C₃N₄ NSs and tested its efficiency towards oxidative coupling of benzylamine. Under UV-visible light irradiation, the 1D/2D heterostructure exhibited a 3 times higher oxidation rate constant compared to neat g-C₃N₄ and CeO₂. They found that the presence of surface defects on CeO₂ was the major reason behind the higher oxidation activity. In brief, the oxygen vacancy traps the oxygen and generates superoxide radicals which break to form hydroxyl species; along with the hydroxyl species, holes also take part in the oxidative coupling process.²⁸⁸

Fig. 13

(a) Degradation curve of 50 ppm phenol, 2-CP, 2-BP, and 2-NP over CeO₂ under direct sunlight and in the visible region \((420–800 \text{ nm})\). (b) Schematic illustration of defect formation in CeO₂ under sunlight exposure. (c) Schematic illustration of the generation of active species over defective CeO₂. Reprinted from ref. 105 with permission from Elsevier. (d) Photocatalytic degradation of phenol in the presence of different CeO₂–CNNS heterojunctions. (e) Plausible mechanism of charge transfer and photodegradation of phenol in CeO₂ and CNNS n–n junction. Reprinted with permission from ref. 285, copyright 2019 American Chemical Society.
Heavy metal removal

Worldwide industrialization and technological advancement have brought a lot of troubles to the environment by releasing large quantities of heavy metals to the wastewater which represents a serious threat to global health. Now the heavy metal contaminants are beyond the recommended limit (Cr (0.1 mg L\(^{-1}\)), Pb (0.015 mg L\(^{-1}\)), As (0.010 mg L\(^{-1}\)), Cd (0.005 mg L\(^{-1}\)) and Hg (0.00003 mg L\(^{-1}\)) and are non-biodegradable which has attracted wide public concern. Unlike organic pollutants or dyes, heavy metals can’t be easily broken down biologically or chemically; however they can be reduced/transformed to a less toxic form.\(^{289-304}\) Hence, a variety of nanostructured CeO\(_2\) and CeO\(_2\) based heterostructures have been designed in this respect.\(^{295-304}\)

To start with, Wu et al. synthesized CeO\(_2\) nanotubes (NTs) via the template-assisted method and tested their photocatalytic activity for Cr(\(\text{VI}\)) reduction in the presence of oxalic acid. Under UV light irradiation, the photocatalytic reduction efficiency of 100 ppm Cr(\(\text{VI}\)) reached up to 99.6% within 50 min (Fig. 14(a)) with an apparent rate constant of 0.10294 min\(^{-1}\). The effective reduction of Cr(\(\text{VI}\)) to Cr(\(\text{III}\)) was confirmed by the XPS spectra shown in Fig. 14(b) where a prominent Cr 2p peak corresponding to Cr(\(\text{III}\)) is visualised. The template directed CeO\(_2\) nanotube showed good potential towards chromium reduction because of the high photonic energy capture ability arising from its one dimensional characteristic and more importantly the oxalic acid–CeO\(_2\) surface complex formation. In brief, the small molecular weight oxalic acid formed a metal complex with the Ce of CeO\(_2\), and enabled intramolecular electron transfer from the oxalic acid ligand to the Ce metal leading to the formation of organic radicals promoting Cr(\(\text{VI}\)) reduction under light irradiation as shown in Fig. 14(c).\(^{75}\) Further, a lot of work has been reported on the photoreduction of Cr(\(\text{VI}\)) by using different CeO\(_2\) based materials. For example, Yang and co-workers reported 0D/2D CeO\(_2\) QDs/BiOX (X = Cl, Br) nanoplate heterojunctions. Under 5 W white LED light irradiation, the as-prepared 0D/2D heterojunction exhibited high photocatalytic performance not only for the reduction of Cr(\(\text{VI}\)) but also for the degradation of tetracycline (TC). After 1 h irradiation, the photoreduction rates of Cr(\(\text{VI}\)) over CeO\(_2\) QDs/BiOBr (CBB) and CBC were found to be 97% and 57% respectively with a pseudo first order kinetics as shown in Fig. 14(d and e). As compared to CeO\(_2\) QD decorated BiOBr, the BiOCl based composite possessed lower photoactivity due to its higher band gap and incapability of visible light absorption. However, the superior photocatalytic activity of the composite compared to pristine materials was attributed to mutual interaction of carriers leading to the efficient transfer and separation of photoexcited carriers and increment in the light absorption ability. Further, the formation of a strongly coupled interface between BiOX nanoplates and CeO\(_2\) QDs and inner Ce\(^{4+}/\text{Ce}^{3+}\) redox centres enhances the activity further (Fig. 14(f)).\(^{297}\) Later by the same group, another heterojunction between CeO\(_2\) QDs and Bi\(_2\)MoO\(_6\) (BMO) was reported which exhibited more efficient charge carrier transfer and separation capacity. Under light irradiation, the optimized CeO\(_2\)-BMO heterojunction showed maximum Cr(\(\text{VI}\)) reduction (97%) within 90 min, which was higher than that of CeO\(_2\) (30%) and Bi\(_2\)MoO\(_6\) (19%) respectively.\(^{298}\) Parida and his team recently reported a 1D–2D heterostructure between CeO\(_2\) nanorods and BiFeO\(_3\) nanosheets and in situ decorated nitrogen doped carbon over it. Interestingly, MCeO\(_2\)-BFO was found to be the best photocatalyst (98.2%) for Cr(\(\text{VI}\)) reduction compared to the neat counterparts CeO\(_2\) (35%), MCeO\(_2\) (56%) and BFO (75%), which was attributed to the effective charge separation and transfer at the heterojunction.\(^{232}\) Li et al. fabricated sandwiched TiO\(_2@\text{Pt}@\text{CeO}_2\) double shell hollow spheres and tested their photocatalytic performance towards hexavalent chromium reduction. Under solar light irradiation, they found the highest reduction rate for TiO\(_2@\text{Pt}@\text{CeO}_2\) (1.901) as compared to neat TiO\(_2\) (1.040) and

Fig. 14 (a) Photoreduction activity of Cr(\(\text{VI}\)) solutions of different ppm over CeO\(_2\) nanotubes in the presence of oxalic acid. (b) High-resolution Cr 2p XPS spectra of the CeO\(_2\) catalyst after photoreduction. (c) Proposed scheme of the underlying mechanism of Cr(\(\text{VI}\)) photoreduction assisted by oxalic acid over CeO\(_2\) nanotubes under UV light irradiation.\(^{75}\) (d) and (e) The hexavalent chromium photoreduction curves and (e) the pseudo-first-order kinetics curves of BiOX, CeO\(_2\) and BiOX modified CeO\(_2\). (f) Schematic illustration of the photogenerated charge transfer and separation mechanism across CeO\(_2\)/BiOCI and CeO\(_2\)/BiOBr heterojunction photocatalysts.\(^{299}\) Reprinted with permission from Elsevier.
CeO₂ (0.992). The enhanced photoreduction activity was mainly due to the unique sandwiched double shell structure and the presence of two oxides (TiO₂ and CeO₂). Further, the addition of the Pt co-catalyst (electron trap site) stores and shuttles the photogenerated excitons, and increases the formation of active radicals responsible for photoreduction reaction. Additionally, Kashinath and his unit reported a facile in situ fabrication method for the development of cerium oxide decorated graphene oxide (CeO₂–GO) binary nanocomposites. The hexagonal nano CeO₂ were embedded on the layered graphene oxide sheets via a simple microwave irradiation technique and the binary hybrid was tested for the removal of hexavalent chromium ions, dye degradation and antibacterial activities. Under UV (ultraviolet) light irradiation, the binary hybrid showed a rapid hexavalent chromium removal efficiency compared to neat GO and CeO₂.

8. Conclusion and further prospective

Nanostructured CeO₂ and CeO₂ based heterostructure materials with distinct morphology, exposed planes/facets and interfaces have aroused extensive research interest across the globe due to their extraordinary properties and widespread application in the field of photocatalysis. In this review, we have systematically summarized various synthetic routes towards the fabrication of several morphology oriented CeO₂ and its heterostructures as well as their application towards different solar energy conversion-based reactions (hydrogen production, O₂ production, CO₂ reduction and nitrogen reduction) and environmental pollutant (organic/inorganic) remediation. Additionally, theoretical aspects and experimental evidence behind the enhancement in the activity have been well explained. Although a large number of experimental and theoretical studies relating to nanostructured CeO₂ and CeO₂ based materials have been published in recent years, some fundamental aspects still need more attention. However, research in this area still faces a lot of challenges and encouragingly is filled with a lot of opportunities to explore new science. CeO₂ has two key features, i.e. abundant oxygen defects and flexible oxidation state (Ce³⁺ ↔ Ce⁴⁺) shuttling ability, which make it a promising candidate for various photocatalytic applications. This rare earth oxide and its composites are also extensively studied for different electrocatalytic reactions because upon forming a hybrid, the number of active site increases which strongly influences the electronic structure of the other combining unit (novel metals, metal nitrides, phosphides, etc.) which ultimately improves the performance and durability of the system.

But in this review, we mainly focused on the photocatalytic aspect. However, the major shortcoming of CeO₂ as a semiconductor photocatalyst is its low solar light absorption efficiency, fast carrier recombination and higher bandgap. Yet, intrinsic O₂ have the ability to alter the band gap of CeO₂ without causing serious damage to the crystal lattice. Hence, a low band gap CeO₂ (3 to 2.6 eV) with a stable surface structure can bring about a revolution in the field of visible light driven photocatalysis. We have also discussed different modification techniques adopted for enhancing the catalytic efficiency of CeO₂ and its composites by taking examples from reported literature.

Adding more to it, the oxygen vacancy is largely responsible for the higher photoactivity; however its controlled generation is very challenging and needs more experimental exploration. Further, the surface oxygen vacancy is very crucial for determining the tensile or compressive strain, which is also an issue for vacancy stabilization. For example, Wu et al. stated that tensile strain stabilizes the reduced states of ceria such as oxygen vacancies and surface hydroxyls, while compressive strain destabilizes the reduced states. In addition to these, there are many theoretical and experimental studies which have stated the qualitative influence of the oxygen vacancy and Ce³⁺, but have not stated how to control the amount of defects to achieve an optimum result. So the controlled generation of surface defects and inhibition of the bulk vacancy still suffer from the lack of a viable facile synthetic route. In order to know more about the electronic and geometric structure of surface vacancies over CeO₂ based materials, more advanced techniques such as scanning tunnelling microscopy, HDAAF, XAFS, XANES, etc. should be used in more detail and in a regular manner. Further, the effect of O₂ and the Ce³⁺/Ce⁴⁺ ratio on photocatalytic reactions needs more in situ characterization and computation studies. Additionally, current articles mainly give qualitative ideas on the effect of O₂ and Ce³⁺/Ce⁴⁺ on catalytic efficiency but it needs direct confirmation which can be achieved by advanced in situ characterization and theoretical optimization that can develop a strong understanding of structure-activity inter-linkage and hence guide researchers to design extraordinary photocatalytic systems. In brief, the precise synthesis of CeO₂ based systems with a required amount of O₂ and Ce³⁺/Ce⁴⁺ is very essential as it helps in providing useful information on the catalytic mechanism.

Considerable work has been done with regard to the preparation of morphology oriented CeO₂ based materials and their catalytic as well as photocatalytic application. However, exposure of one facet or controlled growth of one or two facets changes the photoactivity drastically in comparison to the bulk nanostructure. For example, the exposed (100) plane is more suitable for dye degradation, while the (311) plane is more efficient for organic pollutant removal. Hence, this field needs more scientific attention. In this aspect, theoretical studies can show the path of designing desired exposed facet CeO₂ based materials towards a particular type of photocatalytic reaction. In addition to the above stated modification, it is also quite effective to prepare specific nanostructured oriented CeO₂ based systems such as core–shell, porous, hollow structures, hydrophilic/hydrophobic surfaces, etc. to achieve benchmark conversion efficiency.

Moreover, a viable, soft and precise synthetic route for designing nanostructured CeO₂ and CeO₂ based materials with higher yield also needs more attention. Different green, environmentally friendly approaches should be followed for the preparation of morphology oriented CeO₂. In addition to using organic solvents and a lot of structure directing agents, common solvents like water, alcohol and biosurfactants should be used for the preparation of the above.
Further, in the preparation of CeO₂ based heterostructures selection of a compatible lower dimensional other half photocatalyst with a distinctly shaped facet is also crucial for constructing an efficient photocatalytic system. So the design of a CeO₂ based photocatalytic system with appropriate interfacial contact between CeO₂ and the other photocatalyst still needs more study. This interface generally inhibits the photogenerated charge pair recombination, and hence the atomic level inter-action of different nanostructures also needs more scientific research. In addition to this, the interfacial charge separation and transfer across the interface of two materials and the mechanism behind it are still in ambiguity. The charge transfer may be junctional type (p–n, n–n) or may be Z-scheme type or heterostructure type; hence more thorough theoretical as well as experimental evidence is required in this field. Moreover, coupling of CeO₂ with other materials apart from conventional metal oxides, Cds, g-C₃N₄, and materials like metal phosphides, selenides, and borides can provide a better compatible partner for CeO₂, and hence this field needs more experimental verification. Furthermore, the charge conducting ability of CeO₂ framed systems can be increased by either integrating CeO₂ with highly conductive substances or nucleating CeO₂ on conductive materials like carbon cloth, metal foam, etc.

Theoretical analysis of different photocatalytic reactions especially water oxidation, CO₂ reduction and active radical generation over normal and defective CeO₂ with different exposed planes needs more systematic study. Further, there are a handful of attractive reports citing the photocatalytic dye degradation and organic pollutant oxidation, but very few studies have been carried out on photocatalytic water splitting and the NRR. However the oxygen vacancy enriched CeO₂ has shown some outstanding results in photocatalytic water splitting. So, efficient O₂ enriched CeO₂ based catalysts with appropriate exposed facets, higher light absorption capacity and lower photogenerated charge recombination still need continuous research. Further, with the increasing efforts of the research community, we strongly believe that future CeO₂ based photocatalytic systems will act as promising materials towards sustainable energy generation and environmental pollution abatement on an industrial scale.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors are very much thankful to the SOA University management for their support and encouragement.

References

18 M. H. Huang, G. Naresh and H. S. Chen, Facet-dependent electrical, photocatalytic, and optical properties

102. T. Tsuzuki, R. He, A. Dodd and M. Saunders, Challenges in determining the location of dopants, to study the influence of metal doping on the photocatalytic activities of ZnO nanopowders, *Nanomaterials*, 2019, **9**(3), 481.

106. A. Hezam, K. Namratha, Q. A. Drmosh, D. Ponnamma, J. Wang, S. Prasad, M. Ahamed, C. Cheng and K. Byrappa, CeO$_2$ nanostructures enriched with oxygen vacancies for...

133 D. Ma, D. Sun, Y. Zou, S. Mao, Y. Lv, Y. Wang, J. Li and J. W. Shi, The synergy between electronic anchoring effect and internal electric field in CdS quantum dots decorated dandelion-like Fe–CeO$_2$ nanoflowers for improved photocatalytic hydrogen evolution, *J. Colloid Interface Sci.*, 2019, 549, 179–188.

140 Z. Jiang, Q. Chen, Q. Zheng, R. Shen, P. Zhang and X. Li, Constructing 1D/2D Schottky-based heterojunctions between Mn$_{0.2}$Cd$_{0.8}$S nanorods and Ti$_3$C$_2$ nanosheets for boosted photocatalytic H$_2$ evolution, *Acta Phys.-Chim. Sin.*, 2021, 37, 2010059.

143 R. Shen, K. He, A. Zhang, N. Li, Y. H. Ng, P. Zhang, J. Hu and X. Li, *In situ* construction of metallic Ni$_3$C@Ni core-shell cocatalysts over g-C$_3$N$_4$ nanosheets for shell-thickness-dependent photocatalytic H$_2$ production, *Appl. Catal., B*, 2021, 291, 120104.

166 Y. Wang, X. Hao, L. Zhang, Y. Li and Z. Jin, Rational design of all-solid-state 0D/2D Mn2S2CdS@S/CeO2 direct Z-scheme for photocatalytic hydrogen evolution, Energy Fuels, 2020, 34, 2599–2611.

214 M. Liang, T. Borjigin, Y. Zhang, B. Liu, H. Liu and H. Guo, Controlled assembly of hollow heterostructured g-C₃N₄@CeO₂ with rich oxygen vacancies for enhanced photocatalytic CO₂ reduction, Appl. Catal., B, 2019, 243, 566–575.

216 X. Zhao, J. Guan, J. Li, X. Li, H. Wang, P. Huo and Y. Yan, CeO₂/3D g-C₃N₄ heterojunction deposited with Pt cocatalyst for enhanced photocatalytic CO₂ reduction, Appl. Surf. Sci., 2021, 537, 147891.

257 L. Zhu, H. Li, P. Xia, Z. Liu and D. Xiong, Hierarchical ZnO decorated with CeO2 nanoparticles as the direct Z-scheme heterojunction for enhanced photocatalytic activity, ACS Appl. Mater. Interfaces, 2018, 10, 39679–39687.

274 L. Huang, Y. Li, H. Xu, Y. Xu, J. Xia, K. Wang, H. Li and X. Cheng, Synthesis and characterization of CeO2@g-C3N4 composites with enhanced visible-light photocatalytic activity, RSC Adv., 2013, 3, 22269–22279.

275 S. Xing, T. Li, Y. Gao and J. Liu, Insight into the mechanism for photocatalytic degradation of ciprofloxacin with CeO2, Optik, 2019, 183, 266–272.

282 W. Liu, J. Zhou and J. Yao, Shuttle-like CeO2@g-C3N4 composite combined with persulfate for the enhanced photocatalytic degradation of norfloxacin under visible light, Ecotoxicol. Environ. Safety, 2020, 190, 110062.

295 S. Peng, J. Yang, L. Guo, J. Wang, J. Zhao, J. Xu and Z. Li, Shape-dependent CeO$_2$@BiOI for degradation of aqueous Cr(Ⅵ), *Adv. Mater. Interfaces*, 2020, **7**, 1901879.

298 G. Yang, Y. Liang, K. Li, J. Yang, R. Xu and X. Xie, Construction of a Ce$^{4+}$ doped CeO$_2$/Bi$_2$MoO$_6$ heterojunction with a mutual component activation system for highly enhancing the visible-light photocatalytic activity for removal of TC or Cr(Ⅵ), *Inorg. Chem. Front.*, 2019, **6**, 1507–1517.

300 S. Li, J. Cai, X. Wu, B. Liu, Q. Chen, Y. Li and F. Zheng, TiO$_2$@Pt@CeO$_2$ nanocomposite as a bifunctional catalyst for enhancing photo-reduction of Cr(Ⅵ) and photo-oxidation of benzyl alcohol, *J. Hazard. Mater.*, 2018, **346**, 52–61.

304 J. Bai, X. Wang, G. Han, Z. Xie and G. Diao, CQDs decorated oxygen vacancy-rich CeO$_2$/BiOCl heterojunctions for promoted visible light photoactivity towards chromium(Ⅵ) reduction and rhodamine B degradation, *J. Alloys Compd.*, 2020, **859**, 157837.