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High-performance wide bandgap perovskite solar
cells fabricated in ambient high-humidity
conditions†
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Hugo Águas, Elvira Fortunato, Rodrigo Martins and Manuel J. Mendes *

Lead-halide perovskite solar cells (PSCs) are currently the most promising emergent thin-film

photovoltaic technology, having already reached power conversion efficiency (PCE) levels of state-of-

the-art wafer-based silicon cells. The class of wide bandgap PSCs has also demonstrated high PCE

values, thus becoming highly attractive for top sub-cells in tandem devices constructed with silicon or

other types of bottom sub-cells. In this study, wide bandgap double-halide (Cs0.17FA0.83PbI3�xBrx)

perovskite absorbers were developed with different bromine content, aiming to obtain bandgap values

between 1.66 to 1.74 eV, by a glovebox-free (ambient) procedure. Low-cost inorganic materials, i.e. TiO2

and CuSCN, were used for the electron and hole transport layers, respectively. The 1.70 eV bandgap

perovskite resulted in the highest reproducibility and stability (480% initial PCE after 3500 hours)

properties of the PSCs, remarkably attaining 16.4% PCE even with ambient and high humidity (B70%)

fabrication conditions.

1. Introduction

Inorganic–organic metal-halide perovskite solar cells (PSCs)
have become the most attractive class of thin-film photovoltaic
(PV) technology in the last decade, due to the astonishingly
fast rise of their power conversion efficiency (PCE) values from
3.8 to 25.5% within 10 years only.1,2 Besides, this emergent
PV technology has shown enormous potential for cost savings,
due to the non-vacuum low-temperature deposition and
crystallization3 of the cell layers, enabling also application on
inexpensive flexible substrates.4–8

The inorganic–organic hybrid perovskites have the general
formula ABX3, where A is a monovalent cation composed of
methylammonium (MA: CH3NH3

+), formamidinium (FA:
CH3(NH2)2

+), and/or cesium (Cs+)),9 B is a divalent metal cation
(e.g. Pb2+, Ge2+, Sn2+) and X is a halide anion (I�, Br�, and/or Cl�).10

The highest PCEs for single-junction devices have been attained
with perovskite absorbers with B1.55 eV bandgap. Nonetheless,
their easy bandgap tuning favours PSC application in tandem
(double-juction) architectures, not only with wide-bandgap PSC/
low-bandgap PSC configurations11,12 but also with wide-bandgap

PSCs13,14 coupled to distinct types of bottom cells based on
silicon15–17 or CIGS materials.18,19 In this work we fabricated
wide-bandgap perovskite layers with different bandgap values by
changing the bromine (Br) to iodine (I) ratio at the halide anion
site, while a mixture of FA and Cs was used for the A cations.

Albeit PSCs are already competitive with other PV technologies
in terms of PCE values, the commercialisation of perovskite-based
PV modules is still in suspense; not only because of the
well-known stability issues but also due to the presently high
fabrication costs. However, techno-economic assessments
indicate that PSCs hold the promise of becoming one of the most
affordable PV technologies with low levelized cost of energy
(LCOE) in the near future.20,21 Yet, state-of-the-art solution-
processed PSCs are commonly fabricated in temperature and
humidity controlled glovebox systems, mainly due to the highly
environmentally-sensitive organic materials composing the
structure.22,23 This adds critical processing costs and strong
limitations in the scalability of this PV technology, thus hindering
its industrial exploitation. Therefore, there is a strong motivation
to develop the production of high-efficient and stable PSCs in
ambient atmosphere conditions, as achieved in this work.

Previous studies in the literature24–28 explored this possibility,
but mainly employing MA-based perovskites with conventional
(B1.55 eV) bandgap for single-junction cells. These and many
other works have analysed the influence of the ambient
humidity on the deposition and annealing of the perovskite
layers. Even though it has been generally believed that humidity
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is an adverse detrimental factor in the PSCs’ processing, some
contributions have challenged this view. For instance, Pathak
et al. reported that the humidity can improve the perovskite
crystallinity, and thus enhance the PSCs’ efficiency.29 Trughton
et al. fabricated PSCs in high relative humidity (RH) conditions,
up to 75%, by applying solvent engineering using ethyl acetate as
an antisolvent to absorb moisture during the perovskite layer
deposition.30 In 2019, Wang et al. published a detailed study
concerning the humidity impacts on MAPbI3 PSCs, presenting
methods for deposition of the perovskite layers in high-mid and
low humidity conditions.31 The authors claimed that, by
preheating the substrates before the perovskite layer deposition,
the humidity effect on the layer quality and properties can be
minimized, thus naming this a humidity-insensitive antisolvent
method. Preheating the substrate before the perovskite layer
deposition in high humidity levels has also been investigated by
Sveinbjörnsson et al. for (FAPbI3)1�x(MAPbBr3)x perovskite films,
showing that preheating has a strong influence on the thickness
and the uniformity of the perovskite layer.32 Cheng et al.
fabricated MAPbI3 PSCs with inverted layer structure via a two-
step deposition method, observing that moisture and oxygen can
be removed by preheating the substrate after the first step of PbI2

deposition.33

Nevertheless, despite all the great developments thus far, at
present there is still no agreement in the literature regarding the
favorable PSC processing conditions in air/humid conditions.
Besides, up to the authors’ knowledge, the present study is the
first report demonstrating highly efficient wide-bandgap PSCs
deposited in ambient air conditions with high humidity.

Another critical limitation to the commercialization of PSCs
concerns the material costs of the present highly efficient
devices. In PSCs, the perovskite absorber is sandwiched
between selective contacts for the photo-generated carriers
extraction: the electron (ETL)34 and hole (HTL)35 transport
layers, which block the opposite charges to avoid recombination
and current loss. TiO2 has been the most commonly used ETL

material, benefiting from a favorable band alignment with the
perovskite, either in compact form for planar cells,36 in meso-
porous films with pristine TiO2 crystalline layers37 as employed
in this work, or even with further ETL improvements.38–40 Being
an inexpensive abundant material, TiO2 does not significantly
affect the PSCs’ material costs, but the same cannot be said for
the conventional HTL materials. Namely, the common organic
compounds (Spiro-MeOTAD, PTAA or P3HT) used to synthesize
the HTLs are quite expensive. One of the most costly is the
typically employed Spiro-MeOTAD, whose price is currently
above 300 h per g mainly due to the high number of synthesis
and purification steps, as well as reaction steps down to �78 1C
required for its production.37,41–43 This also strongly boosts the
CAPEX (capital expenditure) and LCOE of PSC technology.

As such, in view of enabling the market deployment of
perovskite-based PV, it is extremely desirable to replace such
expensive organic-based HTL materials by inexpensive compounds.
There is a recent strong interest towards alternative inorganic-
based HTLs, such as CuSCN (copper(I) thiocyanate) or NiOx, not
only due to their much lower material cost (e.g. CuSCN costs
B300 times less than Spiro-MeOTAD),35,44 but also because
they are much more chemically and thermally robust, thus
enabling improved PSC stability under environmental conditions.
CuSCN revealed to be one the most efficient and less expensive
material for the conventional n–i–p PSC structure, while NiOx has
been mainly used in inverted (p–i–n) PSCs.45–47

Here, we present wide-bandgap (WBG) PSCs using low cost,
inorganic CuSCN, as the hole transport material, and each step
of the synthesis, depositions (except back contact evaporation)
and analysis are performed in ambient enviroment with high
humidity conditions (470%). Our best performing cell exhibits
16.4% PCE with Voc = 1.08 V, Jsc = 21.0 mA cm�2, FF = 0.72.
The PSCs also exhibit long term stability, maintaining 480%
of the initial PCE for 3500 hours without any encapsulation.
Fig. 1 shows the schematic of the solar cells’ layers and energy
band diagram of the devices’ structure.

Fig. 1 Architecture (a) and energy band diagram (b) of the wide-bandgap (WBG) perovskite solar cells (PSCs) fabricated in this work, with a superstrate
(n–i–p) layer structure, under ambient environment with high humidity conditions (470%).
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2. Results and discussion
2.1 Analysis of wide-bandgap (WBG) perovskite layers

WBG perovskite films of the type Cs0.17FA0.83PbI3�xBrx were
first deposited on FTO-coated glass substrates for optical,
structural and morphological characterization. The thicknesses
of the layers measured by profilometry are approximately 550 �
50 nm. It was observed that the change in Br content influences
the layers’ morphology, causing surfaces wrinkles with roughness
up to 45 nm as presented further below, but it does not have a
considerable impact on the average thickness of the perovskite
layers.

Fig. 2a shows that the absorbance of the perovskite layers on
the FTO substrates is more than 80% for the visible region and,
depending on the bandgap value (determined by Br content, x),
the absorbance onset changes in the near-infrared wavelength
range. The energy bandgap (EG) values displayed in Fig. 2c were
determined via the steady-state photoluminescence (PL) peaks
(see Fig. 2b) and the Tauc plot method (see inset of Fig. 2a) for
direct bandgap semiconductors. It can be clearly seen that the
EG values increase linearly with higher Br content ratio, as

expected. The slope of the linear regression displaying this
characteristic is dEG/dx = 0.2–0.23 eV, which proves a facile
tuning of the perovskite layer bandgap. The EG values obtained
from absorbance and PL concur well, with slight differences
that reduce as the Br content increases. Besides, the observed
stronger PL intensities with increasing Br content (see Fig. S1 in
ESI†) is in agreement with the crystallinity measurements
described below.48

The crystallinity of the perovskite layer is a key factor for the
PSCs’ efficiency. To scrutinize the crystalline properties of the
perovskite absorbers depending on Br content, we calculated
the Urbach energies (EU) of the perovskite layers from the
absorption spectra via eqn (1):

a = a0 + ehn/EU (1)

where a is the absorption coefficient, a0 is a fitting constant and
EU is the Urbach energy. The calculated EU values (see Table 1)
are inversely proportional to the Br content, indicating that the
crystallinity properties were enhanced with Br ratio (x).49 As x
increases the Urbach tail energy (attributed to lattice disorder)

Fig. 2 Optical and structural results of Cs0.17FA0.83PbI3�xBrx perovskite layers on FTO-coated glass substrates, with different Br content (x = 0.6, 0.8, 1.0).
(a) Absorbance spectra with Tauc plots [(ahn)2 vs. hn] in inset. (b) Normalized steady-state PL measurements. (c) Relation between the perovskite
bandgap, EG, and the lattice constant, as a function of Br content. (d) X-Ray diffraction plots of the WBG perovskite layers, whose peaks are shown in
further detail in Fig. S2 of the ESI.†
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decreases,49 thus lower values of EU correspond to higher
order in the crystal structure. The Urbach values attained for
our ambient-deposited perovskite films are slightly higher than
those of state-of-the-art perovskites deposited under glovebox
controlled environment,17 and this leads to relatively higher
open-circuit voltage deficit as analysed in ESI† (Fig. S4).

The aforementioned impact of Br content in the perovskite
crystallization is confirmed by X-ray diffractometry (XRD)
measurements shown in Fig. 2d. All samples display the
perovskite peak around 2y = 14.21, referring to the (100)
perovskite plane. Additionally, the peaks at 201, 24.81, 281
and 41.51 are also found in wide-bandgap perovskite layers.50

In general, with the increase of Br content the XRD peak
intensities increase, indicating improved crystallinity. On the
other hand, the perovskite layer with the lowest Br content (x =
0.6) does not exhibit any photoinactive PbI2 peaks (B12.61),
which can be attributed to the lower precursor concentration,
and thus better dissolubility and homogeneity of the perovskite
solution. This sample also has a pronouncedly lower surface
roughness determined from AFM measurements, as presented
in Table 1 and discussed further below.

The XRD results show that, when increasing the Br : I ratio, a
slight shift to higher angle values occurs, as presented in
further detail in Fig. S2 of ESI.† It is known that higher Br
content causes the lattice to shrink, due to the smaller size of
the bromide ion when compared with the iodide ion,17,51 which
transforms the tetragonal phase of MAPbI3 into the cubic phase
of pure MAPbBr3. The same behaviour occurs in FA and Cs
mixed-cation perovskites.52 The lattice constant calculations
(see Fig. 2c) for the main perovskite peak of 2y = 14.21 confirm

such lattice contraction, and the linear relation between the
lattice constant and Br content matches Vegard’s law.17

The AFM images (shown in Fig. S3, ESI†) indicate that when
increasing x, the RMS surface roughness also increases
(Table 1). The reduced roughness of the perovskites with lowest
x should be caused by the homogeneity of the precursor solutions
and Br : I ratio in the layers. Also, the change in the roughness
with Br content is attributed to the wrinkled morphology of the
layers, as visualized by scanning electron microscopy (SEM,
see Fig. 3). As suggested in the literature, the wrinkled-shaped
structures are a consequence of compact stress during the film
formation, depending on the precursor solution, antisolvent
washing and annealing step.53–55

Although the wrinkled surface morphology does not
significantly affect the optical properties of the films, the device
performance was reduced mainly due to the less conformal
deposition of the hole transport layer.49,56 As shown in ESI†
(Fig. S3), higher x leads to relatively deeper cracks in the films,
which causes higher density of recombination centers, short-
circuits and overall loss in the PSCs’ performance.57 Therefore,
even though the perovskite layer with the highest Br content
has better crystallinity properties and lower Urbach energy
values, the resulting solar cell parameters were worse than
the other cells, as shown in the next section.

Besides, as shown in the SEMs of Fig. 4 with higher
magnification and in Table 1, with the increment of bromide
content the average grain size of the perovskite films increases,
mainly due to the appearance of large (4300 nm) grains
causing a higher positive skewness (i.e. lower homogeneity) of
the size distribution.

2.2 PSCs’ optoelectronic assessment and optimization

2.2.1 Solar cell characterization. The current density–voltage
( JV) measurements of the solar cells composed of the WBG
perovskites with the three bandgap values are shown in Fig. 5a.
The cells were fabricated with the layer structure: FTO/TiO2/
Cs0.17FA0.83PbI3�xBrx/CuSCN/Au, as described in the experimental
methods. All the preparations and layer depositions were

Table 1 Urbach energy, surface roughness and average grain size values
of the perovskite layers with different Br content in the Cs0.17FA0.83P-
bI3�xBrx composition

x (Br content ratio) 0.6 0.8 1.0

Urbach energy (EU, meV) 63 57 53
RMS roughness (nm) 29.68 42.29 45.02
Mean grain size (nm) 137.3 190.1 205.6

Fig. 3 Low magnification SEM images of the WBG perovskite layers on FTO-coated glass substrates, composed with different Br content: (a) x = 0.6,
(b) x = 0.8, (c) x = 1.0. It can be seen that the overall homogeneity is better for the perovskite with the lower Br content (and lower EG, displayed in
top-right corner), while increased wrinkling is observed with higher x.
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performed in ambient air with relative humidity, RH 4 70%.
The PV quantities of interest are shown in Fig. 5b and summarized
in Table 2.

As expected, there is a reduction in the PCE with increasing
EG of the perovskite absorber. However, an opposite trend
should have been observed for the open-circuit voltage (Voc),
but here that is not the case since the Voc deficit

DVoc ¼
EG

q
� Voc

� �
increases with the bandgap widening

(see Fig. S4, ESI†). This effect is attributed to inevitable phase
segregation in the perovskite layer, which becomes more pro-
nounced when the fabrication occurs in a humid
environment.58,59 Also, the aforementioned non-ideal interface
properties, between the perovskite and charge transport layers,
cause Voc reduction and higher series resistance. As for the

shunt resistance (Rshunt), it does not present a linear trend since
it is higher for the mid-bandgap solar cell relative to the others.

Regarding the short-circuit current density (JSC), it decreases
with higher bandgap of the perovskite layer. This is expected
optically since the absorbance onset is blue-shifted, as seen in
Fig. 2a.60 In addition, the increased roughness with higher Br

Fig. 4 Top-view SEM images of the WBG perovskite layers on FTO-coated glass substrates, composed with different Br content: (a) x = 0.6, (b) x = 0.8,
(c) x = 1.0. The images reveal the multi-crystalline grain structure of the films at two different magnifications. The inset histograms show the grain size
distribution and average grain size (AS, also indicated in Table 1).

Fig. 5 J–V curves (a) and variation of characteristic parameters (b) of the WBG PSCs with the EG values.

Table 2 Main solar cell parameters of the WBG PSCs with different EG

values of the perovskite layer

Eg (eV) Voc (V) Jsc (mA cm�2) FF PCE (%) Rseries (O) Rshunt (O)

1.66 1.00 20.96 0.71 15.1 62.8 25 517
1.70 1.03 20.43 0.68 14.4 86.6 32 335
1.74 0.99 17.61 0.64 11.1 120 13 734

Materials Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
A

ug
us

t 2
02

1.
 D

ow
nl

oa
de

d 
on

 1
0/

28
/2

02
5 

6:
46

:2
9 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1ma00432h


© 2021 The Author(s). Published by the Royal Society of Chemistry Mater. Adv., 2021, 2, 6344–6355 |  6349

content causes more charge recombination at the interfaces,
which also justifies the decrease of the fill factor (FF) values.61

Although the highest PCE of this set was attained with the
1.66 eV bandgap perovskite, the higher Voc and Rshunt with the
1.70 eV perovskite motivated a subsequent study focused in
the improvement of the 1.70 eV PSCs, in view of their promising
application for tandem solar cells due to the suitable
bandgap value.

2.2.2 Optimization of WBG perovskite solar cells with EG =
1.7 eV absorber. We proceed with further optimization of
the wide-bandgap (1.70 eV) PSCs with the FTO/TiO2/
Cs0.17FA0.83PbI3�xBrx/CuSCN/Au configuration, where x = 0.8.
The device fabrication procedure was fine tuned mainly in the
UV treatment time applied on the ETL, substrate preheating
prior to perovskite deposition, antisolvent washing and
application parameters (volume, spin-coating speed) during
perovskite crystallization, as well as perovskite layer annealing
conditions. Consequently, we attained the highest solar cell
efficiency (PCE = 16.4%) of this study, presented in Table 3,
employing the optimized fabrication parameters indicated in
Table S1 (ESI†). As shown further below, such optimized
process also allowed a noteworthy reproducibility and stability
without any encapsulation.

In Fig. 6, the cross-sectional SEM shows that the perovskite
layer thickness is in the 560–600 nm range, exhibiting some
defects in the layer bulk and at both interfaces with the ETL
and HTL. This reveals that there is still room for improvement
in order to further increase the performance, and reach that of

Table 3 Solar cell parameters of the best performing WBG (1.70 eV) PSC

Best
results: Eg (eV) Voc (V) Jsc (mA cm�2) FF PCE (%)

Rseries

(O)
Rshunt

(O)

1.70 1.08 21.0 0.72 16.4 73.2 25 244

Fig. 6 Cross-sectional SEM-FIB image of FTO/TiO2/(CsI)0.17(FAI)0.83(P-
bI2)0.6(PbBr2)0.4/CuSCN/Au solar cell.

Fig. 7 J–V characteristic under AM 1.5 illumination (a), and EQE spectrum (b) of the best performing WBG (1.70 eV) PSC, which presents remarkable stability
up to 4500 hours (c) even without any cell encapsulation. (d) Distribution and statistical analysis of the solar cell parameters of over 100 fabricated cells.
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state-of-the-art cells produced in a controlled glovebox environ-
ment. Moreover, the dark I–V characteristic (Fig. S5, ESI†)
shows a high leakage current in reverse bias, causing a worse
diode character, and thus reduced efficiency, compared to the
record literature values with similar WBG–PSC structures.
This also contributes to the commonly observed hysteresis
effect of PSCs, shown in Fig. S6 of ESI,† attributed to the
mobile ions/ion-vacancies in the perovskite material which
cause a pronounced dependence of the cell JV characteristic
with the scan direction.

As referred before, Wang et al.31 described a ‘‘turbid point
(TP)’’ observed during the perovskite layer deposition when the
transparent perovskite film becomes turbid during the spin
coating, and this point is dependent on the humidity levels of
the ambient air. In our work, the most efficient PSC was
achieved by preheating the substrates and applying antisolvent
(chlorobenzene, CB) dripping 1–2 seconds before the turbid
point, as well as by using warm antisolvent to help the solvent
evaporation process and removal of oxygen and water. When
the perovskite layers were deposited in r50% RH, compatible
with Wang’s observations, the turbid point appears sooner, and
as a result, a thinner layer grows. We also applied the CB
washing placing the pipette tip very close (less than 5 mm) to
the substrate, and noticed a significant enhancement on the
perovskite layer formation. This impact can be attributed to
speeding up the evaporation process, hence promoting better
layer crystallization. Fig. S7 in ESI† shows the effects of key
fabrication steps in the resulting JV curves of the PSCs, whose
optimization essentially allows minimizing the defect density
in the perovskite layer and, thereby, improving the devices’
performance. All in all, this study reinforces Wang’s humidity
insensitive antisolvent method, providing further understanding
of the process of PSCs fabrication in humid ambient air.

To confirm the PSCs reproducibility, we fabricated more
than 100 solar cells with WBG perovskite layers in the FTO/
compact-TiO2/meso-TiO2/(CsI)0.17(FAI)0.83(PbI2)0.6(PbBr2)0.4/CuSCN/
Au configuration, and under B70% RH ambient conditions.
The J–V characteristics and external quantum efficiency (EQE)
measurements of the best performing cell are shown in Fig. 7a
and b. The integrated current density values derived from the EQE
spectra match that of the J–V characteristics acquired with the
solar simulator. Remarkably, without any encapsulation the best
performing solar cell kept more than 80% of its initial efficiency
for more than 3500 hours, and almost 70% after 4500 hours,
which is shown in Fig. 7c.

In Fig. 7d, the solar cell parameters of the EG = 1.7 eV PSCs
are displayed over 100 fabricated devices. The main noteworthy
aspect is that, although the humidity and temperature
conditions in the laboratory are not controlled, the optimized
process developed in this work allows highly reproducible cells
with high efficiency values. The average of the Voc, Jsc, FF
and PCE values are 1.05 V, 19.9 mA cm�2, 0.70 and 14.4%,
respectively. These results are among the best attained up to
now in the PSCs’ field, namely in comparison with the previous
reported advances attained with un-encapsulated WBG PSCs
fabricated in ambient humidity conditions.62,63

3. Conclusions

We present a low-cost glovebox-free procedure to contrive WBG
PSCs, whose optical bandgap values were tuned between 1.66 to
1.74 eV by changing the Br content in the perovskite structure.
Here, the wrinkled morphology of the surface deteriorated the
interface properties, and thus caused relatively lower efficiency
for higher Br:I ratio. The perovskite layer with 1.70 eV bandgap
was selected for further optimization due to its potential
application in tandem devices. A large set of mixed-cation
mixed-halide WBG PSCs with FTO/compact-TiO2/meso-TiO2/
(CsI)0.17(FAI)0.83(PbI2)0.6(PbBr2)0.4/CuSCN/Au configuration were
fabricated, in which a record cell is reported with the best
efficiency (16.4%) attained thus far for ambient-processed
WBG PSCs. In addition, this cell presents a remarkable stability,
maintaining 80% of the initial efficiency for 3500 hours, and
70% up to 4500 hours. These outcomes reveal that it is possible
to reproducibly fabricate high-performing and stable WBG PSCs
without a controlled glovebox environment, and employing
inexpensive charge transport materials such as the one used
here (CuSCN) which is much cheaper than the conventional
organic-based HTLs. This was attained via a humidity-insensitive
antisolvent method, in which it was found crucial to preheat the
substrate before the perovskite deposition, as well as to preheat
the antisolvent and apply the antisolvent washing from a very
close tip-sample distance, which enhances the evaporation and
crystallization process of the perovskite film by reducing the
moisture effects.

In addition to the set of morphological, structural and
optoelectronic characterization techniques employed in this
work, further insight into the role of the resulting bulk and
interfaces’ properties on the PSCs’ transport mechanisms can
be gained via electrochemical impedance/admittance analysis,
which can also probe and provide a better understanding of the
charge distribution and transfer within the PSC structure,
including ion migration and, thus, hysteresis effects, as
discussed in related works.38,64–68

Lastly, the main avenues that should be explored for further
advances are the extended optimization of the absorber layer
with wider (up to B2 eV) bandgap values, in view of application
in tandem devices with silicon and low bandgap PSCs.
Additionally, the implementation of photonic structures in
the PSCs should be pursued, not only as a means to increase
the photocurrent generation (and thereby the PCE) via light
capturing and trapping,69 but also to improve the devices’
stability against UV70,71 and water72 penetration as demon-
strated in recent contributions.

Experimental methods
Materials

All chemical reagents used in this study were purchased from
commercial vendors. Formamidinium iodide (FAI) (Sigma
Aldrich), lead iodide (PbI2) (Sigma Aldrich), ceasium iodide
(CsI) (Acros Organics), lead bromide (PbBr2) (Sigma Aldrich),
titanium IV-isopropoxide (TTIP) (Sigma Aldrich), titanium
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dioxide (TiO2) paste (Sigma Aldrich), copper(I) thiocyanate
(CuSCN) (Alfa Aeasar), diethyl sulfide (DES) (Sigma Aldrich),
dimethylformamide (DMF) (Fisher Chemical), dimethyl
sulfoxide (DMSO) (Panreac), chlorobenzene (CB) (Alfa Aeasar)
were used without further purification.

Substrate preparation and ETL layer deposition

The wide-bandgap perovskite solar cells were fabricated with
mesoscopic structure: Glass/FTO/TiO2/Cs0.17FA0.83PbI3�xBrx/
CuSCN/Au. All the preparations and layer depositions were
performed in ambient air with RH 4 70%.

FTO-coated glasses (13 O sq�1, 82–84.5% of transmittance)
were cut into 2 � 2 cm, then a 2 mm stripe of the FTO layer was
etched with zinc powder and HCl solution, and afterwards
cleaned by sonication with Hellmanex II, water, acetone,
isopropanol alcohol and an additional step of UV-O3 treatment
to remove the organic compounds right before the deposition
of the electron transport layer (ETL).

The first deposited layer of the solar cell is a very thin
compact TiO2 film. The solution is prepared by a two-step
method. Firstly, 180 ml of TTIP was added to 1.25 ml of absolute
ethanol and placed onto a stirrer, and then 1.25 ml of absolute
ethanol with 18 ml of HCL was added to the main solution.
The compact TiO2 layers were deposited by spin coating
for 35 seconds at 4000 rpm. After the spin coating, the layers
were dried at 100 1C for 10 minutes, and then sintered
in a furnace at 500 1C in ambient air. After the samples cool
down to room temperature, another UV-O3 treatment was
applied for 15 minutes before the mesoporous TiO2 layer
deposition. For this layer, 120 mg of titania paste was dissolved
in 1 ml absolute ethanol and deposited by spin coating for
20 seconds at 4000 rpm, followed by a drying step at 120 1C
for 10 minutes and sintering at 450 1C for 30 minutes in
ambient air.

Perovskite solutions and deposition

The perovskite precursor solutions were prepared with the
composition of (CsI)0.17(FAI)0.83(PbI2)1�0.5x(PbBr2)0.5x using
different bromide content by dissolving CsI (88.9 mg), FAI
(285 mg) and PbI2, PbBr2 in 1 ml mixture of DMF and DMSO
(with a volume ratio of 9 : 1). For the bandgap variation, x
was chosen as 0.6, 0.8 and 1 during the precursor solution
preparation. The precursor solutions were stirred at 70 1C until
they reach a bright yellow colour. The solutions were filtered by
a PTFE filter and the substrates coated with the ETL were
heated up to 70 1C right before the deposition. The perovskite
layer was deposited via a single-step deposition method with
two different spin rates: 1000 rpm for 10 seconds and then
increases to followed by an increase to 5000 rpm for a 20 seconds
spin. Chlorobenzene was poured during the spinning at the
higher spin rate to remove the solvents of the perovskite solution
and improve crystallization. Soon after the deposition of the
perovskite layer, the samples are annealed at 110 1C for 20 minutes
on a hot plate covered by a Petri dish. As soon as the annealing
process starts the layers turn to dark brown color from a light
yellow one.

Hole transport layer and metal contact deposition

Following the perovskite layer deposition, CuSCN (copper(I)
thiocyanate) was used as the hole transport material. Dissolving
in diethyl sulfide, the solution was prepared as 0.3 M, filtered
by a 0.45 mm filter and deposited by spin coating for 20 s
at 4000 rpm, followed by 5 minute annealing applied at 90 1C to
evaporate the HTL solvent to avoid the deterioration of
the perovskite layer. The gold back contacts were deposited
by e-beam evaporation under high vacuum at a low deposition
rate. The cells were produced with an active area of 0.10 cm2.

Characterization techniques

The optical transmission measurements were performed by UV-
Vis-NIR spectrophotometry (PerkinElmer Lambda 950) in 300–
800 nm wavelength range. Steady-state photoluminescence (PL)
was measured by a PerkinElmer LS55, with an excitation at
400 nm. Scanning Electron Microscopy (SEM) surface images
were acquired by a TM3030 Plus Hitachi for lower and a Hitachi
Regulus 8220 for higher magnification observations, and the
corresponding grain size analysis was performed via ImageJ
software. For the cross-sectional imaging, a Carl Zeiss AURIGA
Cross Beam SEM work station was used. Surface topography
Atomic Force Microscopy (AFM) images were obtained by
an Asylum Research MFP-3D Standalone system using
commercially available silicon AFM probes (Olympus AC160TS,
f0 = 300 kHz, k = 26 N m�1). The X-ray diffraction (XRD) patterns
were collected on a PANalytical XPert Pro X-ray powder diffracto-
meter using Cu-Ka radiation (l = 1.54050 Å). The J–V measure-
ments were performed with Newport’s Oriels VeraSol LSH-7520
LED-based Solar Simulator (100 mW cm�2) under AM 1.5
conditions, calibrated by a crystalline silicon reference cell
(from VLSI Standards Inc.), in ambient conditions. A Keithley
2500 power source was used to apply voltages and collect current
from the devices. The Quantum Efficiency measurements of the
solar cells were carried out by Newport’s QUANTX-300 system.
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