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Scalable Gaussian processes for predicting the
optical, physical, thermal, and mechanical
properties of inorganic glasses with large
datasets†

Suresh Bishnoi,a R. Ravinder,a Hargun Singh Grover,a Hariprasad Kodamana*b and
N. M. Anoop Krishnan *ac

Among machine learning approaches, Gaussian process regression (GPR) is an extremely useful technique to

predict composition–property relationships in glasses. The GPR’s main advantage over other machine learning

methods is its inherent ability to provide the standard deviation of the predictions. However, the method

remains restricted to small datasets due to the substantial computational cost associated with it. Herein, using

a scalable GPR algorithm, namely, kernel interpolation for scalable structured Gaussian processes (KISS-GP)

along with massively scalable GP (MSGP), we develop composition–property models for inorganic glasses.

The models are based on a large dataset with more than 100 000 glass compositions, 37 components, and

nine crucial properties: density, Young’s, shear, bulk moduli, thermal expansion coefficient, Vickers’ hardness,

refractive index, glass transition temperature, and liquidus temperature. We show that the models developed

here are superior to the state-of-the-art machine learning models. We also demonstrate that the GPR

models can reasonably capture the underlying composition-dependent physics, even in the regions where

there are very few training data. Finally, to accelerate glass design, the models developed here are shared

publicly as part of a package, namely, Python for Glass Genomics (PyGGi, see: http://pyggi.iitd.ac.in).

Introduction

Despite the discovery of over 200 000 glass compositions, the
knowledge of composition–property relationships remains
restricted to a few selected compositions.1,2 Development of
reliable composition–property maps for a large class of glass
components is the bottleneck impeding the design of new glass
compositions. Machine learning (ML) methods3–8 have been used
to predict properties such as Young’s modulus,9,10 liquidus
temperature,11 solubility,12 glass transition temperature,4,13 dis-
solution kinetics,5,14–16 and other properties.17,18 Most of these
works employ traditional glass compositions as descriptors, while
some other works employ physics-based descriptors.14,19,20 A recent
work developed deep learning models to predict composition–
property maps of inorganic glasses with 37 input components and
eight properties, largest thus far.21 However, most of these

studies employ deterministic models in predictions such as
neural networks (NN), random forest, or simple regression
models. These models cannot provide any information about
the reliability of the predictions for any new test data.

Since the ML methods are primarily data-driven predictions,
the model’s reliability is highly dependent on the available
data. To this extent, Gaussian process regression (GPR),22 a
nonparametric ML model, presents an excellent candidate. GPR
employs a probabilistic approach which makes the inference on
new data by learning the underlying distribution (mean and
covariance) of the available data.22 Note that various problems
in mechanics and materials science employ a probabilistic frame-
work (including GPR and Bayesian inference) to estimate material
parameters.9,23–27 It has been shown that for small datasets, GPR
models are more suitable in comparison to NN models for
providing accurate composition–property predictions along with
its confidence intervals in oxide glasses.9 However, for large
datasets available in materials science, training the conventional

GPR, which has Oðn3Þ time and Oðn3Þ space complexity for a
dataset of size n, is computationally prohibitive.

Herein, using scalable GPR algorithms, namely, kernel inter-
polation for scalable structured Gaussian processes (KISS-GP)28

and massively scalable Gaussian processes (MSGP),29 we address

a Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas,

New Delhi 110016, India. E-mail: krishnan@iitd.ac.in
b Department of Chemical Engineering, Indian Institute of Technology Delhi,

Hauz Khas, New Delhi 110016, India. E-mail: kodamana@iitd.ac.in
c Department of Materials Science and Engineering, Indian Institute of Technology

Delhi, Hauz Khas, New Delhi 110016, India

† Electronic supplementary information (ESI) available. See DOI: 10.1039/
d0ma00764a

Received 5th October 2020,
Accepted 15th December 2020

DOI: 10.1039/d0ma00764a

rsc.li/materials-advances

Materials
Advances

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
D

ec
em

be
r 

20
20

. D
ow

nl
oa

de
d 

on
 1

0/
18

/2
02

4 
10

:0
8:

12
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue

http://orcid.org/0000-0003-1500-4947
http://pyggi.iitd.ac.in
http://crossmark.crossref.org/dialog/?doi=10.1039/d0ma00764a&domain=pdf&date_stamp=2020-12-22
http://rsc.li/materials-advances
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0ma00764a
https://pubs.rsc.org/en/journals/journal/MA
https://pubs.rsc.org/en/journals/journal/MA?issueid=MA002001


478 | Mater. Adv., 2021, 2, 477--487 ©2021 The Author(s). Published by the Royal Society of Chemistry

the challenge of developing reliable GPR models for predicting
nine relevant properties of functional glasses: density, Young’s,
shear, and bulk moduli, thermal expansion coefficient (TEC),
Vickers’ hardness, refractive index, glass transition temperature
(Tg), and liquidus temperature. The models are developed based
on a large dataset with more than 100 000 glasses and 37 compo-
nents. These are the largest models developed to predict com-
position–property relationships in inorganic glasses. We show
that KISS-GP, along with MSGP, provides rigorous models for
large datasets superior to the state-of-the-art deep neural net-
work (DNN) models.21 Further, the models provide estimates of
the uncertainty associated with the predictions, making these
models more reliable and robust compared to DNN models.
Overall, we show that the methodology presented here can be
used for developing GPR models for problems with large training
datasets. Finally, the models developed here are made available
as part of a software package designed for accelerating glass
discovery, namely, Python for Glass Genomics (PyGGi, see: http://
pyggi.iitd.ac.in).

Methodology
Dataset preparation

The raw dataset consisting of nine properties, namely, density,
Young’s modulus, bulk modulus, shear modulus, Vickers’
hardness, glass transition temperature, liquidus temperature,
thermal expansion coefficient, and refractive index of inorganic
glasses are obtained from the literature and commercial data-
bases such as INTERGLAD Ver. 7. Here, we follow a rigorous
dataset preparation employed earlier to develop deep learning
models for glass property models.21 The steps involved in the
methodology are as follows. (i) Remove duplicate entries from
the raw dataset—the duplicate entries are first identified in
terms of the input components. For the duplicate entries, the
mean value of the output property is computed. If all the output
values for a given composition with duplicate entries are within
�2.5%, the output is replaced with the mean value. Further, the
points beyond �2.5% are removed as an outlier. Similarly,
the outliers in the extreme values are removed by considering
the standard deviation of the properties. Specifically, data
points lying beyond �3s are considered as outliers and
removed. (ii) Check if the components add up to 100%—after
removing the duplicates and outliers, check if all the composi-
tions add up to 100% with respect to the input components.
The components that do not add up are removed. (iii) Use LAR
to select to reduce dimensionality—the raw dataset consists of
glass compositions with approximately 270 components. How-
ever, many of these components out of the 270 are present in a
few glass compositions only. Such a sparse dataset may lead to
a poorly trained model, as enough representative samples may
not be present in the training and test set. To overcome this
challenge, we employ the least angle regression (LAR) for
dimensionality reduction. In particular, the input parameters
(that is, glass components) are chosen based on the dataset’s
covariance, thereby drastically reducing the glass components,

while still preserving a proper training set for accurate predic-
tions (see ESI† for details). (iv) Select the relevant components
from LARS—after performing LAR, a threshold in terms of the
number of components is chosen until which the model
exhibits a notable increase in R2. The input components
beyond the threshold are ignored. Further, the glass composi-
tions having those input components are also removed.
(v) Check if components add up to 100%—finally, recheck if
the sum of the input components in each of the final composi-
tions add up to 100%. Only those compositions, for which the
sum adds up to 100 � 0.1%, are selected. The final number of
glasses consists of oxide components ranging from 32 to 37.
The frequency of glasses corresponding to each of the compo-
nents is provided in the ESI.† The final dataset consists of 37
components, namely, SiO2, B2O3, Al2O3, MgO, CaO, BaO, Li2O,
Na2O, K2O, Ag2O, Cs2O, Ti2O, BeO, NiO, CuO, ZnO, CdO, PbO,
Ga2O3, Y2O3, La2O3, Gd2O3, Bi2O3, TiO2, ZrO2, TeO2, P2O5, V2O5,
Nb2O5, Ta2O5, MoO3, WO3, H2O, Sm2O3, MgF2, PbF2, and PbCl2,
and nine properties, namely, density, Young’s, shear, and
bulk moduli, TEC, Vickers’ hardness, refractive index, Tg,
and liquidus temperature.

Gaussian process regression (GPR)

Gaussian processes (GPs) are models that are capable of
modeling datasets in a probabilistic framework. The main
advantages of GP models are: (i) its unique ability to model
any complex data sets; (ii) estimate the uncertainty associated
predictions through posterior variances computations. A GP is
a joint distribution of any finite set of random variables that
follow Gaussian distributions. As a result, the GPR modeling
framework tries to ascribe a distribution over a given set of
input (x) and output datasets (y).22 A mean function m(x) and a
covariance function k(x,x0), the two degrees of freedoms that are
needed to characterize a GPR fully, are as shown below.

y = f (x) +e; where e B N(0, se
2), and f B GP(m(x), k(x,x0))

(1)

while the mean function m(x) computes the expected values of
output for a given input, the covariance function captures the
extent of correlation between function outputs for the given set
of inputs as

k(x, x0) = E[f (x) � m(x), f (x0) � m(x0)] (2)

In the GP literature, k(x,x0) is also termed as the kernel
function of the GP. A widely used rationale for the selection of
kernel function is that the correlation between any points
decreases with an increase in the distance between them. Some
popular kernels in the GP literature are

1: Exponential kernel: k x; x0ð Þ ¼ exp
x� x0j j

l
(3)

2: Squared exponential kernel: k x; x0ð Þ

¼ sf2 exp �
1

2

x� x0

l

� �2
" #

(4)
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where l is termed as the length-scale parameter and sf
2 is

termed as the signal variance parameter. In a GPR model, these
hyper-parameters can be tuned to model datasets that have an
arbitrary correlation. Also, the function f B GP(m(x), k(x,x0))
is often mean-centered for relaxing the computational
complexity.

Suppose we have a set of test inputs X* for which we are
interested in computing the output predictions. This would
warrant sampling as a set of f* 9 [f (x1*),. . .,f (xn*)], such that
f* = N(0, K(X*, X*)) with the mean and covariance as

m xð Þ ¼ 0; K X�;X�ð Þ ¼
k x�1; x

�
1

� �
� � � k x�1; x

�
n

� �
..
. . .

. ..
.

k x�n; x
�
1

� �
� � � k x�n; x

�
n

� �
2
64

3
75 (5)

By the definition of GP, the new and the previous outputs
follow a joint Gaussian distribution as

y
f�

� �
� N 0;

K X;Xð Þ þ s2e I K X;X�ð Þ
K X�;Xð Þ K X�;X�ð Þ

� �
(6)

where, K(X,X) is the covariance matrix between all observed
inputs, K(X*,X*) is the covariance matrix between the newly
introduced inputs, K(X*,X) is the covariance matrix between the
new inputs and the observed inputs and K(X,X*) is the covariance
matrix between the observed points and the new inputs, and I is
the identity matrix. Now, applying the principles of conditionals,
p(f*|y) can be shown to follow a Normal distribution with:

Mean(f*) = K(X*,X)(K(X,X) + se
2I)�1y (7)

Covariance(f*) = K(X*,X*) � K(X*,X)(K(X,X) + se
2I)�1K(X,X*)

(8)

Eqn (7) and (8) are employed to make new predictions using
the GPR. It should be noted that the experimental values itself
may contain errors, which may not be normally distributed. For
example, the errors in the liquidus temperature may predomi-
nantly be in one direction due to the kinetics involved with
crystallization at temperatures below the liquidus temperature.
The present model does not take into account such variations,
and the noise in the experimental values is modeled as a
normal distribution.

Kernel interpolation for scalable structured Gaussian processes
(KISS-GP)

The kernel of GP implicitly depends on the kernel hyperpara-
meters, such as the length-scale, signal variance, and noise
variance (collectively denoted as y), which are unknown and are
inferred from the data. The fully Bayesian posterior inference of
y is non-trivial and often intractable. Hence, to avoid complexity,
the standard practice is to obtain point estimates of y by
maximizing the marginal log-likelihood as

log p(y|y)m � [yT(Ky + s2I)�1y + log|Ky + s2I] (9)

However, evaluation of (Ky + s2I)�1y and Ky + s2I require
O(n3) and O(n2) operations, respectively.

Approaches like the subset of regressors (SoR)30 and fully
independent training conditional (FITC)31 are the traditional
approaches that are used to scale the GP inference. Recently,
Wilson et al.28 introduced a structured kernel interpolation
(SKI) framework, which generalizes point estimate methods
such as FITC and SoR for scalable GP inference. For instance,
the kernel in the SoR approach, kSOR, is computed as

kSOR(x,x0) = kxUKUU
�1KUxT (10)

where, kxU (size 1� n), KUU
�1 (size m�m), KUxT (size n� 1)are

covariance matrices generated from the exact kernel k(x,x0) for a
set of m inducing points [u1,. . .,um]. Under the SKI framework,
the exact kernel is replaced with an approximate kernel for fast
computation by modifying kSOR considering kxU E WKUU, where
W is an n � m matrix of interpolation, which is too sparse.
Therefore eqn (10) can be rewritten as

kSOR(x,x0) E KxUKUU
�1KUxT c WKUUKUU

�1KUUWT

= WKUUWT = KSKI (11)

This general approach to approximating GP kernel functions
is the basic framework of SKI,40 which in turn reduces the
computation expense considerably, up to O(n).

Massively scalable Gaussian process (MSGP)

While KISS-GP makes learning faster up to O(n), test predictions
computational complexity is the same as in the traditional GP.
Wilson et al.29 introduced MSGP, which extends KISS-GP to:
(i) make test predictions significantly faster up to O(1), (ii) scale
marginal likelihood evaluations without requiring any grid
structure, and (iii) project input data to lower dimensional space
to avoid the curse of dimensionality. In MSGP predictions, the
predictive mean is computed as

Mean(f*) E W*K(U,U)WT(K(X,X) + se
2I)�1y (12)

This is done by approximating K(X*,X) employing SKI as
given by eqn (11).36 Here, we have to pay attention to the fact
that the term K(U,U)WT(K(X,X) + se

2I)�1y is pre-computed during
training reducing the cost of online computations to O(1). In
similar lines, predictive covariance is computed as

Covariance(f*) E diag(K(X*,X*)) � diag({K(X*,X)(K(X,X)

+ se
2I)�1K(X,X*)}) (13)

The diagonal operator in eqn (13) is the consequence of the
fact the kernel matrices are highly sparse in the non-diagonal
directions. Covariance computations in eqn (13) can be further
simplified utilizing SKI as follows

Covariance(f*) E diag(K(X*,X*)) � W*diag({K(U,X)(K(X,X)

+ se
2I)�1K(X,U)}) (14)

Here, the term diag(K(U,X)(K(X,X) +se
2I)�1K(X,U)) can also be

pre-computed,36 leading to the overall computational cost of
evaluating the predictions reducing to O(1).
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Model training and hyperparametric optimization

The model training for GPR was carried out using the
GPytorch32 python library. In order to train the GPR model,
the dataset is 60 : 20 : 20 as training, validation, and test set. The
test set was maintained as the holdout set and was used only at
the end to test the model performance. Thus, the model
selection was carried out using the training and validation
set. Fivefold cross validation was employed for the training
and validation set to avoid overfitting. Finally, for each of the
folds, the GPR model was trained for 100 random states.
Finally, the best GPR model was chosen after the cross-
validation considering the following points: (i) training loss is
minimum, (ii) training R2 should be comparable to validation
R2. Further, hyperparametric optimization was carried out by
varying (i) learning rate, (ii) weight decay, and (iii) considering

various kernel functions. We observed that the radial basis
functions provided the best predictions. Hence, this kernel
function was implemented for all the properties.

Results and discussions

Fig. 1 shows the distribution of the nine properties in the
processed dataset used for training the GPR models. We
observe that all the properties in the dataset are distributed
over a wide range, most of them spanning over an order of
magnitude. Note that an exhaustive dataset cleaning and pre-
paration were performed on the raw dataset (see Methods and
ref. 21). Precisely, the final dataset consists of 37 components,
namely, SiO2, B2O3, Al2O3, MgO, CaO, BaO, Li2O, Na2O, K2O,
Ag2O, Cs2O, Ti2O, BeO, NiO, CuO, ZnO, CdO, PbO, Ga2O3, Y2O3,

Fig. 1 Dataset visualization. Distribution of the properties, namely, (a) bulk modulus, (b) shear modulus, (c) Young’s modulus, (d) density, (e) liquidus
temperature, (f) refractive index, (g) thermal expansion coefficient (TEC), (h) glass transition temperature (Tg) and (i) hardness, in the glass dataset used for
training the GPR model.
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La2O3, Gd2O3, Bi2O3, TiO2, ZrO2, TeO2, P2O5, V2O5, Nb2O5,
Ta2O5, MoO3, WO3, H2O, Sm2O3, MgF2, PbF2, and PbCl2, and
nine properties, namely, density, Young’s, shear, and bulk
moduli, TEC, Vickers’ hardness, refractive index, Tg, and liquidus
temperature. These represent the most extensive composition–
property models developed in the glass science literature cover-
ing most of the human-made glass compositions.21 Further
details on the dataset, including the distribution of the glass
compositions with respect to number components and for each
of the input components, are provided in the ESI† (see Fig. S1
and S2).

We train this dataset employing KISS-GP (see Methods) with
hyperparametric tuning to develop optimized models. Note
that we use KISS-GP28 with Lanczos variance estimates
(LOVE),33 which significantly reduces the computational time

and storage complexity (see Methods). Further, the prediction
for high-dimensional data is carried out using MSGP. Due to
the O(1) nature of MSGP,29 computational resources associated
with the prediction are independent of the size of the data, thus
enabling faster predictions (see Methods for details). Fig. 2
shows the predicted values of density, Young’s, shear, and bulk
moduli, TEC, Vickers’ hardness, refractive index, Tg, and liquidus
temperature, in comparison to the measured experimental values
for the trained GPR model with KISS-GP and MSGP. Since there
are significant overlapping points, a heat map is used in Fig. 2,
wherein the respective coloring scheme represents the number of
points associated with each property per unit area. Note that only
the test set is plotted in the figure, although the R2 values
associated with the training and validation set is provided. The
inset related to each property shows the probability density of

Fig. 2 KISS-GP models for the prediction of properties. Predicted values of (a) bulk modulus, (b) shear modulus, (c) Young’s modulus, (d) density,
(e) liquidus temperature, (f) refractive index, (g) thermal expansion coefficient (TEC), (h) glass transition temperature (Tg) and (i) hardness using GPR with
respect to the experimental values. Due to a large number of overlapping points, the color scheme is used to represent the number of points per unit area
associated with each. INSET shows the error in the predicted values as a probability density function (PDF) with the shaded region representing the
90% confidence interval. Training, validation, and test R2 values are also provided separately.
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error in the prediction with a confidence interval of 90%. We
observe that the R2 values for all the properties are equal to or
greater than 0.8, suggesting a well-trained model. Further, the R2

values of the training, validation, and test set are comparable,
thereby confirming the goodness-of-fit of the model.

Now, we demonstrate the key attractive features of the
proposed GPR-based approach to provide the uncertainty asso-
ciated with the prediction. First, we analyze standard deviation
predicted by KISS-GP for the test dataset, that is, the dataset
unseen by the model. Fig. 3 shows the histogram of the absolute
values of standard deviations |s| corresponding to the predic-
tions for compositions in the test dataset. Note that the |s|
mentioned here is the standard deviation predicted by the KISS-
GP and not the error in the predictions. This procedure is
repeated for all the nine properties considered. We observe that
the distribution is unimodal, with a peak closer to zero in most

of the cases, which suggests that the models are reasonable with
the predictions for most of the data points in the test set
exhibiting high confidence. We also observe that the distribution
for some properties is notably broader than others—for example,
shear modulus, Young’s modulus, liquidus temperature, and
hardness. Specifically, hardness exhibits the maximum standard
deviation among all the properties suggesting lower reliability in
the predictions. Such decreased reliability for hardness could be
attributed to the spread in the dataset and also to the nature of
the property itself. Unlike other properties such as Young’s
modulus, hardness is not a material property and depends
highly on measurement techniques and conditions used.34–36

Thus, the final hardness model developed on the dataset with
higher noise exhibits a larger standard deviation.

Second, we analyze the contribution of each of the input
components in the glass composition toward the standard

Fig. 3 Histogram of the absolute value of standard deviations for the predictions on the test dataset by KISS-GP for (a) bulk modulus, (b) shear modulus,
(c) Young’s modulus, (d) density, (e) liquidus temperature, (f) refractive index, (g) thermal expansion coefficient (TEC), (h) glass transition temperature
(Tg) and (i) hardness.
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deviation in the prediction. To this extent, we select the glass
compositions having non-zero value for a given component in
the test dataset. For the selected compositions having the given
component, the standard deviations associated with the KISS-GP
predictions are computed. Then, the mean value of the standard
deviations obtained for all the predictions is computed for a
given component. For example, to compute the mean standard
deviation associated with SiO2 for Young’s modulus, all the glass
compositions having non-zero SiO2 values are selected from
Young’s modulus dataset. Then, the standard deviation associated
with the KISS-GP predictions for each of the compositions is
computed. The mean value of the standard deviations thus
obtained provides the mean standard deviation associated with
SiO2 for Young’s modulus. The procedure is repeated for all 37
components and nine properties.

Fig. 4 shows the mean value of the standard deviation for the
predictions of Young’s modulus corresponding to each of the
input components considered. We observe that there is a direct
correlation between the mean standard deviation and the
frequency of components in the dataset. Specifically, compo-
nents exhibiting high values of standard deviations are the
ones that have very few data points (see Fig. S1 in the ESI†). On
the contrary, the components that are present in many glasses,
such as SiO2, Na2O, Al2O3, and CaO, to name a few, exhibit low
standard deviation and spread in the prediction (see Fig. S1 in
the ESI†). Similar behavior is observed for other properties as
well (see Fig. S4 in the ESI†). This observation is in agreement
with the fact that the training for a particular input component
improves if there is enough data associated with that particular
component. Overall, the results suggest that the predictions for
components that are present in a larger number of glasses are
more reliable and vice versa. As such, the performance of the
model could be improved by increasing the number of glasses
corresponding to those components for which the data is at
present sparse. Note that the model doesn’t exhibit any trend in
terms of the accuracy of predictions with respect to the number
of components in the glass (see ESI†). That is, whether a glass
consists of two components or ten components, the predictive
accuracy of model is comparable.

Finally, to check whether the model can capture the underlying
physics, we focus on a binary sodium borate (NB) glass series, that

is, (Na2O)x�(B2O3)1�x. This glass series exhibit the well-known
boron anomaly,34,37–39 wherein the properties exhibit a highly
non-monotonic variation owing to the variable coordination of
boron (three to four) with increasing sodium content. Specifically,
most of the glass properties exhibit an inflection for sodium
content varying from 30% to 50%. Fig. 5 shows the nine properties
predicted for the binary NB glass with the 2s and 3s confidence
intervals, along with the experimental values. First of all, we
observe that the predictions exhibit a close match with the
experimental values for all the properties. Second, we observe that
the model exhibits a significantly lower standard deviation for the
domain where experimental data exist and a high standard
deviation for the regions where data is not available. This suggests
that the model exhibits increased reliability for interpolation,
while confidence decreases for extrapolation. Third, and most
interestingly, we observe that the model can capture the boron
anomaly for all the properties. Precisely, even for properties such
as shear modulus, Young’s modulus, refractive index, and hard-
ness, which have few points beyond the model, can capture the
non-monotonic behavior associated with the boron anomaly in
agreement with the theoretical models.

To test the generality, we choose a ternary glass composition
of sodium borosilicate, x(Na2O)�y(B2O3)�1 � x � y(SiO2). Fig. 6
shows the standard deviation of predicted values for the entire
range of the ternary using the trained KISS-GP model. The
mean values of the properties representing the best estimate of
the model for this ternary are provided in the ESI.† The
compositions corresponding to the measured values in the
original data (which may belong to training, validation, or test
set) are marked using the black squares. We observe that the
standard deviation in the predictions of compositions close to
the original dataset is significantly low. As the compositions are
farther away from the original dataset, the standard deviation
of the predicted value increases. This behavior is consistently
observed for all the properties (see Fig. 6). This is because, in
KISS-GP, the training is carried out by identifying the distribu-
tion that reduces the variance for a known data point (that is,
training data) to zero or at least very close to it. As such, when
the model is extrapolated to domains without any training data,
the inference becomes poor as represented by larger standard
deviation values. Nevertheless, we observe that the standard

Fig. 4 Mean standard deviation in the predictions of Young’s modulus for each of the components present in the glass compositions.
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deviation for most of the properties is relatively low, confirming
high confidence in the values predicted by the model. Overall,
we observe that KISS-GP allows the development of reliable
composition–property models, quantifying uncertainty in pre-
dictions when extrapolated over the entire compositional space.

Now, we compare the performance of the GPR models with
some of the state-of-the-art ML models.21 Table 1 shows the R2

values of KISS-GP in comparison to linear regression, XGBoost,
and DNN (see ref. 21 for details) on the test dataset. Note that
the dataset used for training all the models are the same.21

Further, only the test dataset R2 values are shown to have a fair
comparison of the models on the unseen dataset. In terms of
the R2 values of the overall dataset, GP performs better than all
other methods. We observe that for seven out of nine proper-
ties, KISS-GP outperforms all other methods, including DNN, in
terms of the R2 values of test data. The increase in the R2 for

some of these properties ranges from 3–5%, for example,
liquidus temperature, Young’s modulus, shear modulus, which
is a notable increase in the accuracy. These results confirm that
the predictions obtained from KISS-GP and MSGP are reliable
and superior to other state-of-the-art methods, as presented in
Table 1. Besides, the uncertainty quantification in KISS-GP and
MSGP-based property predictions is quite useful to interpret
the model validity in experimentally unexplored regimes of the
compositional space. This feature is severely lacking in the
other deterministic models. At this point, it should be noted
that although KISS-GP is able to capture the mean values of the
function correctly, the prediction of the standard deviation is
highly sensitive to the training process. This could be attributed
to the deep kernel layer (DKL) present in the KISS-GP frame-
work, which reduces the dimensionality of the input feature
while training the model. This is a disadvantage associated with

Fig. 5 Standard deviation with increasing boron percentage in sodium borate glasses of (a) bulk modulus, (b) shear modulus, (c) Young’s modulus,
(d) density, (e) liquidus temperature, (f) refractive index, (g) thermal expansion coefficient (TEC), (h) glass transition temperature (Tg) and (i) hardness.
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the KISS-GP in comparison to the classical GP, which can be
addressed to a reasonable extent by hyperparametric optimiza-
tion of the DKL and early stopping.

Conclusions

Altogether, employing KISS-GP and MSGP, we show that reli-
able composition–property models can be developed for large

datasets. These models for predicting density, Young’s, shear,
and bulk moduli, TEC, Vickers’ hardness, refractive index, Tg, and
liquidus temperature of inorganic glasses with up to 37 input
components, the largest so far, allows the exploration of a broad
compositional space that was hitherto unknown. In addition, the
KISS-GP models are able to capture the uncertainty associated with
the predictions when extrapolated beyond the training data. Further,
the KISS-GP models yield superior results when compared against
state-of-the-art methods such as XGBoost or DNN models. We show
the KISS-GP models are able to capture the underlying physics
without any explicit training, even for glass compositions and
properties with sparse data. Thus, the overall contribution of the
work is as follows: (i) development of reliable composition–property
models for nine glass properties, (ii) quantifying uncertainty in
prediction by employing scalable Gaussian process on a large glass
dataset, and finally, (iii) making the models available for the glass
community for accelerating glass design. The generic approach
presented here can be applied for developing composition–property
relationships of a wide range of materials involving extensive data
with detailed uncertainty quantifications. The models developed
here have been made available as part of a package, Python for
Glass Genomics (PyGGi, see: http://pyggi.iitd.ac.in).40

Fig. 6 The standard deviation for predicted values using KISS-GP. Standard deviation predicted by the trained GPR models of (a) bulk modulus, (b) shear
modulus, (c) Young’s modulus, (d) density, (e) liquidus temperature, (f) refractive index, (g) thermal expansion coefficient (TEC), (h) glass transition
temperature (Tg) and (i) hardness for sodium borosilicate glasses. Experimental compositions are marked using black squares.

Table 1 Comparison of the R2 values by KISS-GP with linear regression,
XGBoost, and deep neural networks (DNN)21 on the test dataset

Property
Linear
regression XGBoost DNN KISS-GP

Bulk modulus 0.75 0.87 0.89 0.90
Shear modulus 0.77 0.86 0.88 0.91
Young’s modulus 0.78 0.84 0.86 0.89
Density 0.92 0.95 0.95 0.96
Liquidus temperature 0.60 0.79 0.80 0.85
Refractive index 0.92 0.94 0.94 0.96
Thermal expansion coefficient 0.67 0.78 0.80 0.79
Glass transition temperature 0.79 0.88 0.90 0.92
Hardness 0.62 0.77 0.80 0.74
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