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Injectable hydrogels in stroke and spinal cord
injury treatment: a review on hydrogel materials,
cell-matrix interactions and glial involvement

Po Hen Lin,*®* Quanbin Dong** and Sing Yian Chew (2 *a¢

Central nervous system (CNS) pathologies, such as stroke and spinal cord injury, remain debilitating
issues due to the inhibitory environment in the CNS. Many research works have focused on combinatorial
therapeutic approaches, such as biomaterial scaffolding, cell transplantation and biomolecule delivery, in the
hope of effectively improving functional recovery in vivo. Unfortunately, to date, there is still no effective
treatment to regain mobility post-injury. In search of better therapeutic strategies, injectable hydrogels are
becoming a popular treatment option for CNS diseases due to their tuneable mechanical properties and the
minimally invasive nature of administration. Moreover, the ability to encapsulate exogenous cells and
therapeutic molecules while providing an environment that is permissive to cells and promote cell survival
incentivises the use of injectable hydrogels in CNS disease treatment. In this review, we will discuss the
advances that have been achieved in the recent decade in injectable hydrogel systems for tissue
regeneration after stroke and spinal cord injuries. In particular, we focus on the cellular response and tissue
integration related to these hydrogel systems. We hope to provide useful insights on materials choices for
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1. Introduction

Despite advances in medicine and technology, pathologies of the
central nervous system (CNS), such as stroke and spinal cord injury
(SCI), remain debilitating issues globally. Stroke is one of the main
causes of adult disability and the third leading cause of death
worldwide.! In the next decade, stroke will continue to increase the
burden on patients and society.> By 2030, approximately 3.4 million
Americans are expected to suffer from ischemic stroke, a prevalence
increment of 20.5% as compared to 2012.° In the case of SCI, it is
estimated that over 1 million people suffer from SCI in North
America. The lifetime costs for treatment and care range from $1.1
to $4.7 million USD per person, which aggregates a direct cost that
exceeds $7 billion per year in the United States alone.* To date, there
is still no effective treatment for CNS diseases. The inhibitory micro-
environment in the CNS makes it difficult for self-regeneration to
take place. Hence, in search for better therapeutic treatment options,
recent studies have focused on the introduction of tissue scaffolds
that mimic the extracellular matrix (ECM) to promote regeneration.>”
Correspondingly, a variety of scaffold materials in combination with
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future research work in injectable hydrogels for stroke and spinal cord regeneration.

various biological agents have been developed. These may include
exogenous cells, microRNAs and growth factors.® ™

Injectable hydrogels have become a popular scaffolding
treatment option for CNS diseases. The tunable mechanical
properties and the ability for minimally-invasive administration
make injectable hydrogels a more attractive option as compared
to other traditional scaffolding methods, which require surgical
procedures. While there have been many reviews on injectable
hydrogels for stroke and SCI treatments, most of them have
focused on the design strategies, particularly the physical and
chemical properties of various scaffold materials.>*'®2° In this
review, the advances of injectable hydrogels and cell transplanta-
tion for recovery in CNS diseases will be discussed, focusing on
the aspect of cellular response and tissue integration. We then
assess the suitability of hydrogel materials in different stages of
tissue regeneration in vitro and in vivo. We hope that this review
will aid the future selection of materials and the development of
injectable hydrogels for CNS disease treatment.

2. Disease pathogenesis and cellular
involvement
2.1. Stroke and SCI pathology

Stroke can be divided into haemorrhagic stroke and ischemic
stroke. Haemorrhagic stroke is caused by ruptured cerebral blood
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vessels or abnormal blood vessel structures, while ischemic
stroke is a result of interruption in blood supply to the brain.
Studies have shown that about 85% of stroke patients suffered
from ischemic stroke.>' Thus, in this review we will mainly
discuss studies related to ischemic stroke. Ischemic stroke is
mainly due to the blockage of blood vessels in the brain and the
inability of the body to establish reperfusion. Subsequent brain
damage stems from a complex series of pathological events,
such as depolarization, inflammation, and excitotoxicity. These
phenomena greatly impair the stability of the blood-brain
barrier and activate the release of free radicals and proteases,
which not only causes local neuronal cell death, but also further
expands the damage.?® Unlike the other organs and tissues, brain
tissues are very sensitive to ischemia. The core of the infarct is
usually immediately and irreversibly damaged and the related
nerve function is immediately lost. Soon after, the core boundary
expands to adjacent tissues, resulting in apoptosis and cell death
to the distal end of tissues due to vascular occlusion.*

The cause of SCI is commonly due to sudden mechanical
impact to the spinal cord parenchyma that results in fracture,
contusion, compression or laceration of spinal cord tissue.>
Following the initial impact on spinal cord tissue, the focal
destruction of neural tissue at the lesion triggers a sequence of
chronological events that eventually lead to the destruction of
neural tracts, also known as secondary injury. Within 15 min
post-injury, multiple hemorrhages are often seen in the grey
matters where re-perfusion does not usually occur within the
first 24 h.>* Following the initial injury, the loss of blood supply
and the lack of self-healing mechanism lead to vascular insult,
hemorrhages and ischemia which ultimately result in cell death
and necrotic tissues within 24-48 h post-trauma.>*?* The native
microenvironment of the spinal cord inhibits its ability for self-
recovery as axonal destruction results in filtration of glial cells
and other non-CNS cells to clear up the debris. The debris from
myelin and oligodendrocytes form the initial component of
glial scar to contain further damage, followed by migration and
proliferation of astrocytes that upregulate the production of glial
fibrillary acidic protein (GFAP) and form the bulk of non-
permissive scar.”® The clearing of debris and glial scarring form
a cystic cavity at the lesion which acts as a wall to prevent axonal
regrowth and neurite outgrowth.® Over time, continuous apopto-
sis of oligodendrocytes within the lesion leads to further demye-
lination of axons and Wallerian degeneration. This further creates
an environment that prevents axonal regrowth after SCL.>

Injuries in the CNS lead to tricky pathologies as self-regeneration
and recovery are discouraged in the native CNS microenvironment
and axonal regeneration and functional recovery does not occur
actively.”” Treatments in CNS injuries have focused on restoring
secondary injuries and providing structural support and extra-
cellular cues for cell ingrowth and tissue recovery.”® The use of
injectable hydrogel has become an appealing treatment option
due to the capability in providing mechanical support as well as
flexibility in shapes and material choices. In SCI, the lesion is
further complicated by glial scars formed by reactive astrocytes,
leading to further inhibitory barrier that prevents recovery. With
regard to the administration approaches, hydrogels could be
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implanted via open-wound surgery and injection in the SCI
model, but limited to the injection method in the stroke model.

2.2. The roles of glial cells in stroke and spinal cord injury
treatment and the potential of cell transplantation

Glial cells in the CNS, mainly astrocytes, microglia and oligo-
dendrocytes and their progenitors, support and enable effective
nervous system function. In the healthy CNS, glia aid in the
homeostasis of the microenvironment. While remaining rela-
tively inactive in the healthy state, glial cells act to increase
inflammatory actions and help modulate the environment in
the event of an infection or injury. These cells play crucial roles
in tissue regeneration after CNS pathology by regulating inflam-
mation and supporting neuronal growth.>

Reactive astrocytes limit the expansion of the lesion by
forming glial scar around the lesion and releasing neurotro-
phins through anti-excitatory toxicity, thereby providing
neuroprotection.*® The views on the effects of glial scar remain
controversial. Traditionally, the glial scar is believed to prevent
axonal regrowth.>’ However, recent studies have shown that, by
preventing glial scar formation, axonal regrowth is reduced in vivo,
thus suggesting the potential beneficial effects of astrocytes and
glial scarring in axonal regeneration.** Polarization of microglia
can be either pro-inflammatory, which produces cytotoxic factors
leading to inflammation and oligodendrocyte apoptosis by releas-
ing pro-inflammatory cytokines, or anti-inflammatory reactions
that produce trophic factors to promote axon regeneration.*>** In
the case of oligodendrocytes, despite the extensive neuronal cell
death after CNS injuries, activated oligodendrocyte progenitor cells
(OPCs) show significant proliferation and migration to replace lost
cells. The interaction with cytokines promotes OPC differentiation
into oligodendrocytes to replace dead oligodendrocytes in the
lesion and support axon regrowth.>*®

Neuron cell death and glial inflammation pose a major
challenge in tissue regeneration following CNS injuries. In this
regard, cell transplantation has become a popular therapeutic
option for the treatment of stroke and SCI due to the potential
of (1) directly replacing damaged cells in the lesion, (2) provid-
ing neuroprotection to the surviving neuro connective tissues,
and (3) providing a supportive cellular growth substrate for
axonal regrowth.’” However, cell transplantation commonly
faces major cell death, low cell migration and integration, as well
as limited directional guidance of axonal growth.”®*° In addition,
the potential safety risks associated with stem cell transplantation
require the development of rigorous protocols to ensure cell
homogeneity, quality assurance, and no tumorigenicity.*°

3. The roles of injectable hydrogels in
cellular response and tissue
regeneration in stroke and spinal cord
injury treatment

To overcome the challenges faced in tissue regeneration within
the CNS, combinations of scaffold materials and cellular and

© 2021 The Author(s). Published by the Royal Society of Chemistry
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molecular therapies have to be considered according to the type
and severity of the injury.>*' Injectable hydrogels are widely
used to treat pathologies in both hard and soft tissues due to
their resemblance to natural ECM structures and minimally-
invasive administration. Some common requirements for
injectable hydrogels include biocompatibility and non-
cytotoxicity. Depending on the types of tissues and application,
the rate of degradation, gelation time and mechanical proper-
ties of hydrogels need to be carefully considered.*” In hard
tissue applications, such as bones and cartilages, the mechan-
ical properties of hydrogels are one of the main considerations
due to the weight bearing nature of these tissues.*> However,
the good mechanical properties of hydrogels are difficult to
achieve, particularly up to the mega pascal range, without
modifications in functional groups or crosslinking which often
use cytotoxic agents that affect the cytocompatibility of the
hydrogels.** Instead, the viscoelastic nature of injectable hydro-
gels is more suitable for applications in soft tissues like skin,
cardiac tissues and neural tissues.*

Injectable hydrogels are viscoelastic materials that are able
to fill the irregularly-sized defects in the CNS injuries. They may
also facilitate tissue-implant integration and allow modulation
of the microenvironment to reduce scarring while promoting
regeneration.”>*° The use of hydrogels provides a more favor-
able environment by mimicking the natural ECM structure
and/or providing suitable stiffness that supports cell attach-
ment and functionality.>* The mechanical properties of hydro-
gels should be tuned to closely match the native CNS tissues,
which possess a mechanical stiffness of about 100 Pa to 1000 Pa
for both brain and spinal cord tissues,”> thus allowing
primary cell attachment and differentiation towards a neural
lineage. As hydrogels are crosslinked with high porosity, they
are ideal carriers for neuroprogenitor cells. The potential of
differentiating into functional neurons, astrocytes and oligo-
dendrocytes aids in modulation of the microenvironment at the
injury site.'®

Natural polymers are a popular choice of material for
injectable hydrogels due to their resemblance to the native
CNS tissues. Many contain intrinsic amino acids that can be
readily modified for cell adhesion.>* Some common materials
of choice include collagen, gelatin, hyaluronic acid (HA), chitosan,
alginate, agarose and methylcellulose.'®'®>*”° Such natural poly-
mers have their inherent advantages as they are typically the
components of the ECM, thus making them more biologically
active in stimulating cellular functions.”” For example, collagen is
known to improve cell migration,® HA is known to directly
activate intracellular signalling pathways via CD44 cell surface
receptors®® and chitosan is known for its antibacterial
properties.®” Combining the unique properties from various
natural polymers and their inherent characteristics, such as
biocompatibility, non-immunogenicity and non-toxicity, cells
and host tissues could potentially have a higher chance of survival
and proliferation in these hydrogels.®!

Self-assembling peptides (SAPs) are amino acid-based mole-
cules that undergo sol-gel transition at neutral pH and ionic
concentration to form ECM-like networks.®> ECM molecules,

© 2021 The Author(s). Published by the Royal Society of Chemistry
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growth factors and cells are also frequently incorporated to
enhance cell attachment, cell migration and tissue regeneration.®
The most suitable time for regeneration to take place post trau-
matic CNS injury is at the sub-acute stage, ie., 7-14 days post
injury. This is the period when the initial cascade of inflammation
starts to take place and the microenvironment is not too harsh for
implantation to take place.® A brief summary of the use of
injectable hydrogels in CNS disease treatment is shown in Fig. 1A.

3.1. Challenges and advances of injectable hydrogels

Injectable hydrogels are able to form scaffolds in situ and fill
irregular defects to aid in establishing tissue-implant integra-
tion. As injuries to the CNS are typically irregular in shapes, the
use of injectable hydrogels eliminates the needs for preform
scaffolds that require excising viable tissues to accommodate
implantation and reduces the risks of scaffold deformation and
compression.®>®> Scaffold compression may be unfavourable in
CNS treatment as it can significantly increase scaffold stiffness
beyond theYoung’s modulus of the CNS tissues.®® In addition,
when comparing to traditional scaffolding or nerve guides,
injectable hydrogels are typically highly porous with a high
proportion of water (>90%), making them ideal drugs and cell
carriers with a controllable diffusion rate by changing the
crosslinking density. A downside would be the high water
content that significantly increases the rate of diffusion of
hydrophilic drugs out of the hydrogel and could be problematic
if prolonged drug release is required.®” The in situ gelation
property of injectable hydrogels allows the release of molecules
in a controlled fashion and prevents drugs from being washed
away by the body fluids from the targeted regions.®® Lastly, as
direct cell transplantation often faced significant cell death,
injectable hydrogels are favorable in this context, since these
hydrogels can support the survival of exogenous stem cells by
allowing modification of scaffold stiffness, incorporation of cell
binding cues and inclusion of growth factors.®®”*

Advances in injectable hydrogels help to solve various
clinical challenges in CNS disease treatment. Specifically,
injectable hydrogels have received attention as carriers for
proteins and drugs. However, initial burst release of loaded
proteins and drugs can lead to undesired effects and ineffec-
tiveness of treatment and this has been one of the main
challenges for injectable hydrogels.””> Many approaches have
been developed to overcome this problem. For example, the
formation of complex networks via crosslinking to reduce the
burst release of incorporated proteins and drugs,”*”* “pendant
chain” system which delays the release by covalently grafting a
protein backbone to the hydrogels via a cleavable linker,”®
incorporation of proteins and drugs into micro- or nano-
particles to serve as a drug reservoir in the composite hydrogel
system,”® and incorporation of high-affinity ligands to prolong
drug release’” have all been reported. Other enhancements in
the hydrogel system were also developed to improve the biolo-
gical effects. In this respect, ligand-functionalization has been
extensively studied to enhance cell infiltration and binding
capabilities. Small oligopeptide sequences within the ECM
proteins such as RGD peptides were incorporated to enhance
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Fig. 1 (A) Administration of injectable hydrogel gelates into the lesion area. The ECM-mimicking network modulates the microenvironment and

promotes cell migration and differentiation in the lesion to restore nerve connection. (B) Possible cell behavior considerations of injectable hydrogels.

cell adhesion within the hydrogel.”® Furthermore, peptide

sequences like IKVAV and YIGSR are known to interact with
mammalian neurons. Correspondingly, the incorporation of these
sequences has been shown to enhance neural differentiation.”**°

3.2. Incorporation of exogenous cells in injectable hydrogels

Injectable hydrogels in combination with cell transplantation
have been studied extensively in recent years in the hope of
improving neural regeneration and functional recovery. Several
types of primary cells have been explored. These include neural
stem/progenitor cells (NSPCs), Schwann cells (SCs), olfactory-
ensheathing cells (OECs), mesenchymal stem cells (MSCs) and
human-derived induced pluripotent stem cells (iPSCs).>%%*®"
Among these cell types, NSPCs, MSCs and glial cells are the

2564 | Mater. Adv., 2021, 2, 2561-2583

common cell types to be incorporated within hydrogels for trans-
plantation treatments. In particular, NSPCs can not only differen-
tiate into mature neurons to replace lost cells, but also promote
endogenous repair, such as enhancing angiogenesis, providing
immunosuppression, and promoting recruitment of endogenous
cells.®*"®* MSCs, on the other hand, play a bigger role in contribut-
ing to the stimulation of angiogenesis and inhibition of microglial
activation by secreting cytokines (IGF-1, VEGF, EGF and FGF) to
reduce neuronal death. MSCs could also potentially differentiate
towards the neural lineage.*>*® Glial cell transplantation could also
be advantageous due to its potential to directly modulate the
environment and meditate myelin regeneration.®”

Despite the efforts from the past decades, there is no
effective CNS disease treatment that results in the restoration

© 2021 The Author(s). Published by the Royal Society of Chemistry
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of function. Here, we will look at the recent research studies on
injectable hydrogels, including the use of cell transplantation,
in the past decade. This ensures that the latest findings on
the use of injectable hydrogels are covered. The choices of
hydrogel materials will mainly be based on tissue and cellular
responses. A brief summary of possible design considerations
is shown in Fig. 1B.

3.3. Invitro cell viability

Cell transplantation to the CNS often faces the problem of low
cell survival rates. In this regard, in vitro cell culture studies
focusing on evaluating the roles of hydrogels in the regulation
of cellular responses have allowed the close examination of the
viability of various cell types when delivered within these
biomaterials. In particular, cell-matrix interactions are crucial
in modulating cellular homeostasis and directing communica-
tion to cell cytoskeleton, growth factor receptors and intracel-
lular signalling cascades to ensure cell survival.® Table 1
summarizes the in vitro studies on cell-incorporated injectable
hydrogels and their corresponding cell viability and differentia-
tion outcomes. Previous studies showed that mesenchymal and
neural stem cells have the potential to replace lost cells and
modulate inflammation and the local wound environment.*’
Both NSPCs and MSCs seem to be able to survive and prolifer-
ate well with proper cellular and physical cues. Most studies
have shown that these cells are able to survive in their respec-
tive hydrogels for more than 2 weeks,®¥*>%°°* guggesting
sufficient cell-matrix interactions between the incorporated
cells and the hydrogel substrates.

Many materials have been tested for cell survival and pro-
liferation in vitro. Among these, we noticed significant improve-
ment in cell proliferation in hyaluronan-, chondroitin sulfate-
and collagen-based materials.”>”"**%* The findings suggest
that natural polymers found abundantly in the body are more
suitable for inducing cell proliferation. We believe that the
CD44 interaction could be the reason for improvement in cell
viability. CD44 is a cell receptor found in various cell types,
including neural stem cells and glial cells in the CNS.>*"%°
Specifically, CD44 forms receptor-ligand interactions with
natural polymers including HA, chondroitin sulfate and
collagen.”®®® The activation of the CD44 ligand binding
domain allows binding of activator proteins that in turn
triggers downstream signalling pathways, such as the Ras-Raf-
MEK-ERK pathway, which leads to cell proliferation.’® While
studies on cell viability in vivo typically last for 4-8 weeks,
Rouleau and colleagues®® were able to maintain viable hiPSC-
derived neurons and glial cells in the silk fibroin hydrogel for
more than 2 years. However, given the fact that the silk fibroin
hydrogel showed minimal degradation and maintained its
hydrogel network over the long culture duration, such materials
may be less ideal for the regeneration and replacement by new
native tissues. Some studies only conduct in vitro experiments
for less than 7 days.'°”'°" It could be beneficial to conduct
in vitro experiments for a longer duration to ensure cell survival
and the differential potential in vivo, where the environment is
harsher.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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3.4. Invitro cell differentiation

Cell transplantation can modulate the diseased microenviron-
ment by enhancing cell differentiation. Cell differentiation is
crucial for the transplanted stem and progenitor cells to
differentiate into mature and functional cells. This allows
replacement of diseased tissues, promotes tissue regeneration
through the secretion of regenerative factors and provides
neuroprotection.'**'% While the effectiveness of cell transplan-
tation depends largely on the number of cells transplanted,
undifferentiated cells were shown to minimize cell death as
compared to fully differentiated transplanted cells.'®* Previous
work done by Payne and colleagues®* showed that the trans-
plantation of undifferentiated induced pluripotent stem cell-
derived neural stem cells (iPSC-NSCs) resulted in greater functional
repairs compared to late-differentiated cells which caused more
tissue damage due to greater cell death.

From Table 1, some of the studies demonstrated the ability
of injectable hydrogels to promote encapsulated cell differen-
tiation to express immature neuronal markers at short time
points'®>'%® and mature neural markers at longer time
points. The choice of hydrogel materials seems to be
critical in promoting the differentiation of encapsulated cells.
SAPs are able to facilitate the differentiation of cells to express
mature neuronal or oligodendrocyte markers without further
modification of materials.’”*® Natural materials, on the
other hand, often rely on additional modification to enhance
cell differentiation in vitro. For example, hyaluronic acid-
methylcellulose (HA-MC) alone did not enhance the differentia-
tion of NSPCs as compared to cells cultured in neurobasal
media.'®® Collagen-only hydrogels worsened the differentiation
potential of NSCs to neuronal lineage as compared to cells
cultured on poly-p-lysine (PDL)-coated coverslips.'®” In vitro cell
differentiation was enhanced when these natural polymers
were further modified with bioactive motifs (e.g. IKVAV, LRE
peptides) or incorporation of growth factors (e.g. PDGEF,
VEGF).'** ! We believe that, while injectable hydrogels made
of natural materials are better in promoting cell viability
in vitro, cell differentiation could be attributed to the presence
of bioactive peptide sequences. SAPs are shown to have greater
potential in promoting differentiation as they can be readily
modified to include bioactive peptide sequences. Natural
polymers, however, also achieved improved differentiation out-
comes after biomotif modification. Specifically, Silva and
colleagues''” compared the differentiation outcomes between
scaffolds containing the bioactive IKVAV sequence, a non-
bioactive sequence and a cell suspension with IKVAV soluble
peptide. The results demonstrated that physical entrapment of
bioactive epitope SAPs was the main reason for improvement in
cell differentiation. Moreover, the stiffness of the hydrogels
influences not only cell survival, but also the differentiation
fate of transplanted cells."™® For example, silk is a stiff material
by nature,® thus affecting the differentiation potential of
encapsulated neural stem cells. Although there are conflicting
reports on cell differentiation potential in silk fibroin hydrogels
invitro,”>"** the high intrinsic stiffness of silk could explain the
inconsistency in different studies and the low percentage of
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neural differentiation observed by Sun and colleagues. On the
other hand, Fan and colleagues'*® tested gelatin methacrylate
hydrogels (GelMA) of different stiffnesses using a compression
test. Specifically, three different stiffnesses of hydrogels were
tested, including soft (~ 680 Pa), medium (~ 1230 Pa) and hard
(~2030 Pa), and the group concluded significant improve-
ments in both in vitro cell viability and differentiation with
soft-GelMA gels. The measured stiffness of the soft hydrogel
matches the stiffness of the CNS tissues,>® which explains the
findings from the study.

3.5. Invivo tissue integration and cell migration

Tissue integration can be defined as the physical, biological
and mechanical connection of the interface between the
implanted materials and the surrounding native tissues.'*®
Poor tissue integration of the scaffold is often one of the factors
contributing to poor cell survival and tissue regeneration
in vivo. It often leads to the formation of fibrous scarring and
cystic cavity which obstructs potential neuronal ingrowth.®**”
Proper integration between the tissue and scaffold often results
in a high degree of cell infiltration to modulate the microenvir-
onment in the lesion, given that the architectures of the
scaffold are permissive to cell infiltration."*® In addition, tissue
integration is also related to supporting axonal growth by
facilitating endogenous cell infiltration and migration and
deposition of laminin."*® Endothelial cell infiltration and the
formation of blood vessels as blood flow are also essential to
sustain the growth of regenerating axons and the surrounding
tissues.®

In the local inhibitory microenvironment of the CNS, differ-
entiation of transplanted stem cells into neurons for long-term
survival and tissue integration is particularly challenging.
As shown in Table 2, scaffolds that exhibit good tissue integra-
tion and promote cell migration typically result in reduced
presence of reactive astrocytes (GFAP") and inflammatory cells
(IBA-1"). Further examination also confirms the ability of
neurons to infiltrate into the hydrogel (NF', NeuN', DCX",
Tuj-1*, B III Tubulin®, etc.). We believe that these injectable
hydrogels do provide sufficient tissue integration as evident
from the reduced inflammation and enhanced cell migration
and differentiation.

Overall, there seems to be no distinctively ‘“perfect” material
that promotes tissue integration and cell migration. In fact,
many studies have shown evidence of improvement in scaffold—-
tissue connection and cell infiltration regardless of the choice
of materials. Improvement in tissue-scaffold integration can be
indicated by (1) a reduction in tissue scarring,'®>"?%'?! (2) a
reduction in cystic cavity,"'®'**> and (3) infiltration of endothe-
lial cells.®*">*'** While natural polymers and ECM-mimicking
SAPs can be modified to improve implant integration into
native tissues, it is worthwhile to note that other than ensuring
good integration to the tissues surrounding the lesion, the
pore size of the scaffold should also be carefully considered
to ensure that the internal architecture of the hydrogel is
conducive to cell infiltration.” Furthermore, while scaffolds
are usually made of hydrophilic materials or coupled with
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hydrophilic antigens to improve tissue and cell attachment,
the stiffness of the scaffold is also an important parameter to
consider for proper tissue integration and promoting cell
migration. As studied by Lam and colleagues,” HA hydrogels
with two different stiffnesses were examined and significantly
higher GFAP" signals were found in the animals that were
implanted with the stiffer scaffold. This potentially leads to
larger cystic cavity and reduced cell migration.

3.6. In vivo axonal regrowth

One of the main objectives in CNS therapy is to promote axonal
regrowth and to reconnect neuronal network. Axonal regenera-
tion is one important factor influencing tissue recovery by
sprouting uninjured axons and eventually leading to functional
recovery.'” The use of injectable hydrogels could enhance
axon regeneration from the corticospinal tract (CST).° Cell
transplantation also facilitates the regeneration by either the
differentiation of exogenous transplanted cells® or facilitating
the differentiation of endogenous neurons.”® Since injured
axons in the CNS do not actively regenerate, the amount and
extent of axonal regrowth within the scaffold are important
parameters to be considered for potential functional recovery.
From Table 2, most groups deployed the strategy of attracting
the migration of endogenous NSPCs into the lesion and pro-
moting their proliferation and differentiation into neurons.
Although neuron markers like DCX and Tuj-1 could sufficiently
prove the capability of these hydrogels in promoting neural-
like proliferation and differentiation, most studies do not
provide evidence of mature neuron differentiation. On the
other hand, mature neuron markers (MAP2, NeuN, NF, etc.)
could be better choices as indicators of growing mature
neurons that are associated with axonal sprouting.'?® This
is because axonal sprouting is known for strengthening
existing connections and facilitating new synaptic connection
across the lesion, which are essential to restore proper signal
transmission.'*’

While most growth factor-incorporated scaffolds seemed to
be more effective in promoting axonal regrowth and tissue
regeneration, we identify three materials with significant
improvement in axon regeneration marked by the expression
of mature neuron markers: SAP,"*® HA-MC'*"* and heparin-
poloxamer (HP).'** The SAP was made of laminin-derived
IKVAV,"*® HA-MC, was modified with the RGD sequence and
growth factors were incorporated in both HA-MC and HP
hydrogels."®"** These modifications facilitated attachment
and promoted the proliferation of cells to modulate the micro-
environment that is conducive to axonal regrowth. The incor-
poration of OPCs in the hydrogel also potentiates the
differentiation into oligodendrocytes."® We believe that these
materials, with proper modifications that facilitate cell infiltra-
tion and differentiation, could effectively promote axonal
regeneration and preserve the integrity of newly formed axons.
In addition, BDA labelling done by Liu’s group** (SAP hydrogel)
and Wang’s group™*° (HP hydrogel) confirmed the connection
of neurons between newly formed axons and those in native
tissues, which could potentiate functional recovery.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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3.7. Scaffold degradation

The degradation rate of an injectable scaffold plays an important
role in tissue regeneration. Fast scaffold degradation potentially
leads to implant failure as the void space suppresses the for-
mation of mechanically competent tissues to support the growth
and development of newly formed cells and tissues."*"'3?
In contrast, slow scaffold degradation impedes the growth of
new axons and tissues.® With the implantation time being
prolonged, an excessively large volume of hydrogel will reduce
the invasion of migrating cells and the potential recovery could
be sub-optimal. One important consideration for hydrogel
degradation is to anticipate the rate of degradation with respect
to axonal regrowth.

From Table 2, the non-degradable poly(N-isopropylacryl-
amide) (PNIPAAm) scaffold could provide permanent support
for regeneration,®'** but it could potentially prevent tissue
regrowth. On the other hand, the rapid degradation of the
decellularized optimized acellular nerve-derived hydrogel
(i0A)"** resulted in thick and dense GFAP at the scaffold-tissue
interface. We believe that the lack of overall neurite ingrowth
and functional recovery could be due to insufficient early
mechanical support. In the early stage of hydrogel scaffold
implantation, there will be continuous cell migration, includ-
ing macrophages, NSPCs, astrocytes and OPC, where the migra-
tion of macrophages accelerates the biodegradation of the
scaffold."** Loss of mechanical support leads to failure in the
cell-ECM interaction and the following signal transduction to
promote cell development and growth, hence the decline in the
potential regrowth of native tissues to serve as the structural
support to continue assisting in cell and tissue regeneration. In
this regard, Cornelison et al.'** suggested a duration that is
required for the onset of axon regeneration, which is typically
between 4 and 6 weeks post-injury. However, we observed
robust NF infiltration into fiber-hydrogel scaffolds as early as
one week post-injury.’*® Significant improvement in axonal
regrowth was also found in other studies with the hydrogel
degradation rate being faster than this proposed period.'**'%
These observations could be attributed to the hydrogel materials
that were used and the corresponding affinity of cells towards
these materials, which in turn facilitated cell-matrix interactions
to promote tissue regrowth. Along this line, studies have also
shown that hydrogel degradation plays a significant role in
influencing cell behavior and differentiation.’®” For example,
MSC spreading and survival have been shown to be directly
correlated to the hydrogel degradation rate.'*® Therefore, the
degradation rate of hydrogels should be tailored to the hydrogel
materials used and controlled to promote cell survival and
differentiation behavior.

3.8. Functional recovery

One of the ultimate goals of CNS treatment is to restore both
sensory and motor functional capabilities. Axonal regeneration
has been shown to be closely related to functional recovery
in CNS diseases. Angiogenesis and recruitment of cells for
neurogenesis to the injured areas are equally crucial,’#3139:140
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While axonal regrowth into the lesion is encouraging, functional
recovery requires reconnection of neurons between rostral and
caudal sides.' From Table 2, the discoveries from various
research groups seem to suggest that significant axonal regrowth
does not always equate to functional recovery. For example,
HA-based hydrogels were observed to promote axonal regrowth
in the previous sections.'®"*® However, not all studies showed the
expected functional recovery. One possible reason could be the
differentiation nature of transplanted cells. Fithrmann et al.'®
suggested that only a portion of transplanted cells would differ-
entiate into mature and functional oligodendrocytes and myeli-
nated axons. Payne et al.®* compared the differentiation stages of
NSPCs in transplantation and found out that late-differentiated
cells were less effective in promoting functional recovery. Perhaps
the maturity of transplanted cells should also be an important
consideration, given that matured cells are more sensitive to the
injection transplantation process. In addition, the type of trans-
planted cell also plays a role in either supporting the growth of
endogenous tissues or integrating with the host tissues.'*!
Embryonic stem cells (ESCs) are known to be capable of differ-
entiating into nearly all cell phenotypes. Advances in genetic
modification allow directed differentiation of ESCs to the desired
cell types, such as neurons and oligodendrocytes for CNS
repair."*> MSCs are used in cell transplantation in the CNS for
both neuroprotection and neuroregeneration strategies, where
cells are used to either protect parenchymal cells in the lesion
or promote axonal regeneration and sprouting. MSCs are able to
secrete pro-survival growth factors (e.g. BDNF, VEGF, FGF2, etc.)
and have the potential to be differentiated into neurons.'** The
use of iPSCs has gained popularity in recent years due to the
ability to reprogram to xeno-free and genetically stable cells to
potentiate recovery in the CNS such as neuroprotection, modula-
tion and regeneration. The ability to be derived into different
neural lineages, for example, neural network reconstruction by
iPSC-derived neural cells, axon remyelination by oligodendrocytes,
and neurotrophic factors secreted by neural cells, shows promising
therapeutic effects for cell transplantation.'**

As a result of CNS injury, trophic factors are down-
regulated.”®® Many groups have incorporated growth and
trophic factors into hydrogels to help stimulate neural regen-
eration and growth. Both Ansorena et al’® and des Rieux
et al."* studied growth factor-loaded alginate/fibrinogen hydro-
gels, but the latter were unable to achieve improved functional
recovery. This could be due to the insufficient amount of
growth factors incorporated into the hydrogels to support
axonal growth. Lutton et al.'*® also suggested that the sole
effect of VEGF might not be sufficient for modulating regenera-
tion in the complex CNS environment and would require a
combination of effects from other growth or trophic factors.
Scaffolds that promoted decent animal behaviour outcomes
typically had a degradation rate of no less than 4 weeks and
were almost fully degraded at about 8 weeks post-injury. The
fast rate of hydrogel degradation might be a possible reason for
poor functional recovery in some studies as fast degradation
of hydrogels failed to provide sufficient support for growing

axons.™*
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There are many factors contributing to functional recovery
after CNS injuries. Although studies show conflicting findings
on the correlation between axonal regeneration and functional
recovery, reconnection of the neural network is still important
as neural signal conduction is crucial for recovery of move-
ments. Axonal regeneration is affected by the hydrogel material
used, the maturity and types of transplanted cells, the involve-
ment of hydrogel modification and growth factors, and hydro-
gel degradation. Recent studies have also focused on the
involvement of glial cells in axonal regeneration and functional
recovery. For example, studies have suggested that astrocyte
recruitment to the lesion site may have a permissive role
in axonal growth instead of only forming an inhibitory
barrier'*”'*® and demonstrated the ability for inflammation
regulation and minimizing cellular degeneration.'**'*® OPC
proliferation, oligodendrocyte differentiation and maturation
are also important to promote axonal remyelination.">"

4. Summary and suggestions for future
works

The treatments for CNS diseases are limited. The prognosis of
patients is often poor and this could seriously reduce their
quality of life. Stem cell transplantation has registered several
clinical studies by protecting and repairing CNS injuries. The
transplanted stem cells can aid in repairing damaged nerves
and also play a beneficial role through immune regulation or
regulation of endogenous regeneration. However, cell trans-
plantation faces minimal success at clinical stage mainly to due
poor survivability and poor tissue integration of transplanted
cells."”

From the studies in the recent years, HA-based hydrogels
seem to be more popular options in CNS disease treatments.
Since the first report of the study involving HA coupled with
methyl cellulose,’®® hyaluronan-based hydrogels have been
widely used in the animal models for the treatments of CNS
diseases owing to its injectability and thermoresponsiveness.
HA also helps to attenuate inflammatory response and promote
endogenous axonal regrowth in the body.'' Nevertheless,
regardless of hydrogel materials, recent CNS disease treatments
seem to be focusing on eliciting endogenous neurogenesis,
probably due to the concerns in immune response due to
exogenous cell transplantation and the possibility of teratoma
formation. Although exogeneous cell incorporation in inject-
able hydrogels has become an increasingly popular option,
many studies only focused on the potential and differentiation
outcomes of cell encapsulation within injectable hydrogels
in vitro, but did not proceed with cell transplantation in vivo
and only focused on the effects of acellular hydrogels and
encapsulated molecules on tissue regeneration. It is difficult
to determine the best scaffold material with the most effective
therapeutic outcomes. For example, certain materials are more
effective in promoting cell survival (e.g. natural materials) and
certain materials promote cell differentiation (e.g. SAPs). ECM
modifications and biomolecule incorporation are also effective
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in enhancing the therapeutic effects of injectable hydrogels.
The choice of hydrogel materials could, therefore, be based on
the desired outcome of the studies. We are hopeful that the
information provided in this review could offer insights that
would be useful for the future design of injectable hydrogels.

To ensure that research on injectable hydrogels is clinically
relevant, functional recovery should be the focus of the studies.
This is because the end goal for any treatment options is to
improve and restore the functional capabilities of patients.'*
The CNS functions are so diverse and complex that it is not
possible to only use a single assessment method to cover all
aspects of functions. This includes sensory, locomotor, and
cognitive functions such as learning, memory and problem
solving.’* Sensory recovery and feedback are important in
controlling motor functions, while motor recovery is responsi-
ble for initiating muscle fibers to achieve limb movements.'*>
Common sensory tests include Von Frey Hair (VFH) microfila-
ment tactile sensory test’®® and heat and cold sensation
tests.’®”'*® Locomotor tests, on the other hand, include Basso,
Beattie and Bresnahan (BBB) scale,'”® open field tests'®* '
and swim tests.'®* As symptoms of anxiety are common post-
stroke and SCI, open field tests that make use of rodents’
behavior to stay at the corners under stress or anxiety are also
commonly used.’®'®® Cognition assessment is crucial for
neurological functions including memory and emotions. This
is especially critical after stroke as patients often suffer from
cognitive impairments.'®® Some common methods to assess
memory in animals include Morris water maze test (Morris,
1981),"®” Y-maze test,"®® novel object recognition/location
test'®” and radial-arm test."”® The key for choosing the appro-
priate functional assessment scale should depend on the
surgical models used and knowing the advantages and limita-
tions of different systems to choose the most appropriate
assessment methods.

Instead of discovering new material combinations for CNS
disease treatment, the focus of future research may shift more
from the development of new materials to understanding the
mechanisms behind the tissue response towards the hydrogels
and axon reconnection leading to functional recovery after
hydrogel implantation. While animal models are essential to
examine the effectiveness of injectable hydrogels in vivo, alter-
natives, such as ex vivo or organ-on-a-chip models, may be
useful platforms to assess the effectiveness of hydrogel materi-
als. Ex vivo models, organotypic slice culture (OSC), for exam-
ple, can serve as alternatives to assess the post-injury
interaction of cells within the spinal cord. OSC is able to mimic
the post-injury environment by recapitulating elements of glial
scar. This could be useful in tackling the issues of glial scarring
in spinal cord repair."””* Neural system-on-a-chip is a scaffold-
based in vitro system for studies of complex physiological tissue
interactions on a functional and customizable substrate. The
system may be useful as a platform to study the nerve injury
model since it allows direct observation of the states of injury
and regeneration. It also potentially allows the studies of higher
order neural anatomies.'”> With these platforms, we could
possibly achieve direct observation of cellular response towards

© 2021 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0ma00732c

Open Access Article. Published on 06 March 2021. Downloaded on 1/30/2026 5:34:53 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Materials Advances

various scaffold materials within a shorter period of time and
with reproducibility. This could ease the efforts of testing
scaffolds in vivo and cut down on the costs of animal studies.
The limitations of these platforms could be the inability to
assess inflammatory response and interaction between the
immune system and the injury lesion. Additionally, functional
studies can only be carried out with in vivo models.

Despite some limitations in current studies on in situ inject-
able hydrogels, some groups have managed to obtain promis-
ing axonal recovery and functional improvement. This provides
incentives for continuing the development of injectable hydro-
gels in CNS injury treatment. With increasing understanding
on the physiologies of CNS, there is hope that we can engineer
optimal injectable hydrogels that are useful and beneficial to
clinical applications.
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