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Carbon based materials: a review of adsorbents
for inorganic and organic compounds

Mohammad Mehdi Sabzehmeidani, a Sahar Mahnaee,b Mehrorang Ghaedi,*b

Hadi Heidari c and Vellaisamy A. L. Royc

This review presents the adsorptive removal process of hazardous materials onto carbon-based

materials comprising activated carbon, graphene, carbon nanotubes, carbon nanofibers, biochar and

carbon aerogels. Particular emphasis is placed on the fabrication of various carbon-based substances

and their characteristics. As a ubiquitous phenomenon, dangerous compounds originating from

industrial wastewater lead to damage to the environment and water resources. Therefore, among

conventional technologies, adsorption is highly effective and the most extensively used method owing

to its simplicity of performance and fairly low cost of application for the removal of hazardous

pollutants. This paper comprehensively reviews a multitude of aspects regarding the chemical and

physical nature of various carbon materials and their adsorption ability by increasing their surface area or

their possible modification. Based on the properties of nano-carbon materials, adsorptive elimination

mechanisms for antibiotics, dyes, heavy metals, pesticides, oils, phenolic and volatile organic compounds

and gas pollutants are highlighted. The advantageous characteristics of nano-carbon materials assigned to

their unique adsorptive removal of common hazardous substances will be pointed out.

1 Introduction

Nowadays, the increasing demand for fresh water along with
the development of industrialization, multiyear droughts and
rapid human population growth are leading to a deficiency in
clean water resources and urgent water treatment is highly
recommended. The issue of the lower extent of water resources
is proportional to the adoption of different practical methods to
yield more useable water. Also, industrial and agricultural
wastewaters are classified as the largest feasible water resources.
Among the diverse treatment processes developed for water
treatment, every process has intrinsic limitations in applicability,
cost and effectiveness. One attractive option is the treatment of
wastewater from industry or other activities with an adsorption
process to improve its quality for further use in industrial and
agricultural operations. In past decades, much research effort
has been devoted to understanding the properties of materials
as adsorbents for the removal of dangerous and hazardous
compounds. The water quality is important to avoid long term
consequences of human health and it is obtained by adsorption
of pollutants such as dyes, heavy metals, phenolic, and phar-
maceuticals from the liquid phase, to purify products and

recover valuable compounds. This review will focus on an
investigation of the removal of conventional inorganic and
organic compound hazardous substances that exist in gas or
liquid media using carbon-based materials (CBMs), to describe
properties assigned to adsorbent and adsorbate interaction.
Over past several decades, much progress has been made on
and attention has been paid to a better understanding of the
adsorption, mechanisms and isotherms of CBMs. This review
mainly addresses the methods of CBM synthesis and modifica-
tion using various materials and the corresponding summary
mechanisms and adsorption capacity for the removal of
pollutants from aqueous solution.

1.1 Adsorbents

Various factors are involved in adsorption processes, such
as adsorbent structures, fluid properties and contaminant
structures, operating conditions, and system configuration. Various
materials, including alumina, activated carbon (AC), clays, silica
gel, composites, zeolites, biomasses, and biological and polymeric
matters have been employed as adsorbents for the elimination of
contaminants in environmental water.1 The study of carbon-based
nanomaterials as adsorbents is a research issue that has expanded
quickly over the past decade. The motivation for the development
of this field stems mainly from the unique properties and
diversities of carbon-based structures and the creation of new
opportunities in many subfields of chemistry, physics and
engineering. A great variety of water contaminants, like toxic
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metal ions, pharmaceuticals, pesticides, metalloids and other
inorganic and organic substances, have the ability to be
adsorbed by carbon-based material in a combination of various
process.2,3 Absorption as a water treatment technology merely
concentrates the common pollutants and transfers them to
other phases. The adsorption phenomena are characterized by
and depend on the interactions between adsorbate molecules
and adsorbent. The absorption capacity of a carbon-based
adsorbent for chemical compounds depends on the nature of
the adsorbate (pKa, polarity, functionality, size and molecular
weight), the adsorbent (functional groups and pore size and
structure) and solution conditions (pH, ionic strength and
temperature).4,5 In the aqueous phase, the van der Waals,
induced-dipole, dipole–dipole, and hydrogen-bonding donor–
acceptor forces are responsible for the binding and accumula-
tion of chemical compounds on various adsorbents. Among the
various interactions, hydrogen and p–p bonds and also covalent
and electrostatic interactions and the hydrophobic effect play
important roles in the adsorption.6–8 CBMs comprise AC, graphene,
carbon nanotubes (CNTs), carbon nanofibers (CNFs), biochar (BC)
and carbon aerogels (CAs). Fig. 1 shows some different types of
CBMs used for the adsorption process.

1.2 Adsorption equilibrium isotherm

The equilibrium isotherms give the adsorption capacity of
an adsorbent and the thermodynamic parameters and provide
the means to find the interaction between adsorbent and
adsorbate. Equilibrium isotherms correlate the amount of
adsorption by the adsorbent (qe) and the equilibrium concen-
tration of the adsorbate (Ce), which are good indexes for
representation of the adsorption system. Also, liquid–solid
adsorption isotherms are used to diagnose the adsorption
mechanism to obtain information about adsorbent surface
properties and the nature of the adsorbate.9 The S, L, H, and
C curves represent the four types of equilibrium curves that are

identified according to the initial slope.10 The adsorption data
can be simulated through several isotherm models, including
Henry’s law, Langmuir (monolayer), Temkin, Freundlich,
Dubinin–Radushkevich (D–R), Redlich–Peterson (R–P), the BET
isotherm (multilayer) and statistical physics models.11 The
adsorption isotherm models used to describe the adsorbent
and adsorbate are presented in Table 1.

1.3 Adsorption kinetics model

The nature of adsorption will depend on an evaluation of the
adsorption kinetics that were applied to investigate the rate and
mechanism of adsorption, which can occur through physical or
chemical phenomena, and the possibility of their application.
In a batch adsorption process, the more utilized traditional
models are tabulated in Table 2.

The pseudo-first-order equations are formed based on five
assumptions: adsorption only occurs on localized sites and the
interactions between adsorbates are not considered; the energy
of adsorption is not dependent on surface coverage; maximum
adsorption corresponds to a saturated mono-layer of adsor-
bates on the adsorbent surface; the concentrations of adsor-
bates are considered to be constant; and the adsorbate uptake
obeys the pseudo-first-order rate.13 For pseudo-second-order
kinetics, the assumptions are almost the same as for the
pseudo-first-order model except the metal ion uptake on the
ACs is governed by a second-order rate equation.14 The Elovich
model plus a consideration of interactions between adsorbed
elements employs some assumptions, including: a linear
relationship between energy and surface coverage; adsorbate
concentration is constant; and the ion uptake on the activated
carbons is negligible before the exponential.15

The intra-particle diffusion model is the so-called Weber–
Morris intra-particle model. The straight-line form of qt versus
t1/2 shows that the adsorption process is only controlled by
intra-particle diffusion. However, multi-linear plots suggest that
two or more parameters influence the sorption process. It is
assumed that the external resistance to mass transfer surrounding
the particles is only significant in the early stages of adsorption:
this is represented by the first sharper stage. The second linear
portion is the gradual adsorption stage with control over intra-
particle diffusion.16 According to the shrinking-core model, an
adsorption process occurs into three sequential steps: diffusion
through an external liquid film, diffusion through a saturated
shell, and adsorption at the surface of the sorbate-free core. In this
model, the two parameters t1 and t2 are the characteristic
diffusion times for diffusion through the external liquid film
and diffusion through the saturated shell, respectively.18 In a
continuous adsorption process, the various experimental
models for calculation of breakthrough curves that can analyze
the mass balance of a fixed bed include Bohart–Adams,
Thomas, Wolborska, and Yoon–Nelson.11

1.4 Adsorption mechanisms

The mechanisms governing the removal by carbon-based
adsorbent materials of aqueous pollutants are outlined in the
summary. Generally, the interactions between the functionalFig. 1 Various applicable CBMs in adsorption processes.
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groups of CBMs and pollutants are complicated. The adsorp-
tion performance depends on the physics and chemistry of
the carbon-containing material surface, the properties of the
aqueous solution, and the nature of the adsorbate. The adsorp-
tion mechanisms onto carbon adsorbents could involve physi-
sorption (physical adsorption and electrostatic interaction)
and chemisorption (surface complexation, ion exchange and
precipitation).19 In general, chemisorption has a more remark-
able influence than physisorption for the removal of pollutants
from aqueous solution. Under particular conditions, the
surface functional groups are effective in some mechanisms
that comprise ion exchange, electrostatic interaction, and
surface complexation.20,21

2 Adsorption by carbon-based
material

The existence of carbon in different forms can be attributed
to its unique electronic structure which allows the formation of
stable chemical bonds in various configurations. The unique-
ness of carbon comes from the fact that it can form single,
double or triple bonds; it has an exceptional ability to catenate
(bond with one another), forming cyclic or acyclic chains; it can
form straight or branched chains; it can also bond with other
non-metallic elements.22,23 The four valence electrons (two s and
two p electrons) of carbon occupy the L shell, while the inner K

shell is occupied by two electrons. The 2s and 2p orbitals of
carbon can be hybridized to enable single, double or triple bonds
formation via sp3, sp2 or sp hybridization, respectively. The
formation of various structures for carbon in one-dimension,
two-dimensions and three-dimensions is due to the linear combi-
nation of valence carbon orbitals. Carbon atoms with sp2 hybri-
dization give rise to an impressive number of different materials,
such as CNTs, graphene nanoribbons, porous carbon and
fullerene. As in any crystalline phase, the crystal structures of
natural carbon allotropes (i.e. graphite and diamond) contain
various types of imperfections. These so-called lattice defects
can be classified by their dimensions into 0D (point), 1D (line),
2D (planar) and 3D (volume) defects. Lattice defects control the
physical properties of crystals and are often a fingerprint of
the geological environment in which they formed and were
modified.

By convention, carbon naturally has three allotropes: amor-
phous carbon, crystalline graphite and diamond. There are
various kinds of amorphous carbon allotropes like coal,
charcoal, lampblack, carbon black and coke, which have not
been observed in the pure (100% carbon) state. They possess
different properties and therefore each deserves to be consi-
dered as an allotrope, but for preference they are grouped
as one: the amorphous allotropes.24 The amorphous forms of
carbon are usually not desirable choices for a researcher
because their structures cannot be manipulated like crystalline
allotropes; hence, they do not appeal to the interest of researchers.
The use of carbon-based adsorbents goes so far back in time that
its origin is impossible to determine exactly. Prior to the use of
what we call today carbon-based adsorbents, either wood char, or
coal char or simply a partially devolatilized carbonaceous material
was employed as an adsorbent. Up to now, there have been many
works related to the application of carbon-based adsorbents in
the refining of pollutants from air, soil, water, and synthesized
materials. AC, GO, CNTs, CNFs, BC and CAs are the common
abbreviations which are used to classify these adsorbents.
In different adsorption processes, both in gas and liquid phases,
the molecules or atoms (adsorbable) are fixed (adsorbed) on the
carbon (adsorbent) surface by physical interaction (electrostatic or
dispersive forces) and/or chemical bonds. Therefore, a relatively
large specific surface area is one of the most important properties

Table 1 Expressions of adsorption isotherm models11,12

Adsorption
isotherm models Original forms Assumes

Henry’s law qe = KHCe Adsorption on a monotonous surface at low enough concentrations
Langmuir

qe ¼
qmkLCe

1þ kLCe

Dynamic equilibrium monolayer adsorption between adsorbent and adsorbate

BET
qe ¼

qBETk1Ce

1� k2Ceð Þ 1� k2Ce þ k1Ceð Þ
Multilayer adsorption between adsorbent and adsorbate

Temkin
qe ¼

RT

b
ln KTCeð Þ Heat of adsorption pollutants eliminated directly by coverage owing to

adsorbent–adsorbate interactions
Freundlich

qe ¼
RT

b
ln KTCeð Þ Adsorption on heterogeneous surface and the content of adsorption enhanced

infinitely with high concentration
Dubinin–Radushkevich qe = qmax exp(�be2) Adsorbent is similar to the micropore size and independent of temperature
Redlich–Peterson

qe ¼
kRCe

1þ aRC
b
e

Development of empirical isotherm model and combination of Langmuir
and Freundlich elements

Table 2 Traditional equation used for kinetic description

Model Equation Ref.

Pseudo first order dqt

dt
¼ K1 qe � qtð Þ 13

Pseudo second order dqt

dt
¼ K2 qe � qtð Þ2 14

Elovich model dqt

dt
¼ a exp �bqtð Þ 15

Intra-particle
diffusion

qt = Kit
1/2 + C 16

Decay order qt = qe + a1e�t/b1 + a2e�t/b2 17
Shrinking-core

t ¼ q

qe
t1 þ 1þ 2 1� q

qe

� �
� 3 1� q

qe

� �2
3

2
4

3
5t2

18
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that characterize CBM adsorbents. Hence, we have tried to review
the achieved advances in the application of these materials, their
structural modification and their properties in various fields of
industry.

2.1 Activated carbon

AC generally refers to highly porous carbonaceous materials,
and is the most popular amongst adsorbents owing to its large
surface area which ranges from 500 to 3000 m2 g�1, low cost
and good charge-holding capacity and the ability for various
functional groups to be generated, which may be responsible
for the effective elimination of a variety of contaminants
from aqueous or gaseous media.25 AC has different structures
like granular, powdery and fibrous physical forms which are
generally applied for water cleanup procedures.26

2.1.1 Synthesis and activation. AC preparation is composed
of four basic steps: raw material preparation, pelletizing, carbo-
nization and activation.27,28 Thermal and chemical activation are
two kinds of activation approaches applied to supply a porous
structure from a material with a low surface area.29 Physical
(thermal) activation after initial treatment and pelletizing involves
carbonization at 400–500 1C that is used for the removal of volatile
matter and subsequent partial gasification by an oxidizing gas like
carbon monoxide, steam or flue gas (800–1000 1C) leads to the
generation of porosity, surface area and functional groups.30,31

Another method is chemical activation that involves the incor-
poration of additive materials into the synthesis approach before
carbonization.32 The present additives degrade and dehydrate
the cellulosic substance in carbonization at 250–650 1C. Lignin
present in a raw substance is blended with activators like phos-
phoric acid, sulfuric acid or others following carbonization at
temperatures up to 900 1C.33 In fact, according to the material
sources and activation process, different structure and functional
groups and activities can be supplied.34

A rotary kiln and a fluidized bed are two important processes
for large-scale production of AC materials. The rotary kiln is
a pyro-processing device to increase the temperature of raw

materials. The kiln is a cylindrical vessel, inclined slightly on a
horizontal axis, which is rotated slowly around its axis. The
main part of this system is a refractory-lined cylinder that
rotates at a horizontal angle of 5–10 degrees or less at a speed
of 1–5 rpm. Auxiliary heating is also another way to achieve the
desired temperature for kiln systems. As the kiln rotates, the
material gradually moves down to the lower end, and may
undergo a certain amount of stirring and mixing. For better
heat transfer, hot gases pass along the kiln. AC manufacture
(using a rotary kiln) is generally considered to be a three-
stage process consisting of pre-activation, activation and post-
activation:35,36

� Pre-activation refers to checking the quality and obtaining
desirable size properties for the material prior to activation
(so-called kiln-feed).
� Activation is a process in which the kiln-feed is turned into

AC. According to the properties of the kiln-feed, the rotary kiln
uses high temperatures and steam within special designs.
� The post-activation consists of quality checking the para-

meters of the kiln output material.
With regard to using a fluidized bed reactor for AC produc-

tion, the effect of various process parameters, such as particle
size, fluidizing velocity, process time, static bed height, activa-
tion temperature and fluidizing medium can also be well
studied.

2.1.2 Source of AC. Lignocelluloses from biomass, wood,
anthracite and bituminous coal are considerable routes for
producing AC, while nowadays more precursor materials
are available and widespread with which it is possible to make
low-cost carbons.37,38 General waste materials, including
agricultural by-products and plastics, are potential sources of
AC. Also, several important and highly abundant agricultural
by-products are indicated in Table 3 that can be applied as
natural sources for AC that can subsequently be used for the
adsorption of various pollutants from aqueous solutions.

2.1.3 Modification of AC. The effectiveness of ACs in an
adsorption process for various pollutants is identified based on

Table 3 Summary of maximum adsorption capacities by AC

AC natural source Pollutants
Initial dye concentration
(mg L�1) Isotherm model

Adsorbent capacity
(mg g�1) Ref.

Acorn tree Brilliant Green 25 Langmuir 2.11 39
Limon wood Acid Yellow 199 8 Langmuir 85.51 40
Rice husks Safranin-T 50 mM Langmuir 3.183 mol g�1 (40 1C) 41
Cherry tree MB 5–30 Langmuir 41.49 42
Apple tree wood Janus Green B 9–33 Langmuir 28.01 43

Methylene Blue (MB) 21.79
Fruit stones Astrazon Yellow 7GL 50–300 Langmuir 221.23 44
Pomegranate Congo Red (CR) 5–200 Langmuir 19.23 45
Pistacia MB — Langmuir 185 46
Bagasse Acid Blue 20–1050 mg dm�3 Langmuir 391 47
Date palm Ciprofloxacin 50–300 Langmuir 133.3 48
Plum kernels MB 0–300 g m�3 Langmuir 828 g kg�1 49

Acid Blue 74 567 g kg�1

Basic Brown 1 1848 g kg�1

Phenol 277 g kg�1

Siris seed pods Metronidazole 20–100 Langmuir 53.194 50
Sawdust Direct Blue 2B — Langmuir 518 51

Direct Green B 327.9
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the conduct of research into AC modification, which is gaining
prominence owing to the generation of extra sites on ACs to
progress the affinity for certain contaminants to accelerate their
efficient removal from various types of industries, especially
wastewater effluents. Therefore, it is necessary to understand
the most important effective variables that influence AC
adsorption capacity prior to their application or appropriate
modification via specific physical and chemical reactions
which are assigned to enhance affinities toward metal, inor-
ganic and/or organic compounds in aqueous media.52 The
main and distinguished features of AC which have critical roles
in adsorption efficiency are specific surface area (SSA), pore-size
distribution (PS), pore volume (PV) and the presence of surface
functional groups53 which may be progressed and improved
following their modification with other nano-structured mate-
rials or even their size reduction to the nano-scale. Generally,
the adsorption capacity rises with specific surface area owing to
the availability of adsorption sites while the PS is closely
attributed to the composition of the AC, the kind of initial
raw substance, the degree of activation during the production
stage and the iteration of regeneration. Much emphasis is given
to synthesizing surface-modified carbons by various methods
to increase the potential of AC for the removal of specific
pollutants. The surface of AC is generally modified after the
activation stage. The modification could be classified into three
classes: physical, chemical, and biological modification.
Furthermore, oxidative54 and non-oxidative55 methods of AC treat-
ment have been reported in the literature. Various techniques,
including acid, base, impregnation, ozone, surfactant, plasma and
microwave treatment have been suggested to develop surface-
modified ACs.

2.1.4 Application. The main areas of AC application in
industry are water treatment, decolorizing, solvent recovery,
military usage to protect against attack by toxic gases such as
mustard gas, nuclear reactors, and air treatment.34 Domestic
activities include cooker hoods, fridge deodorizers, air puri-
fiers, deep fat fryer cartridges, and cigarette filters. Precious
metal recovery includes gold and silver from a cyanide solution.
ACs can also be used as catalysis supports. Owing to their
inert porous structure, ACs can absorb chemicals on their
large hydrophobic internal surface, making them accessible
to reactants. AC is synthesized in various shapes and sizes
depending on the application for which it is to be applied, such
as extruded AC (EAC), granular AC (GAC), powdered AC (PAC),
AC fibers and AC-molecular sieves. The application of carbon
molecular sieves in gas separation, in particular oxygen and
nitrogen, has grown progressively over the last decades.56–60

These carbons are characterized by a high adsorption capacity
and micropore size which may be of the same order of
magnitude as the adsorbate molecules. The ability of the
molecule to penetrate into the pore volumes dictates the ability
and efficiency of carbon molecular sieves in the separation of
various species, especially gas mixtures. Efficiency of separation
increased following the application of AC fibers as molecular
sieves in gas filtration, which emerged from the fact that AC fiber
shapes often have a greater adsorption rate and a larger capacity

than typical granular ACs. Also, several research studies on the
modification of AC by nanoparticle (NP) surfaces have been
carried out for the creation of specific surfaces to enhance the
removal of chemical species, including Bi2S3–Ag2S,61 CrFeO3,62

ZnO,63 Au–Fe3O4,64 ZnS:Cu,65 Pt,66 Cu2O,67 Cu:ZnS,68 Fe3O4,69

TiO2,70 Cu(OH)2,71 CdSe,72 CdTe,73 Cd(OH)2
74 and Pd75 nano-

structures on AC. The adsorption capacities of pollutants by
nanostructures on AC are presented in Table 4.

From another viewpoint, the various application of ACs can
mostly be split into two main sorts: liquid-phase and gas-phase
applications. Gas-phase applications of AC include separation,
gas storage and catalysis supports, while ACs in gas-phase
applications are granular or shaped. Daneshyar et al.76 synthesized
nanocomposites Cu–Zn–Ni-NPs–AC and Ni–Co-NPs–gAl2O3 and
used them for the elimination of H2S molecules from natural gas
with maximum removal by Cu–Zn–Ni/AC (Fig. 2).

ACs for use in the liquid-phase differ from gas-phase
carbons primarily in their pore size distribution, where
liquid-phase carbons have much greater pore volume in the
macropore range which permits liquids to diffuse more rapidly
into the pores. The pores with a higher size also promote the
higher adsorption of large-size molecules (either impurities or
products) in many liquid-phase applications. Zhang et al.77

studied the performance of powdered AC (PAC) for the removal
of representative groups of 28 antibiotics: namely, tetracyclines
(TCs), macrolides (MCs), chloramphenicols (CPs), penicillins
(PNs), sulfonamides (SAs) and quinolones (QNs) from waste-
water. Under optimum conditions, the removal efficiency was
up to 99.9% (deionized water) and 99.6% (surface water) with a

Table 4 Summary of maximum adsorption capacities by nanostructures
on AC

Nanostructures
on AC Pollutants

Adsorbent capacity
(mg g�1) Ref.

Bi2S3–Ag2S Auramine-O 202.43 61
Ponceau-4R 191.57

CrFeO3 Methyl Violet (MV) 65.67 62
ZnO Safranin O 32.06 63
Au–Fe3O4 Rhodamine123 71.46 64

Disulfine Blue 76.38
ZnS:Cu Methyl Orange (MO) 44.65 65

Sunset Yellow (SY) 50.54
Pt CR 43.478 66
Cu2O SY 113.0 67

Eosin B 137.0
MB 110.0

Cu:ZnS SY 85.397 68
Fe3O4 SY 76.37 69

Eosin B 78.76
MB 102.0

TiO2 Cu(II) 105.26 70
Cr(III) 93.46

Cu(OH)2 Eosin Y 32.9 71
MB 26.4
Phenol Red 38.5

CdSe Muroxide 333 72
CdTe SY 181.81 73
Cd(OH)2 SY 76.923 74
Pd CR 76.923 75
Ag 66.667
ZnO 142.57
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PAC dosage of 20 mg L�1 in a contact time of 120 min and these
results indicated superior adsorption capacity for all others
antibiotics. It has been reported that metal ions like Co,78 Cu,79

Mn,80 Hg,81 Pd,82 Cd,83 V84 and Pb85,86 have an adsorption
capability for ACs via various interaction formations. The
adsorption of lead (Pb2+) onto AC originating from cow bones
and chemically modified with HNO3 was investigated.87 The
solution pH is a highly significant factor in Pb2+ adsorption
onto AC, and at pH 4 6.0 the precipitation of metal hydroxides
is the predominant process in the solution. The metal (Pb2+)
recovery remained constant at around 50% in all cycles. The
Cr(VI) adsorption in both the absence and the presence of
humic acid (HA) most appropriately followed the pseudo-
second-order kinetic model and the adsorption isotherm is
well fitted to the Freundlich equation.77 The increased Cr(VI)
removal can be related to the binding interactions between
Cr(VI) and HA, and the reduction of Cr(VI) induced by HA, while
Cr(III) is complexed by the surface-bound HA and subsequently
the adsorption of Cr(III)–HA complexes takes place. Phenolic
compounds are used in many industrial chemical products
because of their unique properties, while they are classified as a
priority contaminants owing to their toxicity to organisms even
at low concentrations. Gupta et al.88 fabricated ACs from waste
rubber tires by a microwave-induced chemical impregnation
(RTACMC) and physical activation (RTAC) technique for the
adsorption of phenolic compounds from solution. RTACMC
has greater porosity and total pore volume compared to fairly
acidic RTAC. The microwave method thus helped in the devel-
opment of an increased porous morphology in a shorter time
and an improvement in the cost-effectiveness of the process.
NH4Cl-induced AC (NAC) was used for the adsorptive removal
of diazinon pesticide from wastewater.89 The maximum adsorp-
tion was 97.5% for 20 mg L�1 of diazinon adsorbed onto NAC at
a low solution concentration of 0.3 g L�1 and a short contact

time of 30 min at neutral pH. The effect of NaCl addition on the
diazinon solution caused a slight reduction in humic acid, and
ammonia content slightly improved the adsorption process,
while the maximum adsorption capacity was 250 mg g�1 for
diazinon using NAC.

Activated sludge was used for the elimination of triadimenol
pesticide from water.89 The experimental adsorption data had
the best fitness with the Freundlich model and the maximum
adsorption capacity was 42.9 mg g�1 (298 K). Dyes are colored
materials and it is known that their adsorption depends on a
substrate that is generally applied in an aqueous solution. The
use of synthetic dyes has led to an increasing worldwide
awareness of the harmful consequences of pollution. Synthetic
dyes even in low concentrations influence environmental
aquatic and human safety.90 Thus, dye removal from waste-
water becomes environmentally important and accordingly ACs
are the most conventional adsorbent extensively applied for
the adsorption of various dyes.91–94 Sayğılı et al.95 prepared AC
under optimum production conditions from tomato waste,
activated in the presence of ZnCl2 and they subsequently
applied it for the adsorption of methylene blue (MB) and
metanil yellow dyes. The optimal conditions to produce AC,
including a (6 : 1) impregnation ratio at 600 1C over 1 hour of
carbonization, led to the achievement of AC with a carbon
content of 53.92% and a yield of 38.20%, while it supplied
a surface area of 1093 m2 g�1 with a total pore volume of
1.569 cm3 g�1, mesoporosity of 91.78% and average pore
diameter of 5.92 nm. The maximum adsorption capacities for
MB and metanil yellow were 400 mg g�1 and 385 mg g�1,
respectively. The AC was synthesized and subsequently chemi-
cally activated using KOH via hydrothermal treatment (HT) of
sucrose.96 The AC was a microporous material with SBET and VT

of 1534 m2 g�1 and 0.765 cm3 g�1, respectively. The highest
adsorption capacity monolayer was 704.2 mg g�1 in a low MB
concentration (300 mg L�1).

2.2 Carbon nanotubes

CNTs, so-called buckytubes, are cylindrical allotropes of carbon
molecules with distinctive properties that make them poten-
tially applicable in a large variety of industrial applications.
CNTs exhibit amazing strength as well as unique electrical,
mechanical and thermal properties and are famous members
of the fullerene family, initially produced via an arc-discharge
method by Ijima in 1991.97 They have superior properties, such
as wide band gap, high melting point, high tensile strength and
thermal conductivity.98,99 CNTs are normally categorized into
three types on the basis of the number of tubes present in their
structures:99,100 single-walled CNTs (SWCNTs), double-walled
CNTs (DWCNTs) and multi-walled CNTs (MWCNTs).

SWCNTs can be made from a single graphene sheet rolled
up on itself (diameter of 1–2 nm), while their length can be
significantly changed by the preparation method.101 SWCNTs
can usually come together to form bundles (ropes) which in such
bundle structures are hexagonally organized to form a crystal-like
construction.102 DWCNTs are made of two concentric CNTs in
which the outer tube encloses the inner tube. They provide a

Fig. 2 (a) The experimental set-up used for the adsorptive removal of
hydrogen sulfide; (b) influence of feed gas volume on the adsorption of
H2S.76
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combination of distinguished properties of SWNTs which are
superior to those of SWNTs in terms of greater stability and
stiffness or independent doping of inner and outer tubes.103

MWNTs consist of multiple layers of graphene rolled up on itself
with diameters between 2 and 50 nm related to the number of
graphene tubes, and these tubes have an approximate inter-layer
distance of 0.34 nm.104

2.2.1 Synthesis and modification. CNTs could be produced
in sizeable quantities using different methods which are com-
monly categorized in five types: carbon arc-discharge technique,
laser ablation,105 sonochemical or hydrothermal methods,106,107

electrolysis,108 and chemical vapor deposition (CVD).105

By employing any of these techniques different types of CNT
can be produced. Carbon arc-discharge and laser ablation were
the first methods used for SWCNT synthesis in large scales
(gram). Both methods are suitable for SWCNT and MWCNT
synthesis and are based on the condensation of hot gaseous
carbon atoms generated from the evaporation of solid
carbon.109,110 The arc-discharge system is based on using a
metal catalyst to grow SWCNTs. About 1–10 g of high-quality
SWCNTs can also be produced using the laser ablation
method.110 Difficulties such as high energy consumption and
expensive equipment requirements limit this approach and
mean that these methods are less favorable for nanotube
production. The main disadvantages for arc discharge are the
high temperature and purification required and tangled nano-
tubes, while the laser based approach is limited to the lab scale
and subsequent purification of the crude product is necessary.
The sonochemical/hydrothermal technique is another synthesis
method for the preparation of different carbonaceous nano-
architectures, such as nano-onions, nano-rods, nanowires, nano-
belts, and MWNTs.107 This process can be highly commended
and satisfactory compared with other approaches due to its
advantages of easy preparation of starting materials and their
stability in ambient temperature and also their performance at
low temperature (about 150–180 1C) without the requirements
of hydrocarbons or carrier gas for the operation.111 The main
point of the electrolysis method is the electro-winning of alkali
(Li, Na, K) or alkaline-earth (Mg, Ca) metals from their chloride
salts on a graphite cathode followed by the formation of carbon
tubes by the interaction of the metal being deposited with the
cathode, which leads to the formation of MWCNTs. The advan-
tages of the electrolytic method are simplicity, the possibility
of controlling the process by electrolysis mode, low energy
consumption, use of cheap raw substances, and the feasibility
of controlling product morphologies and structures by means
of optimization of the electrolysis and electrolytic bath
composition.111 This method encounters challenges such as the
cracking and destruction of the graphite cathode during electro-
lysis, the accumulation of electrolysis products, chlorine gas
(anode), alkaline metal (cathode) and carbon nano-materials
(cathode) formation in the bath.108 Nowadays the above-
mentioned methods have been replaced by low-temperature
chemical vapour deposition (CVD) techniques (o800 1C), which
supply the conditions for greater control over the orientation,
alignment, nanotube length, diameter, purity and density of CNTs.

There are many different kinds of CVD, such as catalytic chemical
vapor deposition (CCVD), either thermal or plasma enhanced (PE)
oxygen assisted CVD,112 water assisted CVD, microwave plasma
(MPECVD),113 radiofrequency CVD (RF-CVD),114 or hot-filament
(HFCVD).115 Among these methods, catalytic chemical vapor
deposition (CCVD) is the standard method for the preparation of
CNTs. The nanotube growth in the CVD process includes the
dissociation of hydrocarbon materials catalyzed by the transition
metal, and the saturation of carbon atoms in the metal nano-
particle. The presence of metal particles leads to the production of
tubular carbon solids in an sp2 hybrid structure.116 The properties
of the CNTs synthesized by the CVD approach rely on operational
factors like pressure and temperature, the type, volume and
concentration of hydrocarbons, the nature and size of the catalyst
and the nature of the support and the reaction time.117

2.2.2 Application. Applications of nanotubes include various
areas and disciplines like medicine, nanotechnology, manu-
facturing, construction, electronics including high-strength
composites,98 actuators,118 energy storage and energy conver-
sion devices,119 nano-probes and sensors,101 hydrogen storage
media,118 electronic devices, adsorbents and catalysts. The high
surface area, scalable production, tunable surface chemistry,
non-corrosive property and the presence of surface oxygen
containing functional groups corresponding to CNTs and
graphene nanomaterials lead to an improvement in their
adsorption performance with respect to conventional adsor-
bents such as zero-valent iron, iron oxide, zeolite, silica, tita-
nium dioxide, chitosan, and polymers. Accordingly, nowadays
CNTs as an adsorbent have been applied for pollutant adsorp-
tion as bare CNTs or their modified form from aqueous or
gaseous environments. MWCNTs are synthesized by the CVD
approach in a fluidized bed reactor under a flow of CH4 and
H2 gases in the presence of a Co–Mo/MgO nanocatalyst.120

MWCNTs have been modified to produce allylamide-grafted
multiwall CNTs which are applicable for efficient H2S removal.
It was reported that this material has high capacity for H2S
removal due to its effective nitrogen functionalities. Duman
et al.121 subsequently synthesized oxidized multiwalled CNT
(OMWCNT)–Fe3O4 and OMWCNT–k-carrageenan–Fe3O4 nano-
composites using CVD, and these materials were applied as
adsorbents for the removal of MB from aqueous solution.
Antibiotics like tetracyclines, sulfonamides, macrolides, and
quinolones were eliminated by the adsorption process.122 The
ultrasound-assisted adsorptive removal of dyes such as SY and
azur(II) (AZ) onto MWCNT and MWCNT–Pd-NPs was shown and
the experimental results revealed that MWCNT–Pd-NPs are
superior to MWCNTs in terms of lower contact time and
adsorbent mass for the removal of some quantity of SY and
AZ.123 A summary of pollutant adsorption capacities by CNTs is
presented in Table 5.

2.3 Graphene

Graphene as single layer of carbon atoms supplies a two-
dimensional (2D) tightly packed honeycomb crystal lattice.
The hexagonal structure of graphene is known as an elementary
building block for the sp2 hybridization of the 2s orbital and

Materials Advances Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Ja

nu
ar

y 
20

21
. D

ow
nl

oa
de

d 
on

 1
1/

30
/2

02
5 

12
:5

2:
33

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0ma00087f


©2021 The Author(s). Published by the Royal Society of Chemistry Mater. Adv., 2021, 2, 598--627 | 605

two 2p orbitals of the carbon atom. Also, graphene is a mono-
layered 2D hexagonal crystal which indicates a conventional
quantum Hall effect due to the electrons being confined in 2D
substances.142,143

2.3.1 Synthesis and modification. The interesting proper-
ties of graphene, including high surface area, high thermal
conductivity, strong Young’s modulus and fast charge carrier
mobility, are well described in the literature.144 Graphenes can
be mainly prepared by various methods, including exfoliation
and cleavage, thermal chemical vapor deposition (CVD), plasma
enhanced chemical vapor deposition (PECVD), chemical methods,
thermal decomposition on substrates, and unzipping CNTs.
Different dimensions have also been obtained, such as
zero-dimensional (0D) graphene quantum dots (GQDs),
one-dimensional (1D) graphene nanoribbons (GNRs), and
two-dimensional (2D) graphene nanosheets (GNSs). MWCNT
unzipping methods for the production of graphene can be
classified into four major types: the reductive-intercalation-
assisted approach, oxidative unzipping, electrochemical unzip-
ping, and a fourth miscellaneous group of methods. The first
approach is based on the well-known ability of alkali metals to
intercalate graphite with expansion in the Z-axis direction. Such
lattice expansion induces extreme stress within the concentric
walls, resulting in the bursting, or longitudinal opening, of the
tubes. The resulting GNRs are highly conductive, but
they remain multi-layered and foliated. Due to the attraction
between the surfaces, they do not exfoliate to single-layer
ribbons. The oxidative approach involves treatment of
MWCNTs in acidic oxidative media with a formulation almost
identical to that used in the production of graphene oxide (GO)
from graphite by the Hummers’ method. The resulting product

is GO nanoribbons (GONRs). Unlike GNRs obtained by the
reductive-intercalation method, GONRs easily exfoliate in
aqueous solution, and they can be obtained as single-layered
structures.

CVD is regarded as having the most potential as a promising
way to synthesize high-quality, huge-area and single-layer
graphene. Graphene growth via the CVD process remains a
reliable way to produce graphene due to its scalability and
potential to produce high-quality graphene film. However, it is
also an inefficient method because it requires high temperature.
Therefore, incorporating plasma into the CVD can transfer it to
a lower process temperature.7 Laser methods for graphene syn-
thesis can be classified into laser exfoliation, intercalation
and exfoliation in liquid nitrogen, pulsed laser deposition
(PLD), laser-induced ultrafast CVD, laser-induced catalyst-free
growth of graphene from solid carbon sources, epitaxial graphene
growth on an Si-rich surface of an SiC substrate by laser sublima-
tion, reduction of GO, and unzipping of CNTs.8 PLD is commonly
used to deposit graphene on various substrate materials because
it provides a high growth rate, good control over the thickness and
morphology of graphene, and is low cost. PLD of graphene on
a substrate, including graphite and highly oriented pyrolytic
graphite (HOPG), with or without a metal layer, involves the
irradiation of a solid target in a high vacuum and can also be
used as a post-process treatment to selectively convert carbon to
graphene.9 Overall, carbon clusters of different sizes form on the
irradiated graphite surface during laser ablation. By placing the
laser focal point at the graphite surface and adjusting the values
of important process parameters (i.e., laser energy, ablation
volume, focal length, background gas, working pressure, and
target–substrate distance) to their desired amounts, the graphite

Table 5 Summary of adsorption capacities by CNT

Composite CNT Pollutants Adsorbent capacity (mg g�1) Ref.

CNTs MB 64.7 124
MWCNTs Acid Red 18 166.67 125
MWCNTs MB 132.6 126
CNTs C.I. Direct Yellow 86 56.2 127

C.I. Direct Red 224 61.3
MWCNTs Reactive Red M-2BE 335.7 128
MWCNTs Reactive Blue 4 502.5 126
Functionalized-MWCNTs CR 148 129

Reactive Green HE4BD 152
Golden Yellow MR 141

CNTs/AC fabric Basic Violet 10 220 130
MWCNTs/Fe3C Direct Red 23 172 131
CNTs/Zn:ZnO@Ni2P Azure B 38.60 132
Calcium alginate/MWCNTs MB 606.1 126

MO 12.5
MWCNTs/Gly/b-CD MB 90.90 133

AcidBblue 113 172.41
MO 96.15
Disperse Red 1 500

MWCNTs Cd(II) 181.81 134
Acid-treated CS-CNTs Pb(II) 158.7 135
Functionalized sulfur incorporated WCNT (CNT-S) Hg(II) 151.51 136
Magnetite SWCNT CoS Hg(II) 1666 137
MWCNTs–Fe3O4 Hg(II) 238.87 138
Fe3O4/CNT Cu(II) 23.4 139
CNT Cr(VI) 1.0 140
MWCNT Ni(II) 3.7 141
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can be evaporated in the form of carbon nanoparticles and can
then be deposited on the substrate surface to form a restructured
thin graphene layer.

2.3.2 Application. Graphenes have plentiful potential
applications, including transistors, transparent electrodes, ultra-
capacitors, fuel cells, gas sensors, biosensors, batteries, hydrogen
storage, drug delivery, extraction, photocatalysts and adsorbants.
One of the most highly discussed applications of graphene in
chemistry is its potential applicability in the adsorption of organic
compounds, especially common hazardous materials. Graphene
compounds have also been broadly investigated for the adsorptive
elimination of different hazardous substances, such as
antibiotics,145–147 gases,148 metals,2,149–151 VOCs,152,153 phenolic
compounds,154–156 oil,157–159 pesticides160–162 and dyes163–165 from
water solution. A summary of pollutant adsorption capacities by
graphenes and composite graphenes is presented in Table 6.

GO/cellulose membranes could be used for the effective
removal of metal ions like Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and
Pb(II) ions.171 Adsorption isotherms and kinetics showed that
the sorption of understudy metal ions on membranes happens
in a monolayer coverage. The maximum adsorption capacities
corresponding to Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) ions
at a pH of 4.5 were 15.5, 14.3, 26.6, 16.7, 26.8, 107.9 mg g�1,
respectively. Yu et al.184 fabricated a GO nanosheet and in the
next stage applied it for the removal of four typical antibiotic

resistant genes (ARGs) with two various molecular structures
(i.e., cyclic (c)- and double-stranded (ds)-ARGs). The highest
adsorption equilibrium was achieved within 15 mins which
strongly denoted the high efficiency of GO for the removal of
ARGs. The removal of four ARGs was as high as 3.11 logs toward
c-ARGs and 2.88 logs toward ds-ARGs in 300 mg mL�1 GO
solution, which was attributed to high-energy adsorption sites,
including conjugate p region sites and oxygen-containing
groups. Fig. 3 shows the adsorption kinetics of c-ARGs (a)
and ds-ARGs (b) on a GO nanosheet and the schematics of
c- and ds-ARG adsorption.

The adsorption and removal of volatile organic compounds
(VOCs) such as benzene and butanone by GO/carbon composite
nanofibers was studied by Guo et al.185 The highest benzene
and butanone adsorption capacities onto the GO/carbon com-
posite nanofibers at 20 1C reached 83.2 and 130.5 cm3 g�1,
respectively. Therefore, GO simultaneously improves the adsorp-
tion capacities of the nanofibers for polar VOCs. Xu et al.174

prepared graphene and applied it for the removal of bisphenol A
(BPA) from aqueous solution by adsorption. At 302.15 K, the
highest adsorption capacity of graphene for BPA achieved from a
Langmuir isotherm was 182 mg g�1. The adsorption of BPA on
graphene occurs with the involvement of p–p interaction and
hydrogen bonds. Brodie’s method and grafting with poly-
(N-isopropylacrylamide) (PNIPAM) was used by Gong et al.186

Table 6 Summary of adsorption capacities by graphenes, graphene analogues and composite graphene

Graphenes Pollutants Adsorbent capacity (mg g�1) Ref.

Graphene-like layered molybdenum disulfide Antibiotic doxycycline 310 166
(Fe3O4) modified graphene nanoplatelets Antibiotic amoxicillin 14.10 167
GO Au(III) 108.34 168

Pd(II) 80.78
Pt(IV) 71.38

EDTA-magnetic GO Cu(II) 301.2 169
Hg(II) 268.4
Pb(II) 508.4

Polyamide–graphene Sb(III) 158.2 170
GO/cellulose membranes Co(II) 15.5 171

Ni(II) 14.3
Cu(II) 26.6
Zn(II) 16.7
Cd(II) 26.8
Pb(II) 107.9

Chitosan/GO Au(III) 1076.65 172
Pd(II) 216.92

GO/NiFe2O4 Cr(III) 25.0 173
Pb(II) 45.4

Graphene Bisphenol A 182 174
GO Cu(II) 294 175

Zn(II) 345
Cd(II) 530
Pb(II) 1119

Fe3O4/rGO nanocomposite Ametryn 57.64 176
GO Co(II) 21.28 177
GO Acid Orange 8 29.0 178

Direct Red 23 15.3
GO Basic Yellow 28 68.5 179

Basic Red 46 76.9
GO/iron oxide MB 39 180
GO Pb(II) 250 181
GO Ni(II) 38.61 182
GO Th(IV) 58.59 183
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to synthesize PNIPAM grafted GO (GO–PNIPAM) for the selective
adsorption of phenol pollutants. The results indicate selective
adsorption of phenol owing to the contribution of different
interactions like hydrogen bonds, so that the adsorption perfor-
mance depends significantly on temperature. The adsorption of
oil and organic solvents from a water solution using magnetic
graphene foam loaded with magnetite (Fe3O4) nanoparticles was
studied.187 The magnetic foam with porous and hierarchical
structures illustrates a high capability to adsorb oil and different
organic solvents. The magnetic graphene foam revealed great
reusability and durability under cyclic operations. Sharif et al.
reported that GO/iron oxide (rGO–IO) nanocomposites were
fabricated using a solvothermal method and used for the
removal of MB with an adsorption capacity of 39 mg g�1 for
the composite containing 60 wt% IO, while increasing the
fraction of IO to 75 wt% was associated with a large reduction
of the adsorptive capacity to 26 mg g�1. The magnetic

b-cyclodextrin–chitosan/GO material (MCCG) adsorbents were
used for the removal of MB.188 MCCG indicated remarkable
removal capacity and quick adsorption rates due to the high
surface area of GO, the hydrophobicity of b-cyclodextrin and
the presence of functional groups and reactive centers like
amino and hydroxyl groups of chitosan.

2.4 Carbon nanofibers

2.4.1 Fabrication and modification. CNFs were prepared
by electrospinning technology and subsequently applied as
interesting substance in various fields.189–192 CNFs with average
diameters of 50–200 nm can fabricated by two methods: vapor
deposition growth193,194 and electrospinning,195–197 where electro-
spinning has more extensive applications for the preparation of
CNFs. In this technique, the precursors of CNFs are generally
fabricated from polymer nanofibers. PAN (polyacrylonitrile),198

pitches, poly(vinyl alcohol) (PVA),199–201 polyimides (PIs),202–204

Fig. 3 Adsorption kinetics of c-ARGs (a), ds-ARGs (b) on a GO nanosheet and (c) representation of c- and ds-ARGs adsorbed onto GO nanosheets
(A, adenine; C, cytosine; G, guanine; T, thymine).184
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polybenzimidazole (PBI),205–207 poly(vinylidene fluoride)
(PVDF),208–210 phenolic resin211–213 and lignin201,214 are used
as polymers. The major properties of CNF composites include
satisfactory electrical, thermal conductivity and mechanical
properties and their mechanical and thermal transport pheno-
mena are widely studied.215–217 Subsequently the polymer
synthesis of nanofibers successfully exposed to thermal treatment
to carbonize them (up to 1000 1C) under various atmospheric
conditions and temperatures were demonstrated to form CNFs.
Subsequently, the volume and weight change generally happen
within the carbonization protocol, which causes a decrease in the
diameter of these nanofibers.218,219

2.4.2 Application. CNFs and their derivatives indicated
great efficiency in environmental contaminant elimination like
metals,220 dyes,221,222 volatile organic compounds,223,224

organic pollutants (phenolic compounds225 and pesticides226),
gaseous persistent organic pollutants,227 toxic industrial
chemicals228 and organic solvents.229 AC nanofibers are
applied with high efficiency to remove various pollutants owing
to their large surface area, functional groups and electron
transfer that supply conditions for their consideration as
excellent adsorbents and the best catalytic materials.230,231

Table 7 summarizes the adsorption capacities of CNFs for the
removal of various pollutants from wastewater.

The nitrogen contents on AC nanofibers (ACNFs) by electro-
spinning PAN nanofibers play a great role in formaldehyde
adsorption.243 The carbonization of nanofibers occurs in the
presence of steam with many nitrogen-containing functional
groups. The ACNFs show higher capability compared to the
normal thick ACFs for formaldehyde adsorption even in a
humid atmosphere. CNFs were synthesized from electrospun
PAN polymer followed by thermal treatments of stabilization,
carbonization and activation and were subsequently applied
for the adsorption of organic chemicals, such as ciprofloxacin

(CIP), bisphenol (BPA) and 2-chlorophenol (2-CP).244 The high
surface area of these CNTs was 2326 m2 g�1, and the micro/
mesoporous structure and also the maximum adsorption
capacities (qm) of the obtained CNFs can be arranged in the
order CIP 4 BPA 4 2-CP. Accordingly, the maximum adsorp-
tion capacities of these CNFs for pollutants can be arranged
in the order CIP 4 BPA 4 2-CP and show enhancements of
2.6 for CIP, 1.6 for BPA and 1.1 for 2-CP in comparison
with commercial powdered AC. Fe3O4/PAN composite NFs are
synthesized by a two-step process composed of electrospinning
and solvothermal approaches.245 The characterization exhi-
bited the formation of uniform nanoparticles coated on the
PAN nanofibers. The removal of tetracycline (TC) as an anti-
biotic onto Fe3O4/PAN composite NFs well fitted a pseudo-
second-order kinetics model, while the maximum adsorption
capacity corresponding to a Langmuir isotherm model was
257.07 mg g�1 (pH = 6). In addition, these nanofibers indicate
good regenerability in adsorption/desorption cycles with low
cost and an acceptable environmentally-friendly relationship.
Fig. 4 indicates the preparation procedures for Fe3O4/PAN
composite NFs and also their adsorption capacities and kinetics.

The adsorption equilibrium isotherms corresponding to
volatile organic compounds (VOCs) comprising benzene and
ethanol by AC nanofibers (ACNFs) were studied in detail.246 The
ACNFs (PAN/DMF 10 wt%) were synthesized by electrospinning
and subsequently activated with steam, and due to their much
smaller diameter and the presence of micro-pores on the
ACNFs are expected to supply more available adsorption sites.
According to the results, ACNFs show higher adsorption capa-
cities for VOCs than does AC fiber at extremely low relative
pressures. The same group also fabricated AECNFs in oxidative
acid (HNO3 and H2SO4) to achieve surface oxidation.247 The
results indicate that the amount of oxygen functional groups on
the nanofibers enhances the degree of acid oxidation, which

Table 7 Comparison of various types of CNFs

Adsorbent Pollutants Adsorption capacity (mg g�1) Ref.

Alkali-activated electrospun CNF MB 722 232
CR 547.64

Sulfonated CNF MB 943.1 233
ACF MB 72.46 234
Mesoporous CNF Methylthionine chloride 567 235

MO 558
Acid Red 1 493

ACF–ZrFe Phosphate 26.3 236
Sonicated ACF/CNF Phenol 290 225
NH3 treated ACF Pb(II) 40
oPAN@C CNF MB 153.37 237

Pb(II) 143.27
Magnetic tubular CNFs Cu(II) 375.93 238
Carbonaceous nanofibers U(VI) 125 239

Eu(III) 91
CNF web Cr(VI) 56.9 240
Carboxylic modified tubular CNFs U(VI) 1928.59 241
Sulphonic modified tubular CNFs 1827.57
Aminated PAN nanofiber mat Cu(II) 150.6 242

Ag(I) 155.5
Fe(II) 116.5
Pb(II) 60.6
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leads to enhancement of the adsorption tendency on oxidized
nanofibers. The adsorption performance of pure and oxidized
CNFs for organic compounds like benzene (non-polar), buta-
none and ethanol (polar) were evaluated by the isotherms
model. Also, the AECNFs exhibit the highest water adsorption
capacities and increase the adsorption tendency for butanone and
ethanol relative to benzene on nanofibers. Schneiderman et al.248

fabricated PAN nanofibers by combining the electrospinning
technique and subsequent chemical surface-functionalization with
weak acid (carboxylic acid) to act as an active adsorption material,
which was subsequently applied to protein (i.e., lysozyme adsorp-
tion). In addition, the presence of a surfactant additive is asso-
ciated with a significant reduction in non-specific binding of
unintended impurities and leads to an improvement in the
selectivity of electrospun CNF mats as solid adsorption substances
for biotherapeutic processes. The specific surface area and average
micro-pore volume of ACNFs have a positive relationship with
activation temperatures over 800 to 1000 1C.249 An excellent
toluene adsorption capacity of 65 g (toluene)/100 g (ACNFs) was
obtained using CNFs activated at 1000 1C. The same group also
prepared manganese embedded PAN-based ACNFs in various Mn
loadings for toluene adsorption250 and their unique ability for
such adsorption is related to micropore ACNFs embedding
Mn particles which leads to the formation of pores by catalytic
activation during the burn-off process. PAN CNFs synthesized by
Shim et al.251 were shown to be microporous substances with
small amounts of mesopore regions and higher adsorption capa-
city for benzene compared to commercial ACFs. The sublimation

method is used to prepare electrospun macroporous CNF film
(MCNFF) by the electrospinning technique and during the carbo-
nization of PTA–PAN nanofibers, PTA sublimed and generated
macropores within the CNFs.252 The MCNFFs illustrated excellent
oil adsorption with maximum capacities of 62.6, 73.8, 64.0, 94.0
and 138.4 g g�1 for ethanol, pump oil, mineral oil, corn oil and
silicone oil. Also, the MCNFFs exhibited selective absorption of oil
from water due to their superhydrophobic and superoleophilic
properties.

2.5 Biochar

BC is a carbonaceous solid residue which can be produced from
a variety of agricultural and industrial biomasses via pyrolysis
at various temperatures under oxygen-limited conditions.253,254

BC, charcoal, and AC are three forms of carbon that can be
produced from organic material. They have a lot of overlap,
with similar compositions and production approaches, but they
also differ in terms of their practical applications. Charcoal is
typically prepared from wood and used as a fuel whereas BC is
attributed with soil conditioning and water remediation prop-
erties, whereas AC almost is attributed with filter treatment.255

It has been said in some literature that BC generally lacks an
activation process in comparison with AC and it is fabricated at
relatively lower temperatures than AC.256 BC has attracted much
attention due to its promising benefits for soil improvement and the
removal of pollutants from the environment.257,258 In particular,
BC as a low-cost adsorbent can be used as a substitute for AC, which
is applied as a conventional adsorbent owing to its ability to adsorb

Fig. 4 (a) Preparation of Fe3O4/PAN composite NFs, (b) pollutant TC adsorption capacities onto Fe3O4/PAN composite NFs and residual Fe in solution
with varying pH and (c) adsorption kinetics of TC on Fe3O4/PAN composite NFs.245
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various pollutants.259 Recently, the field of BC research has begun to
grow as a technology for the recycling and reduction of organic
waste resources.

2.5.1 Synthesis of BC. The raw materials used as a source
for the preparation of BC include agricultural residues, forestry
waste, the organic fraction of municipal solid waste, industrial
biomass by-products, and animal manures. BC as biomass-
derived materials are fabricated from different biomass feed-
stock types via pyrolysis (300–700 1C) under oxygen-free or
oxygen-limited conditions.254,260 The adsorption capacity of
BC is affected by its own physicochemical properties like specific
surface area, special functional groups, pore properties, and
surface charges. Generally, the properties of BC depend on
the type of materials, and the pyrolysis conditions, including
pyrolysis time and temperature, heating rate and pyrolysis
furnace.261 Generally, various BC modification methods have
been used, including impregnation with mineral elements, the
assistance of nanoscale-metals, surface oxidation and surface
reduction.259

2.5.2 Application. The abilities of as-fabricated BC emerged
from their special properties for the adsorptive removal of
various pollutants, such as metals,262,263 dyes,264 pesticides,265

and antibiotics.266 A summary of pollutant adsorption capacities
by BC as adsorbent is indicated in Table 8.

2.6 Carbon aerogel

Aerogels are solid materials which are interconnected by
colloidal particles to make a network structure and filled with
gas phase. Another definition of an aerogel is a gel including a

microporous solid that is dispersed in a gas phase.279,280 Until
now, aerogels have been divided based on matrix type into
oxide aerogels, carbide aerogels, organic aerogels and CAs.281

CAs as new form of mesoporous carbon material were considered
to be highly attractive materials for adsorbents, catalyst supports,
electrochemical capacitors and insulation materials.282–284

In addition, CAs have very low thermal conductivity owing to
their nano-sized pores and particle structures.281 Carbon-
based aerogels as three-dimensional (3D) structures includes
CNT aerogels, graphene aerogels, carbon micro-belt aerogels
and carbon fiber aerogels.285,286

2.6.1 Synthesis of CAs. The prominent properties of
carbon-based aerogels include high specific surface area, low
density, high porosity, good electrical conductivity and excel-
lent hydrophobicity.285 Conventionally, CAs can be synthesized
from a polymer/monomer polymerization reaction and subse-
quent acetone exchange and supercritical carbon dioxide drying
and pyrolysis under vacuum.287 One method of preparation of
CAs is the polycondensation of organic materials, including:
resorcinol/formaldehyde,288 cresol/formaldehyde,289 phenol/
formaldehyde,290 phloroglucinol/formaldehyde,291 5-methyl-
resorcinol/formaldehyde,292 and cresol/resorcinol/formalde-
hyde.293 Generally, CAs have been fabricated according to the
same recipe and there are several main steps that include:
gelation and subsequent curing, solvent exchange, drying of the
wet gel and the carbonization or pyrolysis of the dried gel.281,294

In summary, drying of the wet gel by environmental drying,
supercritical drying or freeze-drying, results in an organic
xerogel, aerogel or cryogel, respectively.294 In addition, CAs

Table 8 Summary of maximum adsorption capacities by various BC

Adsorbent Source Pollutants Adsorbent capacity (mg g�1) Ref.

BC Frass of yellow mealworms Malachite Green (MG) 1738.6 267
Crystal Violet (CV) 175.6
CR 86.9

BC/nZVI Corn straw MG 515.77 268
BC Sludge-rice husk Direct Red 4BS 59.77 269

Acid Orange II 42.12
React Blue 19 38.46
MB 22.59

BC Switchgrass (Panicum virgatum L.) MB 196.1 270
Orange G 38.2
CR 22.6

BC Litchi peel CR 404.4 271
MG 2468

BC Cladodes of Opuntia ficus-indica MG 1341 272
Cu(II) 49
Ni(II) 44

MnO2-BC Composted swine manure Pb(II) 127.75 273
Cd(II) 14.41

MgO@N-BC T. angustifolia biomass Pb(II) 893 274
BC Rice straw Cd(II) 65.40 275

Ni(II) 54.60
BC Discarded mushroom-stick Pb(II) 21.0 276

Cu(II) 18.8
Cd(II) 11.2
Ni(II) 9.8

Chitosan/magnetic loofah BC Loofah sponges Cr(VI) 30.14 277
Cu(II) 54.68

N-Doping BC Crop straws Cu(II) 1.63 mmol g�1 278
Cd(II) 1.76 mmol g�1
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derived from biomass materials due to their low cost, environ-
mental friendliness and renewability have attracted much
attention. Usable materials for the production of CAs include
chitosan,295 lignin,296 watermelon,297 bagasse,298 bamboo,299

cotton,300 starch,301 glucose,302 and cellulose.303 Various
applications of CAs comprising supercapacitors,304 sensors,305

hydrogen storage,306 batteries,307 electro-Fenton oxidation,308

purification,309 and adsorbents310 have been studied.
2.6.2 Application. The ability to prepare CAs emerges from

their unique properties for the adsorptive removal of various
organic and inorganic substances, including metals,311,312

dyes,313,314 antibiotics,315,316 volatile organic compounds,317

organic solvents,318 oils,285,319 CO2,320 and H2S.321 One of the

highly discussed applications of CA in chemistry is its potential
applicability in the adsorption of organic compounds, espe-
cially common hazardous materials. Generally, the presence of
oxygen, nitrogen, and sulfur groups on the surface of the CBMs,
especially CAs, can increase the porosity, hydrophilicity and
selectivity of the adsorbents.322,323 Typically, a variety of deri-
vatives of CAs have been studied for the adsorption of organic
and inorganic pollutants. Magnetic mesoporous Fe/CA struc-
tures with a high specific surface area of 487 m2 g�1 were
prepared through the carbonization of composite Fe3O4/
phenol-formaldehyde resin structures using a hydrothermal
process with the addition of phenol.324 The Fe/CA were further
applied for the adsorption of As(V) with a maximum As(V)

Table 9 Summary of adsorption capacities by various CAs

Adsorbent Pollutants Adsorbent capacity (mg g�1) Ref.

CA CV 1515 301
MV 1423
MB 1181

CA Ibuprofen 7.43 329
CA Reactive Brilliant Red X-3B 565 330
Konjac glucomannan/AC MB 416.67 325
Activated CA MB 249.6 287

MG 245.3
Activated CA Phenol 204.26 331

P-nitrophenol 613.34
Resorcinol 194.07
Tetracycline 1030.05
Oxytetracycline 813.80
Doxycycline 922.93
Sulfamethazine 834.92
MB 754.1

3D CA Oxytetracycline 1729 327
Diethyl phthalate 680
MB 685
Cd(II) 235
Diesel 421 g g�1

N-Doped activated mesoporous CA MO B400 313
3D N-doped CA MG 238.2 323

MB 230.4
N-Doped CA Rhodamine B 250 332
N/S doped magnetic CA Bisphenol-A 199.8 322
Cellulose-based hydrophobic CA MG 1947 333

Cu(II) 801
CA Pb(II) 0.75 334

Hg(II) 45.62
Cd(II) 400.8
Cu(II) 561.7
Mn(II) 1.275
Zn(II) 1.843
Ni(II) 12.875

CA Hg(II) 34.96 335
Pb(II) 34.72
Ni(II) 2.80

CA Pb(II) 34.72 311
Hg(II) 34.96
Cd(II) 15.53

CA Cu(II) 55.25 312
CA Cd(II) 15.53 336
CA Pb(II) 34.72 337
CA Sr(II) 24.63 338
CA/Na2Ti3O7 Rb(I) 1.11 mmol g�1 339

Cs(I) 1.45 mmol g�1

CA Cd(II) 18.6 340
Cr(VI) 35.5
Ni(II) 32.2

Zn–Al LDH/AC Te(IV) 132 341
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uptake evaluated as 216.9 mg g�1. Magnetic Fe and Mn oxide
loaded CA based on konjac glucomannan (KGM), which is a
type of natural polysaccharide from the tubers of the amorpho-
phallus konjac plant. The performances of a KGM-based mag-
netic CA matrix for the adsorption of anionic MO and cationic
MB were studied.325 The maximum MO and MB uptake capacities
of this CA reached 7.42 mg g�1 and 9.37 mg g�1, respectively,
according to the Langmuir isotherm (303 K). A flexible carbon
fiber aerogel material prepared from cotton using an air-limited
calcination approach was used for the adsorption of MB from
aqueous solution.326 The morphology of the cotton consisted of a
regular smooth fibrous structure and the carbon fiber aerogels
still retained an elongated fibrous morphology after calcination.
Based on the Langmuir isotherm model, the maximum mono-
layer adsorption capacity was calculated to be 102.23 mg g�1. The
3D CAs prepared from 1D CNTs and 2D GO showed a highly
porous and stable structure and their adsorption performances
were promising for emerging pollutants.327 The using of waste
paper helps to save resources and protect the environment.
Li et al.328 used a combination of waste office paper and chitosan
to synthesize CA as an adsorbent for the removal of Cu(II). The
maximum Cu(II) capacity of this CA reached 156.3 mg g�1

according to the Langmuir isotherm. A summary of pollutant
adsorption capacities by CA based materials is presented in
Table 9.

2.7 Other carbon based materials

Besides AC, graphene, CNTs, CNFs, BC, and CAs, there are
other materials containing carbon that can used in the adsorp-
tion of pollutants from the environment. Metal–organic frame-
works (MOFs) and covalent organic frameworks (COFs) are
porous organic frameworks derived from carbon materials.
MOFs and COFs are two classes of adsorbent for the efficient
removal of various pollutants. These materials have attracted
much attention due to their unusual structures and properties,
such as massive porosity and the simple tunability of their pore
size from the microporous to the mesoporous scale.342,343

3 Conclusion and perspectives

In summary, this review highlights the potential prospects for
using carbon-based materials like activated carbon, graphene,
carbon nanotubes, carbon nanofibers, biochar and carbon
aerogels to remove hazardous materials from aqueous media.
The influence of various preparation methods on the physico-
chemical properties of the carbon-based adsorbent were sum-
marized, along with the related effects on pollutant adsorption.
Overall, the rapid growth of this field shows that CBMs seem
to be the best candidates for contaminant management
with prominent capacities and easy production. CBMs with
designed structures, morphologies and functional groups are
promising adsorbents for various environmental applications.
These materials indicate extremely good potential for the
adsorptive removal of inorganic and organic pollutants, such
as antibiotics, dyes, heavy metals, pesticides, oils, phenolic and

volatile organic compounds and gas pollutants from various
media. The high adsorption capacity and robust selectivity
make carbon nano-materials supreme carriers for separating
both inorganic and organic pollutants by adsorption. Carbon-
based adsorbents for the removal of pollutants has been a key
area of research in order to improve and optimize the prepara-
tion process. Clearly, the interactions between the functional
groups of carbon materials play key roles in the removal of
various pollutants from aqueous solutions. The physicochemical
adsorption properties of carbon nano-materials are dominated by
the synthesis, functionalization and/or decoration approaches.
The present review is forecast to enlighten more future studies
to push forward the synthesis and preparation and subsequent
usage of carbon-based nano-materials for the adsorptive elimina-
tion of common hazardous compounds. Therefore, it is necessary
to develop the preparation of carbon-based adsorbents to effi-
ciently remove different pollutants. Despite efforts by researchers
to prepare various CBMs as adsorbents, it is generally believed
that various profound and comprehensive methods for the syn-
thesis of carbon adsorbents are required. In addition, for the
reduction and removal of secondary pollution that is caused by
the physicochemical preparation of CBMs, materials synthesis
using various approaches should be studied in depth. Most
research only examines CBMs under laboratory conditions, while
actual water generally contains different pollutants in complex
combinations; therefore, further information is required in large-
scale practical environments.
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