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Sensing morphogenesis of bone cells under
microfluidic shear stress by holographic
microscopy and automatic aberration
compensation with deep learning†
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We present sensing time-lapse morphogenesis of living bone cells under micro-fluidic shear stress (FSS) by

digital holographic (DH) microscopy. To remove the effect of aberrations on quantitative measurements,

we propose a numerical and automatic method to compensate for aberrations based on a convolutional

neural network (CNN). For the first time, the aberration compensation issue is considered as a regression

task where optimal coefficients for constructing the phase aberration map act as responses corresponding

to the input aberrated phase image. We adopted tens of thousands of living cells' phase images

reconstructed from digital holograms for training the CNN. The experiments demonstrate that, based on

the trained network, phase aberrations can be totally removed in real-time without any hypothesis of

object and aberration phase, knowledge of the setup's physical parameters, and the operation of selecting

background regions; hence, the morphogenesis of the bone cells under FSS is accurately detected and

quantitatively analyzed. The results show that the proposed method could provide a highly efficient and

versatile way to investigate the effects of micro-FSS on living biological cells in microfluidic lab-on-chip

platforms thanks to the combination of phase-contrast label-free microcopy with artificial intelligence.

Introduction

Bone acts as a structural support for the body and is a
dynamic tissue with the capacity to adapt itself to its
mechanical environment.1 Bone adaptation to mechanical
loading typically results in the formation of a bone structure
while leading to a change in mass and density. In bone
tissues, osteocytes are embedded within a microfluid-filled
network made up of widely spaced lacunae and
interconnected via cellular processes contained within thin
channels known as canaliculi. These lacunar–canalicular
systems surround osteocytes and expose them to high levels
of fluid shear upon bone tissue compression.2,3 The resulting
micro-fluidic shear stress (FSS) is one of the habitual loadings

that osteocytes experience in vivo, and is important for bone
tissue function.4 The ability of osteocytes to sense and
respond to mechanical stimuli depends on the shape of cell
bodies and number and length of cell processes. There are
only a few in vitro studies that directly measure the 3D
deformation of osteocytes under long-term fluid flow,
although their sensitivity to different levels of micro-FSS has
been demonstrated.5 Therefore, there is a need to investigate
3D morphological changes by label-free and quantitative
microscopy.

Digital holographic (DH) microscopy is a powerful
imaging technique that can measure tiny objects' structures
due to its capability to capture the diffracted wave-front of a
3D feature. It can provide quantitative phase information by
changing the refractive index, which enables its wide
applications in the biomedical field, such as cell analysis,6,7

cell counting,8 cellular process monitoring,9,10 disease
diagnosis,11,12 cancer cell isolation,13,14 and treatment
evaluation.15 In a DH recording process, the hologram not
only contains the object's information but also the
aberrations of the setup. These aberrations, which are caused
by the microscope objective (MO), the imperfections of
optical components and construction of the system, would
induce a serious distortion in the quantitative phase image
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and severely hinder the quantitative measurement of the
object's structure. So far, various methods have been
proposed to compensate the aberrations in DH microscopy.
By and large, they can be categorized into two groups:
physical and numerical methods. The physical techniques
induced unique optical configurations in the optical system,
such as a telecentric configuration,16–18 an electrically
adjustable lens,19–21 or a demand for an additional object-
free reference hologram.22,23 In fact, the physical strategy
complicates the holographic recording process or
experimental effort. The numerical methods are based on
numerical post-processing without additional hologram or
optical components, including fitting calculation,24–29

principal component analysis,30,31 spectral analysis,32–34

geometrical transformations,35– 38 and nonlinear
optimization.39,40

For long time-lapse monitoring of cell morphological
changes under fluid shear stress, the aberrations of the
system will inevitably change over time in real-world
experiments. In such a situation, the numerical approaches
are more suitable than the physical approaches. The fitting-
based method can totally remove aberrations but requires
detecting object-free background regions as reference
surfaces. Under the action of fluid shearing, the distribution
of the adherent cells may change in addition to cell
morphology. Therefore, detecting background regions
manually is impractical to be adopted in dynamic
measurements. Recently, a learning-based method has been
proposed to automatically detect the object-free areas for
subsequent fitting calculations.41 Even though non-fitting
methods can predict the aberration without background
detection, the principal component-based method assumes
that only non-cross terms exist, which limits measurement
accuracy because the micro-channels and liquid flow may
induce high-order aberrations. The geometrical
transformation-based method is solely suitable for removing
low-order aberrations such as the tilt aberration in the off-
axis configuration as well as a parabolic aberration caused by
the MO. The spectrum analysis-based method is actually a
semi-automatic approach since it requires filtering and
centralization in the spectrum analysis, which is inevitably
implemented manually. The optimization-based method
assumes that the object phase is a small perturbation
compared to the aberrations, limiting the scope of its
applications. Meanwhile, this method has a lower efficiency
due to solving the optimization problem and determining the
regularization parameter by trial and error.

Deep learning forms a rapidly growing research field and
some recent work has utilized deep learning to reinforce DH
microscopy.42,43 In this paper, we proposed a CNN for
multivariate regression based on the resnet-50 model
structure to cope with the phase aberration compensation
problem that allows performing long-term monitoring of
bone cells' morphological response under micro-FSS. We
transform, for the first time, the problem of estimating the
coefficients for constructing a phase aberration map into a

regression problem, to the best of our knowledge. The
aberrated phase images are put into this model. The CNN
then automatically learns the internal features of phase
aberrations and builds up a connection with the phase
aberration. Then, the optimal coefficients are estimated as
an output of the network. Based on these coefficients, the
phase aberration map is built by polynomial fitting, and the
phase aberrations are removed by subtracting the aberration
phase image with the phase map. In contrast to the previous
learning-based approach, the proposed method allows the
phase compensation task to complete without detecting
background regions and knowing any physical parameters
about the setup. Moreover, the presented method can
effectively compensate phase aberrations in the phase maps,
which do not have much background for fitting calculation.
Our work shows how merging imaging technology and
artificial intelligence for lab-on-chip platforms boosts the
applications in cell analysis and biomedical fields.44–52

Digital holographic microscopy for
quantitative morphogenesis

A typical off-axis DHM system is shown in Fig. 1. The beam
from a 532 nm laser travels through a neutral density filter
(NDF), and the spatial filter (SF) expanded it to a plane wave.
The polarizing beam splitter (PBS) splits the collimated beam
into a reference beam and an object beam. A half-wave plate
(λ/2) is used behind the PBS to adjust the two beams'
intensity ratios. The object beam is converged by a condenser
lens (CL) and projected onto the specimen. A 20× microscope
objective (MO) and a tube lens (TL) are used to magnify the
object wave. The reference wave and the object wave are
superimposed with a small tilt angle of θ by a beam splitter
(BS) and recorded by a CCD camera (1024 × 1024 pixels, 5.86
μm, PointGrey, Canada).

In this configuration, the MO produces a magnified image
of the object, and the camera plane is located between the

Fig. 1 The off-axis DHM setup.
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MO and the image plane, at a distance d from the image, as
shown in Fig. 2.

In the reconstruction process, using a digital reference
wave assumed to be a normalized perfect plane or spherical
waves, the object wave's complex amplitude is digitally
reconstructed, and contains the phase deformation
associated with the MO and the phase information of the
object. The reconstructed wave-front in the image plane is
described as:

Ψ(x, y) = Γ(x, y)·Ω(x, y) (1)

where Ω(x, y) is the phase distribution induced by the object
only, which results from a refractive index or/and thickness
difference of the object. Γ(x, y) is the phase aberration
induced by the MO and other optical elements in the optical
setup, which corresponds to defocus aberration, spherical
aberration, astigmatism, and so on. In fact, Γ(x, y) can be
defined by using 2D standard polynomial formulation:

Γ s x; yð Þ ¼ exp − i 2π
λ

Xαþβ¼o

α¼β¼0

Pαβ·xαyβ
" #

(2)

where Pαβ is the polynomial coefficients and o is the
polynomial orders. It is noted that the goal of the phase
aberration compensation is to build a phase map
corresponding to Γ(x, y). In other words, if the appropriate
coefficients of Pαβ are found, Γ(x, y) can be retrieved by
polynomial fitting with eqn (2). That is, the aberrated phase
image can be marked using a set of optimal polynomial
coefficients.

Aberration correction by deep neural
network

If we consider the optimization process as a regression task
in eqn (2), the regression problem can be solved by using a
CNN. Fig. 3 shows the proposed strategy. The CNN
components are the convolution layer, the max-pooling layer,
and the fully connected layer. Convolutional layers apply a
specified number of convolution filters to the image. The
feature's spatial size and the number of parameters are
reduced by using the network's max-pooling layer. The last
fully connected layer is utilized to flatten the feature matrix
in the previous layer to a single vector and to classify the
phase images and output multivariate regression parameters.
Subsequently, based on the network's output, a set of
polynomial coefficients, Γ(x, y), can be built by polynomial
fitting. Finally, the phase aberrations are compensated by
subtracting the phase map Γ(x, y) from the aberrated phase
image.

For training the network, residual learning is used to
simplify this process. The residual block with identity
mappings added between layers can significantly optimize
the training process without extra computation. Specifically,
the network is developed from the structure of a resnet-50
model. The deep network structure is shown in Fig. 4. The

Fig. 2 The configuration of holographic microscopy.

Fig. 3 The strategy of aberration compensation based on the CNN.
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phase images of the inputted network are zoomed out to 256
× 256 pixels from the original size of 1024 × 1024 pixels to
speed up the training and prediction process. Therefore, the
input volume is batch size × 256 × 256 × 1 (1 channel
indicates a grayscale image), where the batch size is the
number of images in each training session. The network
mainly consists of two kinds of blocks, which are con_block
and identity_block, respectively. The output of the last max-
pooling layer is 1 × 1 × 2048. Finally, the fully connected layer
maps the data into 1 × 1 × N, where N is the parameter
number of the aberration polynomial. The loss function is
the mean absolute error in the training process.

Experimental verification

For building a data set, the holograms of the living cells are
recorded by the DHM system as shown in Fig. 1. These cells
are seeded in 35 mm glass dishes and placed on a two-
dimensional translation stage to perform a scanning
observation. Thus, over 2000 holograms are recorded at
different fields of view (FOVs), so the diversity of phase
aberrations and object's distributions is ensured. Further,
these holograms are rotated by 90°, 180°, and 270° to obtain
more training samples. Consequently, there are about 10 000
holograms. Then, the phase images are reconstructed using a
convolutional reconstruction algorithm and used to make up
the data set (input images). The ground truth (label
coefficients) is the optimal polynomial coefficients acquired
using a manual method. First, the phase images are
reconstructed from the holograms that contain cell
information and phase aberrations. A digital mask of object-
free regions is then created by manual segmentation for each
phase image. Based on the phase data extracted from the
mask, the optimal polynomial coefficients which enabled the
construction of the phase aberrations are retrieved by
implementing least squares surface fitting. These polynomial
coefficients are used for the network training as ground

truth. Eighty percent of the data set is employed for the
training, and the rest is used for validation. We define the
loss function as the mean square error (MSE) between this
network's output and the data set's coefficients. To avoid
overfitting in the training process, we added an L2 norm to
the loss function, where L2 is a regularization method. This
method simplifies the complexity of the model by
minimizing each element of the parameter matrix, so that
the model generalization can be better, and overfitting is
reduced effectively.

Then, we discuss the key parameters related to the
convergence of the loss function to optimize the training
process, such as the learning rate, optimizer, and batch size.
Expressly, the learning rates represent the step sizes of
gradient descent. The optimizer updates the network
parameters after each iteration. The batch size is the number
of training samples utilized in one iteration. We first discuss
the training results with the different optimizers and learning
rates. Fig. 5(a–c) present the loss curves after 3000 iterations.
Here, the learning rates range from 1 to 0.00001, and the
optimizers are selected as stochastic gradient descent with
momentum (Sgdm),53 adaptive moment estimation (Adam),54

and root mean square prop (Rmsprop),55 respectively. It can
be seen that the loss decays slower when using the lower
learning rate, but it can't converge to the minimum.

On the other hand, although the loss can decline faster
when using a higher learning rate, it is easy to get stuck and
be unstable. By comparing these results, we found that the
loss reached the minimum when using the Adam's optimizer
with the learning rate of 0.0001. Furthermore, the
compensated results based on the trained network outputs
with different optimizers and corresponding optimal learning
rates are compared, as shown in Fig. 5(d–g). Fig. 5(d) shows
the aberrated phase image. As shown in Fig. 5(e–g), the
optimizers used for the network training are Sgdm, Adam,
and Rmsprop, and the corresponding learning rates are 0.01,
0.0001, and 0.001, respectively. The variance of phase values

Fig. 4 The structure of the CNN for multivariate regression.
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along two lines in these compensated images is calculated,
as shown in Fig. 5(e–g). The results present that Adam should
be the best optimizer and the corresponding optimal
learning rate is 0.0001 for the network training.

To find a suitable batch size, we investigate the training
results with different batch sizes. Fig. 6(a) presents the loss
curves at different batch sizes within 20 epochs with Adam
optimizers and optimal learning rates. It can be seen that the
loss value decreases down to the minimum when the batch
size is 1, but the loss curve is not good for convergence due
to violent fluctuations. When the batch size increases to 96,

the loss curve is smooth, but the loss remained at a high
value, which also means it needs more time for the loss to
decline. In Fig, 6(b), which is the zoomed-in image of
Fig. 6(a), the loss reaches a lower value with smoother
fluctuations when the batch size is 32. Furthermore, we
compare the compensated results based on the trained
models' outputs with batch sizes of 1, 4, and 32. Fig. 6(d–f)
present the variance of phase values along two lines in these
images. According to these results and considering the
computer's speed, accuracy, and computation ability, we
select 32 as the optimal batch size.

Fig. 5 The training results with different optimizers and learning rates. (a) The change of training loss as optimizer is Stochastic Gradient Descent
with Momentum (Sgdm) and learning rate is taken 5 values from large to small. (b) The optimizer with Adaptive Moment Estimation (Adam). (c) The
optimizer with Adaptive Moment Estimation (Adam). (d) The image with phase aberration. (e) The compensated image based on the trained
network outputs with Sgdm optimizer and learning rate 0.01. (f) Adam optimizer and learning rate 0.0001. (g) Rmsprop optimizer and learning rate
0.001.

Fig. 6 The training results with different batch sizes (a) The change of training loss with batch size from 1 to 96 as optimizer is Adam and learning
rate of 0.0001. (b) The subarea of (a) which is zoomed in. (c) The image with phase aberration. (d) The compensated image based on the trained
network outputs with batch size 1. (e) with batch size 4. (f) with batch size 32.
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Subsequently, the CNN is trained with the optimal
parameter mentioned above, and the compensation results
are tested with the data that are not used in network training.
Meanwhile, the results are compared with that based on the
manual compensation method, as shown in Fig. 7. The first
column of Fig. 7 shows the aberrated phase images at
different FOVs. The second column exhibits the
compensation results by using a manual numerical
parametric lens (NPL) method. The third column shows the
compensation results of the proposed method. The fourth
column presents the polynomial coefficients from the
manual NPL method and the proposed method, respectively.
Obviously, the two sets of coefficients from the two methods
are very similar.

Further, we verify the proposed method by measuring
the microspheres, which are made of silicon dioxide with

the diameters of 40 μm and 20 μm. The results are shown
in Fig. 8. The first row shows the aberrated phase images.
The second row shows the compensated images. The third
row shows the profiles extracted from the four
microspheres, which are indicated in the second row,
respectively. The experiments demonstrated that the phase
aberrations are compensated accurately by using the trained
network and the structures of the microspheres are
measured precisely.

Dynamic cell morphology analysis
under fluid shear stress

Osteocyte is a type of bone cell that is three-dimensional
(3D), ellipsoidal, and accounts for approximately 95% of the
cell population of bone. They arise as terminally
differentiated osteoblasts that have become embedded in the
mineralizing osteoid matrix. Osteocytes connect to other
osteocytes and cells on the bone surface to form an extensive
dendritic network that senses mechanical strain and renders
the osteocyte. To verify the proposed method's ability in real-
world experiments where dynamic observation is needed, we

Fig. 7 The testing results and comparison of the proposed “automatic method” with respect to the “manual approach” for removing
aberrations. (a1–a3) The image with phase aberration. (b1–b3) The compensated image by using a numerical parametric lens (NPL) method by
manual. (c1–c3) The compensated image by using the proposed CNN method. (d1–d3) The polynomial coefficients output from the manual NPL
method and the proposed CNN method.

Fig. 8 The testing results with the two kinds of microspheres. Fig. 9 Schematic setup of the microfluidic shear system.
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design an experimental setup with the aim of monitoring the
morphological change of living osteocytes under long-term
micro-FSS. In this module, a peristaltic pump is embedded
in the off-axis DH system to drive the fluid with a 30 r min−1

speed and to provide a stable FSS in a microchannel where
the bone cells adhere on the bottom surface, as shown in
Fig. 9. The subsystem consists of a peristaltic pump, a self-
designed parallel plate flow chamber, a thermostatic bath, a
hemispheric flask, and a reservoir bottle with a 3-pot
connector cap. Rubber hoses connect these parts. Living
MLO-Y4 cells are cultured adherently on the channel's
bottom surface connected with the hemispheric flask inside
and the reservoir bottle at the outside. The hemispheric flask
is used here to temporarily store the culture medium, making
sure the medium steadily flowed through the channel with a
constant velocity. The bottle flask was placed in the
thermostatic bath to keep all the medium at 37 °C during the
experiment. The results can help understand the cellular
responses to mechanical stimulation and identify signal
pathways and cellular interactions of bone homeostasis.

In this measurement, the holograms are recorded for 4
hours with a one-second interval, thus recording about
14 500 digital holograms. Fig. 10 shows 5 living cells' phase
images reconstructed from time-lapse digital holograms,
which are recorded under micro-FSS at times 0 min, 60 min,
120 min, 180 min, and 240 min, respectively. The first row
shows the aberrated phase images reconstructed from the
holograms. The second row shows the compensated phase
images by using the trained network. The third row shows
the compensated results by manual NPL. It is visible that
aberrations are completely cleared-off by the proposed
method.

ESI† Movies (SM1 and SM2) visibly show the dynamic
morphogenesis evolution of the cells with and without
aberrations, respectively.

It is important to note that defocus aberration, spherical
aberration, and astigmatism are present, thus affecting the
quantitative map. In Fig. 11 (upper row) and SM1,† it is also
possible to note that the presence of aberrations changes due
to slight disturbances during the long-term recording process
while the background phase is very stable (see
Fig. 11 (bottom row) and SM2†).

In order to show this significant morphogenesis, 4 cells
are selected as cell A, cell B, cell C, and cell D. Such cells
present relevant morphological variations at 0 min, 60 min,
120 min, 180 min, and 240 min, as shown in Fig. 12.

We evaluated in a quantitative manner the cell
morphological changes of the above 4 cells. We calculated
four morphological parameters, i.e., cell project area (CPA),
cell mean phase (CMP), cell volume (CV), and cell aspect
ratio (CAR), whose definitions are given in ref. 56. In
Fig. 12(a), the CA of all cells decreases. In Fig. 12(b), the CMP
of all cells increases gradually and then decreases rapidly. In
Fig. 12(c), the CV of all cells is unchanged. As reported in
Fig. 12(d), the CAR of cell B and cell D remains unchanged
while that of cell A increases, remains stable in the middle
term at the beginning and then decreases at the end, and
that of cell C is increasing gradually.

Fig. 10 Time-lapse phase images of the bone cells under micro-FSS.

Fig. 11 Morphological change of the selected four cells under micro-
FSS.

Fig. 12 The morphological parameters of the four cells: (a) cell
project area (CPA); (b) cell mean phase (CMP); (c) cell volume (CV); (d)
cell aspect ratio (CAR).
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We suppose that these morphological changes are due to
the bone cells' resistance response towards the FSS stimuli.
Similar results also are found in ref. 57. In this paper,
quantitative phase imaging was used to measure the center-
of-mass (COM) shifts of the adherent cells due to FSS. The
experiments demonstrated that the cells' surface area has an
insignificant change, but COM has increased along the
vertical direction during the application of the flow stimulus,
which matches with the results found in our paper.

These results are consistent with expectations. Osteocytes
in bones always suffer from various mechanical loadings.
Interstitial fluid shear is one of the most common loading
mechanisms, in which stimuli will lead to cellular
morphological changes, such as stretch and compression.
Further, the fluid drag introduces stress inside the cell body,
which may trigger the activation and transduction of
biochemical signals, which will influence the structure of the
cytoskeleton in bone cells and further introduce changes in
the cell morphology.

Besides, the results demonstrate that the aberration-free
reconstructions can be obtained in long-term testing with the
proposed method in a microfluidic lab-on-chip assay. On the
other hand, it can be seen that the fluid shear stress has a
noticeable effect on the bone cells, which leads to the change
of morphology and activity of the bone cells.

Conclusions

Mechanical loading on bone tissue is an essential physiological
stimulus that plays a key role in bone growth, fracture repair,
and bone disease treatment. Osteocytes embedded in the bone
matrix are well accepted as the sensor cells to mechanical
loading and play a critical role in regulating the bone structure
in response to mechanical loading. To understand osteocytes'
response to long-term MFSS, we investigate 3D cell morphology
by using DH microscopy. However, the phase aberration is an
important issue for quantitative measurement in DH. As to
long-term phase imaging, automatic aberration compensation
is especially necessary. In this paper, we proposed a numerical
and automatic aberration compensation approach based on a
CNN for multiple regression. We transform the phase
aberration compensation into a regression task for the first
time. The optimal coefficients used to fit a phase aberration
map are considered responses to the aberrated phase image.
Thus, the input is the aberrated phase image, and the
predicted coefficients are an output of the network. Further,
the phase aberration map is created by polynomial fitting
based on these coefficients. The phase aberrations are
compensated by subtracting the phase map from the phase
aberration image. To optimize the network training process, we
analysed the performance of three crucial parameters in the
training process, such as learning rates, optimizers, and batch
sizes. The experimental verification is carried out, in which the
morphological change of the living cells is dynamically
measured under long-term micro-FSS. The results show that
the proposed approach can predict the optimal coefficients

and automatically compensate the phase aberrations without
detecting background regions and knowing any physical
parameters. Thus, our approach provides a highly efficient and
versatile way to investigate the effects of micro-FSS on living
biological cells in a lab-on-chip platform equipped with a
holographic microscope empowered through AI.
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