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Tumor-secreted exosomes and other extracellular vesicles (EVs) in circulation contain valuable biomarkers

for early cancer detection and screening. We have previously demonstrated collection of cancer-derived

nanoparticles (NPs) directly from whole blood and plasma with a chip-based technique that uses a

microelectrode array to generate dielectrophoretic (DEP) forces. This technique enables direct recovery of

NPs from whole blood and plasma. The biomarker payloads associated with collected particles can be

detected and quantified with immunostaining. Accurately separating the fluorescence intensity of stained

biomarkers from background (BG) levels becomes a challenge when analyzing the blood from early-stage

cancer patients in which biomarker concentrations are low. To address this challenge, we developed two

complementary techniques to standardize the quantification of fluorescently immunolabeled biomarkers

collected and concentrated at predictable locations within microfluidic chips. The first technique was an

automated algorithm for the quantitative analysis of fluorescence intensity at collection regions within the

chip compared to levels at adjacent regions. The algorithm used predictable locations of particle collection

within the chip geometry to differentiate regions of collection and BG. We successfully automated the

identification and removal of optical artifacts from quantitative calculations. We demonstrated that the

automated system performs nearly the same as a human user following a standard protocol for manual

artifact removal with Pearson's r-values of 0.999 and 0.998 for two different biomarkers (n = 36 patients).

We defined a usable dynamic range of fluorescence intensities corresponding to 1 to 2000 arbitrary units

(a.u.). Fluorescence intensities within the dynamic range increased linearly with respect to exposure time

and particle concentration. The second technique was the implementation of an internal standard to adjust

levels of biomarker fluorescence based on the relative collection efficiency of the chip. Use of the internal

standard reduced variability in measured biomarker levels due to differences in chip-to-chip collection

efficiency, especially at low biomarker concentrations. The internal standard did not affect linear trends

between fluorescence intensity and exposure time. Adjustments using the internal standard improved linear

trends between fluorescence intensity and particle concentration. The optical quantification techniques

described in this paper can be easily adapted for other lab-on-a-chip platforms that have predefined

regions of biomarker or particle collection and that rely on fluorescence detection.

1. Introduction

Tumors release various types of cancer-related biomarkers
into circulation starting from early stages and continuing
throughout their development.1–4 Liquid biopsy techniques
are designed to detect these biomarkers (e.g. including DNA,
RNA, and proteins) in blood samples. Compared to invasive
and localized tissue biopsies, liquid biopsies are
advantageous as a cancer-screening tool. Blood collection is
minimally invasive and offers the potential to detect
biomarkers released across the entire tumor lesion, which
can more accurately depict tumor heterogeneity.
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† Electronic supplementary information (ESI) available: A technical flow diagram
describes the design sequence of the algorithm to quantify fluorescence images.
Histograms of pixel intensities in the ROI and BG of three representative
electrodes show collection below, within, and above the detection limits set by
the usable dynamic range. Size distribution data show the selection of a
subpopulation of HeLa-derived EVs that coincides with the accepted size range
of exosomes. Fluorescence images were exported using described parameters
into a specific file structure for automated analysis. The algorithm for
automated fluorescence quantification is included in its entirety as MATLAB®
code. See DOI: 10.1039/d0lc00940g
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Many cancer-specific biomarkers are associated with lipid-
based nanoparticles (NPs) called extracellular vesicles (EVs),
which are secreted by tumor cells5 in elevated quantities.
Exosomes are one type of EV that are difficult to recover from
blood due to their small size (50 to 150 nm diameter)6–8 and
low buoyant density. Recovery of exosomes is a fundamental
challenge for quantifying their associated biomarkers.
Traditional “gold-standard” methods to recover exosomes for
biomarker analysis include ultracentrifugation and filtration-
based separations, which are time-consuming and labor-
intensive.9–13 New lab-on-a-chip systems for NP separation
efficiently recover EVs from blood plasma.14–16

Dielectrophoresis (DEP) is the motion of an object due to
dielectrophoretic forces. When an object suspended in fluid
is subjected to a non-uniform electric field, contrasting
dielectric properties of the object and its surrounding media
induce DEP forces on the object. In particular, DEP17 applied

to the microfluidic environment can preferentially
concentrate tumor-derived NPs to known locations within the
chip14–16 as shown in Fig. 1. Blood-derived plasma samples
are loaded into the microfluidic chamber on top of a planar
microarray of circular electrodes. When an AC voltage is
applied across electrodes, this particular microarray geometry
creates a strong electric field gradient that exerts DEP forces
on EVs and other endogenous NPs in the fluid sample. These
NPs are collected at maxima in the electric field gradient
known as “high-field” regions (Fig. 1a), which are located at
the circumferences of each electrode in the planar microarray
as predicted by theoretical simulations (Fig. 1d) and
confirmed by scanning electron microscopy (Fig. 1g and h).
NPs are held in place by positive DEP (pDEP) forces during
washing, which removes the bulk plasma. Subsequent
immunostaining and fluorescence imaging of the collected
NPs enables detection and quantification of their associated

Fig. 1 NPs were collected in the “high-field” regions around the electrode edges under pDEP: a) top-down view of a circular electrode in the
planar microarray of a DEP chip. EVs and other NPs were collected at the electrode edge by DEP forces (area between dashed red lines). b) Cross-
sectional area of three electrodes in the planar microarray of a DEP chip. A layer of silicon dioxide insulated platinum electrodes, which were
patterned on top of a silicon substrate. A porous hydrogel layer on the surface of the chip separated electrodes from direct contact with blood-
derived plasma. c) Tubing was inserted into three microfluidic chambers on a DEP chip to prepare the device for experimentation. Each
microfluidic chamber housed thousands of microelectrodes. The DEP chip is shown beside a penny for scale. d) A simulation of the gradient of the
square magnitude of the electric field demonstrated a pattern of high-field regions (white) and low-field regions (black). Numbers by the greyscale
heat map indicated base-10 exponents spanning magnitudes of 1012 to 1016 V2 m−3. NPs responsive to pDEP forces were predicted to move up the
gradient along the direction of the red arrows from low- to high-field regions. High-field regions coincided with the circumferences of electrodes
in the planar microarray. e and f) Respectively, scanning electron micrographs (SEMs) of a top-down view and an angled view (tilt angle = 59°)
show typical electrodes on a DEP chip after running DEP in a filtered 0.5× PBS buffer in the absence of added nanoparticles. The scale bar in panel
e applies to the vertical and horizontal dimensions along the image plane, while the scale bar in panel f describes the horizontal dimension only. g
and h) SEMs of top-down and angled views (tilt angle = 59°) show typical electrodes on a DEP chip that was used to collect endogenous NPs from
undiluted plasma. NPs were collected into a raised ridge structure at the outer edge of the electrode. This raised ridge was not observed in the
buffer control shown in panels e and f. Collection at the electrode edge agrees with the simulation shown in panel d. The scale bar in panel g
applies to the vertical and horizontal dimensions along the image plane, while the scale bar in panel h describes the horizontal dimension only.
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biomarkers. The collection of endogenous NPs at the electrode
circumferences increases their local concentration, and thereby
the fluorescent signal, enhancing the signal-to-noise ratio (SNR).

Applying this DEP technique to early cancer detection
presents a unique set of challenges stemming from
characteristically low concentrations of biomarkers present
in circulation at early stages of disease.18–20 In order to
address the challenge of inherently low SNRs, it is critical to
measure the level of BG noise and to separate BG levels from
the detected signal of immunofluorescently stained
biomarkers. Here we demonstrate a custom optical imaging
algorithm, written with MATLAB® software, to automate
quantification for this type of immunofluorescent staining.
The algorithm for fluorescence quantification described in
this paper zeroes pixel intensities at each region of collection
(“region-of-interest”, or “ROI”) to the noise level (e.g. average
pixel intensity plus three standard deviations) of the local
BG. Localized noise-subtraction treated collection at each
ROI in a field-of-view as a unique sampling of biomarkers
from the plasma. Localized comparisons were important
because BG fluorescence can vary throughout a single field-
of-view, across multiple fields-of-view on a single chip, and
across multiple fields-of-view for different chips.

To address the challenge of inherently low levels of target
biomarkers, it was also necessary to reduce user bias in
quantitation. Biomarkers were collected at predictable ROIs,
allowing for localized noise subtraction as previously
mentioned. The ability to predict the locations of biomarker
collection based on the geometry of the planar electrode
microarray in the DEP chip also allowed us to automate
quantitative calculations, including the removal of optical
artifacts. Complete automation of quantitative calculations
successfully minimized user bias in fluorescence analysis and
reduced analysis time. Automated artifact removal performed
as well as a single user following a controlled protocol for
manual artifact removal.

We also developed an internal standard, consisting of a
known concentration of fluorescent NPs, to correct for the
variability in collection efficiency across DEP chips and to
further address the challenge of low SNRs. Fluorescent NPs
and target biomarkers were collected simultaneously and
quantified using the custom algorithm. The internal standard
ensured that observed differences in fluorescence intensity
between two or more biological samples reflected
physiological differences in endogenous biomarker levels
rather than a discrepancy in collection efficiencies across
DEP chips.

Many lab-on-a-chip designs focus on the separation and
concentration of target particles into predictable locations.
Other designs include implementations of DEP where
exosomes,14,15 stem cells,21,22 blood cells,23,24 cancer
cells,25–27 bacteria,28,29 viruses,30,31 and synthetic NPs16,32,33

are all collected in predictable locations. Other collection
modes include electrophoretic,34 magnetophoretic,35,36 and
acoustophoretic37–39 forces to concentrate targets from
surrounding media to known regions on the chip. Several

devices utilize immunoaffinity capture of EVs either by
functionalized NPs40 or at patterned locations on the chip.41

Still others use increased affinity for substrates coated in
nanotubes to collect aberrant circulating tumor cells.42 The
automated algorithmic approach described here can be easily
adapted for use with other chip geometries by changing the
shape of the digital mask to encompass the ROI. Masking
makes the algorithm a widely applicable tool to reduce user
bias, labor, and time in analyzing large numbers of samples.
Masking also reduces BG noise for more accurate
quantification of low abundance targets.

2. Materials & methods
2.1 Particle collection using DEP for development of optical
quantification algorithm

2.1.1 Materials. Monoclonal mouse anti-CD9 antibody
conjugated to Alexa Fluor 488 was purchased from R&D
Systems (Minneapolis, MN; FAB1880G; clone #209306).
Monoclonal mouse anti-CD63 antibody conjugated to Alexa
Fluor 647 was purchased from Novus Biologicals (Centennial,
CO; NB10077913Y; clone MEM-259). FluoSpheres™
carboxylate-modified microspheres (0.1 μm, blue fluorescent
350/440, 2% solids; F8797) and D-(+)-trehalose dihydrate
(Fisher BioReagents, BP2687100) were purchased from
Thermo Fisher Scientific (Waltham, MA). Three-chamber DEP
chips (EF-CRT-00002) were purchased from Biological
Dynamics (San Diego, CA). Dulbecco's modified Eagle's
medium (DMEM), fetal bovine serum (FBS), and penicillin–
streptomycin (P/S) were purchased from Thermo Fisher
Scientific (Waltham, MA). Amicon® Ultra-15 centrifugal filter
units (25 mL, 100 kDa MWCO; UFC901024) and
ultrafiltration membrane filter discs (10 kDa MWCO, BioMax;
PBGC07610; and 300 kDa MWCO, BioMax; PBMK07610) were
purchased from MilliporeSigma (Burlington, MA). Sterile
filtration units (0.1 mM; Nalgene; 5670010) were purchased
from Thermo Fisher Scientific (Waltham, MA). BD Difco™
skim milk was purchased from Midland Scientific (Omaha,
NE; DIFCO 232100).

2.1.2 Collection of EVs from HeLa cell culture media.
Exosome-depleted cell culture media was prepared to
harvest EVs from HeLa cells. Exosome-depleted FBS was
prepared by 300 kDa MWCO ultrafiltration with an Amicon
stirred-cell concentrator followed by 0.1 μM filter
sterilization. Filtered FBS was added to DMEM to a final
concentration of 10% by volume. P/S was added to
exosome-depleted media at a concentration of 1% by
volume. Non-exosome-depleted cell culture media was
prepared with commercial FBS and P/S at final
concentrations of 10% and 1% by volume, respectively. Cells
were cultured to approximately 50% confluency in non-
exosome-depleted media. Media was discarded, and cells
were washed with 1× phosphate-buffered saline (PBS). PBS
was discarded, and cells incubated in exosome-depleted
media for 48 hours. Exosome-depleted media was collected
and cells were removed by centrifugation. D-Trehalose was
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added to media at a final concentration of 25 mM to stabilize
EVs during storage. Conditioned media was stored at −80 °C
until a total of approximately 1.5 L had been collected.

Conditioned media (1.5 L) was thawed and concentrated
to approximately 20 mL using an Amicon stirred-cell
concentration (10 kDa filter size). Concentrated media was
centrifuged (30 minutes; 10 000g; 4 °C) and protein
aggregates were removed. EVs were then concentrated to
approximately 5 mL by centrifugal filtration using an
Amicon Ultra-15 (10 kDa) spin filter. EV populations were
size-separated by fast protein liquid chromatography
(FPLC). FPLC fractions corresponding to the size range of
exosomes (50–150 nm) were collected and suspended into
approximately 1 mL of 0.5× PBS. The concentration and
size distribution of collected EVs were measured using a
qNano gold instrument by IZON (Christchurch, New Zealand).

Size distribution and concentration data were plotted in Fig.
S1.† Harvested EVs were aliquoted and stored at −80 °C.

2.1.3 Positive controls were created by spiking EVs and
fluorescent NPs into blood plasma. One whole blood sample
from a healthy donor was obtained from the OHSU Knight
Cancer Institute Cancer Early Detection Advanced Research
(CEDAR) center biorepository (IRB approval #00018048)
where written informed consent was obtained. All
experimental protocols were carried out in accordance with
federal and state regulations, and relevant policies as
outlined by OHSU and the OHSU IRB. The OHSU IRB
determined that the activity of this study (IRB #00018572)
was not research involving human subjects. Blood plasma
from the single healthy human patient was acquired through
centrifugation of fresh blood stored in EDTA (1500g for 15
minutes at 4 °C). The first set of experiments was designed to

Fig. 2 Data quality metrics informed a usable dynamic range in fluorescence intensity: two data quality metrics, contribution from the ROI and
pixel saturation, were plotted against three sets of fluorescence intensity values. Contribution from the ROI indicated the percentage of the
intensity value that originated from pixels in the ROI, which was the collection region under high-field DEP. Fluorescence intensity values needed
a minimum contribution from the ROI of 90% to ensure most of the value was attributed to signal from collected particles. Pixel saturation
indicated the percentage of saturated pixels used to calculate each fluorescence intensity value. A maximum allowable pixel saturation of 1.5%
ensured that saturation did not adversely affect quantitation. a) Fluorescence intensities in the set [0, 1 a.u.] showed a positive correlation (r =
+0.717) with increasing contribution from ROI. Most intensities were below the 90% cutoff for contribution from the ROI. b) All fluorescence
intensities in the set [1 a.u., 2000 a.u.] exhibited contributions from the ROI greater than 90%. There was a weak correlation (r = +0.261) between
increasing fluorescence intensity and contribution from the ROI over this set of intensities. c) In the range [2000 a.u., 6000 a.u.], there existed a
strong negative correlation (r = −0.960) between fluorescence intensities and contribution from the ROI. Increasingly high fluorescence at the ROI
could have generated photonic noise, which likely bled into the BG, reduced the contribution from the ROI, and caused the negative correlation
between fluorescence intensity and ROI contribution over this set of intensities. Importantly, all intensities between [2000 a.u., 6000 a.u.] exhibited
contributions from the ROI above 90%. d) Fluorescence intensities in the set [0, 1 a.u.] did not correlate with pixel saturation as no saturation was
detected. e) All intensities in the set [1 a.u., 2000 a.u.] exhibited minimal pixel saturation (lower than 1.5%), meeting the second quality criterion.
Fluorescence intensities correlated (r = +0.746) with pixel saturation over this set; however, pixel saturation was sufficiently low (less than 1.5%) for
all values. f) There existed a strong positive correlation (r = +0.976) between fluorescence intensities in this set [2000 a.u., 6000 a.u.] and pixel
saturation. All intensities in this set exhibited pixel saturation rates above 1.5%, indicating that saturation could adversely affect quantitation.
Contribution from the ROI and pixel saturation rates suggested that the usable dynamic range of intensities was [1 a.u., 2000 a.u.].
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determine the dynamic range of the system. These experiments
involved spiking varying concentrations of fluorescent
polystyrene NPs into the plasma and then collecting the
particles via DEP. Images were acquired in multiple
fluorescence channels and quantified using the technique
described in this paper. Fluorescence intensities from the first
set of experiments were plotted in Fig. 2 (“Exp 1”) and
Fig. 3a and b. Plotted fluorescence intensities were calculated
from fluorescence images obtained over three experiments.

The second experiment was designed to investigate the
influence of the internal standard (i.e. a fixed concentration
of fluorescent polystyrene NPs) on varying concentrations of
immunolabeled EVs each run as technical triplicates (“Exp 2”
in Fig. 2, 3c–f, and 5). HeLa-derived EVs were incubated with
mouse monoclonal anti-CD9-Alexa Fluor 488 antibody for
one hour at room temperature (1 : 50 dilution from stock).
Immunolabeled EVs were diluted serially into healthy human
plasma (2 × 1010, 4 × 1010, 8 × 1010 EVs mL−1). Fluorescent
polystyrene NPs were added to a final concentration of
approximately 5 × 109 particles per mL in each plasma
dilution of EVs. Technical triplicates of each dilution were
loaded into three physically isolated microfluidic chambers
on DEP chips. Fluorescent NPs and EVs were simultaneously
collected via DEP with subsequent immunostaining,
fluorescence image acquisition, and image quantification.
Fluorescence intensities from the second experiment were
also used to determine the dynamic range of the system.

2.1.4 NP collection from plasma via dielectrophoresis.
Microfluidic chambers on DEP chips were first hydrated with
0.5× PBS to prepare the hydrogel layer prior to loading blood
plasma samples. Forty microliters of plasma were drawn into
the chamber prior to applying electrical signal to generate
DEP forces at the electrodes in the bottom plane of the
chamber (15 kHz; 12 Vpp; 15 min). EVs and fluorescent
polystyrene NPs were collected simultaneously in experiments
involving the internal standard (“Exp 2”); otherwise, only
fluorescent polystyrene NPs were collected (“Exp 1”). Samples
were washed with 0.5× PBS to remove the bulk plasma. The
collected material was blocked using 2% by-weight Difco
skim milk powder in 0.5× PBS for 30 minutes to reduce
nonspecific antibody binding. Samples were washed with 0.5×
PBS to remove blocking buffer. For experiments involving the
internal standard, the collected EVs and NPs were incubated
for one hour at room temperature with 40 microliters of a 1 :
50 dilution from stock of mouse monoclonal anti-CD63-Alexa
Fluor 647 primary antibody added into blocking buffer (“Exp
2”). Samples were washed with 0.5× PBS. Samples spiked with
only fluorescent polystyrene NPs were not incubated with
antibodies (“Exp 1”). For SEM imaging, the 0.5× PBS in the
microfluidic chamber of the chip was exchanged for 1× TE
buffer prior to freezing the DEP chip using dry ice and an
aluminum block stored at −80 °C.

2.1.5 Endogenous NPs were isolated from patient plasma
and immunofluorescently labeled. The third experiment was
designed to evaluate whether automated artifact removal
could reproduce fluorescence intensities obtained via a

Fig. 3 Fluorescence intensity increased linearly with exposure time and
with particle concentration: trends in exposure time and particle
concentration were assessed for fluorescence intensities in panels a
through d and for intensities adjusted to the internal standard in panels e
through f. a) Fluorescence intensities of fluorescent polystyrene NPs
collected via DEP from healthy human plasma were plotted against
exposure time at three contours in particle concentration (0.52, 1.6, 4.7 ×
1010 beads per mL). Best-fit lines through intensities within the dynamic
range indicated that the data followed linear trends. b) Fluorescence
intensities from images of fluorescent polystyrene NPs were plotted
against particle concentration for three contours in exposure time (0.1,
0.2, 0.5 s). Best-fit lines were plotted through fluorescence intensities
within the dynamic range, indicating that fluorescence intensity increases
linearly with the concentration of fluorescence particles. c) Fluorescence
intensities of immunofluorescently labeled EVs collected via DEP from
healthy human plasma were plotted against exposure time at three
contours in particle concentration (2, 4, 8 × 1010 EVs mL−1). Data points
represented the mean fluorescence intensity across three technical
replicates. Replicates were analyzed in separate microfluidic chambers
on DEP chips. Error bars represented one standard deviation above and
below the mean fluorescence intensity. Linear fits were calculated using
mean intensities within the dynamic range, confirming that fluorescence
intensity increases linearly with exposure time. d) Fluorescence intensities
of immunofluorescently labeled EVs plotted against EV concentration as
contours in exposure time (0.5, 1.0, 2.0 s). The physical presence of the
internal standard did not affect the linear relationship between
fluorescence intensity and EV concentration. e) Chip-to-chip differences
in collection efficiency caused variability in fluorescence intensity across
technical triplicates in panel c. An internal standard was used to quantify
the collection efficiency of each DEP chip. A known concentration of
fluorescent polystyrene NPs were spiked into each plasma sample
containing EVs. EVs and NPs were simultaneously recovered by DEP.
Adjusting the EV signal to the internal standard did not change the linear
relationship between fluorescence intensity and EV concentration. f) Use
of the internal standard improved the coefficient of determination for
each best-fit line in panel d and reduced variability in fluorescence
intensity caused by differences in collection efficiency across DEP chips.
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controlled process of manual artifact removal (Fig. 6). Thirty-
six clinical plasma samples were obtained from the OHSU
interventional endoscopy unit under the Oregon Pancreas
Tissue Registry (IRB approval #00003609) with use under
OHSU IRB approval #00018572. Informed consent was
obtained from all subjects. All experimental protocols were
carried out in accordance with relevant guidelines and
regulations outlined by the OHSU Institutional Review Board.

Proprietary hydrogel layers in the microfluidic chambers of
the DEP chips were treated with 0.5× PBS. Thirty microliters
of sample were drawn into each microfluidic chamber. HeLa-
derived EVs and other endogenous NPs were collected via
DEP (14 kHz; 10 Vpp; 15 min) from all samples. Collected
material was stained for one target after blocking with 2%
by-weight milk powder in 0.5× PBS for one hour. Collected
material was labeled for the second target using a primary–
secondary antibody stain. Material was incubated with the
primary antibody solution (1 : 200 dilution from stock) into
blocking buffer for one hour at room temperature prior to
washing with 0.5× PBS. Material was incubated with a
fluorescently-labeled secondary antibody solution (1 : 500
dilution from stock into blocking buffer) for one hour at
room temperature prior to washing with 0.5× PBS.

2.1.6 Scanning electron microscopy of DEP chips used to
collect EVs and NPs. DEP chips for scanning electron
microscopy were flash-frozen by placing ground dry ice on
top of the plastic cover of the chip before placing the chip on
top of an aluminum block stored at −80 °C. After the plastic
covers were removed, the chip was lyophilized and the
microelectrode arrays on the surfaces of DEP chips were
coated with a conductive layer. Micrographs of DEP chips
were acquired with a NanoLab Helios 660 from FEI
(Lausanne, Switzerland) at an operating voltage of 2.0 kV.

2.1.7 Image acquisition. Bright field and fluorescence
images were acquired at a field-of-view centered in the
middle of each microfluidic chamber using DAPI, EGFP, and
Cy5 fluorescence filters at five different exposures (0.1, 0.2,

Fig. 4 Fluorescently labeled NPs were collected at high-field DEP
regions: four images of the same field-of-view were acquired through
different optical filters to demonstrate the simultaneous recovery of
multiple particle types from healthy human plasma in the high-field
regions around the electrode edge via DEP. a) A bright field image
showed nine planar, circular electrodes on the DEP chip. b) A DAPI
channel image indicated the collection of spiked fluorescent
polystyrene NPs (100 nm diameter) collected in high-field regions from
healthy human plasma via DEP (contrast-enhanced). c) An EGFP
channel image showed the presence of HeLa-derived EVs, which were
immunolabeled with anti-CD9-Alexa Fluor 488 and spiked into the
same healthy human plasma prior to collection via DEP (contrast-
enhanced). d) A Cy5 channel image of the same HeLa-derived EVs,
which were immunolabeled with anti-CD63-Alexa Fluor 647 after
collection (contrast-enhanced). e and f) Representative composite
images of two electrodes showed the collected polystyrene NPs in red
and the collected EVs in green. There was a strong positive spatial
correlation between the two, shown in yellow, with a Pearson's R value
of 0.75 ± 0.03 (mean ± standard deviation, n = 10). This correlation
indicated that the spatial collection of the 100 nm polystyrene NPs
accurately reflected the spatial collection of the EVs.

Fig. 5 Use of the internal standard reduced non-physiological
variability in fluorescence intensity: EVs and fluorescent polystyrene
NPs (internal standard) were spiked into healthy human plasma,
isolated simultaneously via DEP in technical triplicates, and imaged at
an exposure of 1.0 s. Unadjusted fluorescence intensities of technical
triplicates were averaged and standard deviations were calculated at
each of four EV concentrations. CVs were calculated at each
concentration of EVs (plotted in red). Fluorescence intensities from
EVs were also adjusted to corresponding intensities from the internal
standard. CVs for adjusted intensities were calculated (plotted in blue).
CVs of adjusted intensities were lower than the CVs of unadjusted
intensities at all concentrations of EVs, indicating that the internal
standard effectively reduced non-physiological (i.e. technical replicate)
variability in fluorescence intensity. Reductions in variability were most
substantial at lower concentrations of EVs, suggesting that use of the
internal standard could be critical at the low biomarker concentrations
typical of early-stage disease.
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0.5, 1.0, and 2.0 s, respectively). The X-Cite 120LED Boost
light source from Excelitas Technologies (Waltham, MA) was
used at 100% intensity during fluorescence imaging and at
5–7% intensity for bright field imaging. Images were
acquired with 14 bit resolution using an Axiocam 506 camera
affixed to an Axio Imager A2 fluorescence microscope from
ZEISS (Oberkochen, Germany). All images were acquired
using a 5× magnification objective lens (Objective EC “Plan-
Neofluar” 5×/0.16 Ph1 M27; #420331-9911-000) from ZEISS
(Oberkochen, Germany). Catalog set 39000 (AT375/28×
excitation, AT415DC beam splitter, AT460/50 m emission),
catalog set 39002 (AT480/30× excitation, AT505DC beam
splitter, AT535/40 m emission), and catalog set 39007 (AT620/
50×, AT655DC beam splitter, AT690/50 M emission) filters
from Chroma Technology (Bellows Falls, VT) were used for
image acquisition in the DAPI, EGFP, and Cy5 fluorescence
channels, respectively. Gamma and analog gain were set to
unity for image acquisition. Images were acquired with 6.07
megapixel resolution (2752 × 2208 pixels). All fluorescence
images corresponding to data shown in this paper were
acquired from samples in 0.5× PBS prior to using 1× TE
buffer for chip storage at −80 °C. Fluorescence images were
exported as uncompressed, unedited, greyscale TIFs (16 bit
depth) using ZEN 2.3 Blue software from ZEISS. Fluorescence
images were quantified with custom image-processing
software written in MATLAB®43 on a Microsoft Windows 10
operating system (Enterprise version 10.0; build 15063).
Fluorescence quantification for this custom software required
pixel values represented in 16 bit depth.

2.1.8 Theoretical simulation of DEP high-field regions in a
planar microelectrode array. The gradient distribution of the
electric field squared was simulated in COMSOL (Los
Angeles, CA) using a model of 60 μm diameter electrodes on
a 150 μm spacing. The simulated fluid was modeled with a

conductivity of 1.4 S m−1 and a relative permittivity of 80. The
fluid height extended 200 μm from the electrode floor.
Boundary conditions were set to assume an infinite array of
electrodes. Electrode polarity alternated in a checkerboard
pattern of 0 V and 10 Vrms, respectively.

2.2 Design of algorithm for optical quantification

2.2.1 Algorithm input consisted of pairs of fluorescence
and bright field images. This section references Fig. 7a and
S2i–v.† CZI files were exported from Zen 2.3 lite (blue edition)
with parameters described in ESI† section S1.1 (Fig. S2i). The
executable (.exe) version of the software was opened (Fig.
S2ii†). The software prompted the user to select the folder
(ANALYZE ME) containing image pairs for quantification.
The user was not prompted for additional information after
this step (Fig. S2iii†). Experiment folders, image folders, and
individual images were automatically indexed. Bright field
images were paired with each of between one and four
fluorescence channel images (Fig. S2iv†). The first pair of
bright field and fluorescence images were inputted into data
structures as two-dimensional sets of 16 bit pixel intensity
values (Fig. S2v†).

2.2.2 Electrode locations were identified using bright field
images. This section references Fig. 7b and S2vi and vii.† Two
Hough transforms were conducted using the imfindcircles
function44 to identify circular objects in the bright field image
that resembled electrodes (60 μm diameter) under a 5× objective
lens. Each transform yielded a set of potential electrode
locations (yellow circles in Fig. 7b; “Set 1” and “Set 2” in Fig.
S2vi†) from a single bright field image. An area encompassing
the electrode and surrounding BG was defined at the center of
each electrode (yellow squares in Fig. 7b). All pixel values were
extracted from these square areas (Fig. S2vii†).

Fig. 6 Automated artifact removal was faster and as accurate as manual artifact removal: implementation of automated artifact removal was
compared to a standard protocol for manually removing artifacts by assessing correlations in fluorescence intensities resulting from both
methods. Plasma samples from thirty-six patients were analyzed for the presence of two biomarkers. Each data point represented a fluorescence
image of one immunolabeled biomarker collected from the plasma of a single patient. a) One biomarker was fluorescently labeled on endogenous
NPs collected from blood plasma of thirty-six patients. Fluorescence images were acquired and analyzed using two methods: a standard
procedure for manually removing bright field and fluorescence artifacts (“Manual Fl. Int.”) and a programmatic implementation of that standard
procedure for artifact removal (“Automated Fl. Int.”). A strong positive correlation between manual and automated intensities suggested that
automatic artifact removal was as accurate as manual removal (biomarker 1: r = +0.999). b) A second biomarker was fluorescently labeled on
endogenous NPs. Manual and automated intensities for the second biomarker also correlated strongly (biomarker 2: r = +0.998). Automatic artifact
removal saved substantial amounts of time for users and minimized user biases, reducing analytical error across experiments.
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2.2.3 Unusable electrodes with bright field artifacts were
removed from analysis. This section refers to Fig. 7c and

S2viii–xii.† Electrodes at the perimeter of the field-of-view that
lacked sufficient pixel counts were removed from the two sets

Fig. 7 Process flow diagram for automated fluorescence quantification: a) pairs of corresponding bright field and fluorescence images were
inputted and indexed. b) Electrode locations were identified using the bright field image. c) Electrode locations were assessed for usability. Usable
electrodes were those centered within 160 × 160 square pixel areas, none of which overlapped. Electrodes with optical artifacts were removed
from analysis. d) Usable electrode locations were transferred to the paired fluorescence image. Square regions centered at each electrode were
extracted. e) A rigid digital mask was applied to each square region, categorizing pixels as either ROI (regions of high-field DEP) or BG (regions of
low-field DEP). f) Intensity distributions of BG pixels were used to calculate noise thresholds specific to each square region. g) The noise threshold
value was subtracted from all pixels in respective square regions. The average fluorescence intensity was calculated for each noise-subtracted
square region. h) Square areas containing apparent fluorescence artifacts were removed from downstream analysis. i) The average intensity at each
remaining electrode was then used to calculate the sample mean fluorescence intensity, which constituted the data points plotted in all figures for
this paper. All essential calculations and relevant metadata were saved in reports that were automatically generated after each image pair was
analyzed. The described processes repeated for remaining image pairs.
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of potential electrode locations (Fig. S2viii and ix†). The DEP
chip electrode array was on a regular pattern, allowing us to
maximize the extraction area (yellow squares in Fig. 7) while
avoiding overlap. Overlap indicated misidentification of
optical artifacts as electrodes. All overlapping areas of
identification were removed from the set of potential
electrodes that contributed to downstream quantitative
calculations (Fig. S2x and xi†). After all bright-field artifacts
and affected electrodes had been removed, the larger of the
two sets of potential electrodes from the two Hough
transforms was selected for additional processing (Fig.
S2xii†).

2.2.4 A rigid digital mask differentiated the ROI from BG
at each electrode. This section refers to Fig. 7d and e and
S2xiii, xv and xvi.† The selected set of electrode locations was
transferred to the paired fluorescence image (Fig. 7d and
S2xiii†). All pixel values at each electrode location were
extracted (yellow squares in Fig. 7d and S2xv†). A rigid digital
mask with fixed geometry was applied to each extracted
location, categorizing pixels as either ROI or BG (Fig. S2xvi†).
Theoretical simulations and empirical observation (Fig. 1)
informed the geometry of the mask based on ring-shaped
patterns of particle collection at areas of high-field DEP. The
ROI entirely encompassed the circumference of the planar
electrode, or high-field region, where particles of interest
collect under pDEP. The BG encompassed low-field regions
surrounding the electrode and at the center of the electrode,
away from where particles moved under pDEP. Fluorescence
intensity of collected material was determined by comparing
pixel intensities in the ROI (high-field region) to pixel
intensities in the BG (low-field region).

2.2.5 Local noise thresholds were calculated from BG
pixels and subtracted from all pixels at each electrode. This
section references Fig. 7f and g and S2xvii–xxi.† Pixels from
the BG region of each electrode location were used to
calculate noise threshold values specific to each electrode.
BG pixels exhibited lognormal intensity distributions and
were logarithmically transformed (Fig. 7f and S2xvii†).
Transformed mean and standard deviation values were used
to estimate mean and standard deviation values (Fig.
S2xviii†). Noise thresholds at each electrode location equaled
the estimate of the mean plus three times the estimate of the
standard deviation (Fig. S2xix†). Local noise thresholds were
subtracted from all pixels in each respective electrode
location (Fig. 7g and S2xx†). The average pixel intensity was
calculated using all pixels in each noise-subtracted electrode
location (Fig. S2xxi†).

2.2.6 Unusable electrodes with fluorescence artifacts were
removed from analysis. This section refers to Fig. 7h and
S2xiv, xxii and xxiii.† A global intensity threshold was
calculated as six standard deviations above the average
pixel intensity of the entire inputted fluorescence image
(Fig. S2xiv†). If at least 99.9% of BG pixels around a single
electrode had intensities lower than the global intensity
threshold, the electrode remained in the set (Fig. S2xxii
and xxiii†). Otherwise, the electrode likely exhibited at least

one fluorescence artifact and was removed from the set
(Fig. 7h).

2.2.7 Fluorescence intensity was calculated from usable
electrodes. This section references Fig. 7i and S2xxiv–xxviii.†
The average pixel intensities of each noise-subtracted
electrode remaining in the usable set after artifact removal
were then averaged to calculate the overall mean fluorescence
intensity, referred to throughout the paper as “fluorescence
intensity” (Fig. S2xxiv†). The population mean of the average
pixel intensity of all noise-subtracted electrodes in the
microfluidic chamber of the DEP chip was estimated within
95% confidence bounds (Fig. S2xxv†). Warnings regarding
data quality were displayed in the command window for the
user when relevant (Fig. S2xxvi†). These warnings included: a
low contribution to fluorescence intensity from the ROI, a
fluorescence intensity below the lower detection limit of 1 a.
u., fewer than 100 electrodes used to calculate fluorescence
intensity, and a high rate of pixel saturation. Calculations,
image data, quality control metrics, warnings, and metadata
were compiled into a report, which was automatically
generated, indexed, and saved to the respective image folder
(Fig. S2xxvii†). All information extracted and calculated from
the first pair of input images was cleared from memory. The
next indexed pair of images were inputted automatically. The
described process repeated until all images were analyzed.
The custom MATLAB® code can be found in ESI.† Posts on
the MATLAB Answers online forum45 were accessed during
the development of the algorithm.

2.3 Statistical analyses

“Fluorescence intensity” refers to the sample mean of the
average fluorescent pixel intensity from noise-subtracted
areas at each usable electrode in a field-of-view. The “sample”
refers to as many as 208 usable electrodes in the field-of-view
of the input image. The quantified sample was a subset of
the total population of electrodes in the microfluidic
chamber of the chip. The population mean was estimated
from the sample of usable electrodes to within 95%
confidence (included in automated reports; confidence
intervals not plotted). To obtain technical triplicates, three
aliquots from one biological sample were obtained. Each
aliquot was introduced to a single microfluidic chamber prior
to collection of particles via DEP, immunofluorescence
labeling, washing, and imaging. Variability in fluorescence
intensity across technical triplicates represented differences
between individual populations of electrodes. Error bars in
plotted data represented one standard deviation above and
below the average fluorescence intensity of technical
triplicates (i.e. three quantitative values from three input
images, each representing one of three technical replicates).

Pearson correlations between variables on vertical and
horizontal axes were calculated for subplots in Fig. 2 and 6.
Linear fits in Fig. 3 were calculated using plotted
fluorescence intensities, all of which were within the usable
dynamic range (1–2000 a.u.). Fluorescence intensities in
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Fig. 3c and d were adjusted for collection efficiency using
the internal standard and plotted in Fig. 3e and f. To
adjust for collection efficiency, the fluorescence intensity of
the internal standard for one sample (“reference”) was
arbitrarily selected. Correction factors were calculated by
dividing the reference intensity by the measured intensities
of the internal standard in each sample (e.g. such that the
correction factor for the reference sample was one). The
fluorescence intensity of the target biomarker in each
sample was then multiplied by the correction factor.
Unique sets of correction factors were calculated for each
exposure time. Coefficients of variation (CVs) were
calculated for technical triplicates in unadjusted and
adjusted fluorescence intensities (Fig. 5).

2.4 Automation of software for optical quantification

Previous script versions relied on user input to identify
artifacts for removal, which introduced several sources of
analytical error. Optical artifacts included debris or bubbles
on top of or inside the microfluidic chamber that had
abnormally high levels of fluorescence through one or more
optical filters. Multiple users could have different
interpretations as to whether a given set of pixels qualified
as an artifact. These discrepancies were present even
amongst users following the same protocol for identifying
artifacts. Another source of error could arise within a single
user whose interpretation of the protocol for artifact
identification changed subconsciously over time. These user
biases added a potential source of error in measurements
of fluorescence intensity. Manual artifact removal also
required substantial amounts of time from users, reducing
throughput.

To address these issues, we developed an algorithm that
automated the removal of optical artifacts from images. To
evaluate the performance of the automated system, we
acquired a set of fluorescence images of two labeled
biomarkers isolated from the plasma of thirty-six patients (72
images total). This set of images was analyzed using both the
manual and automated approaches, the results of which were
compared in Fig. 6. The manual approach outlined a protocol
for identifying and removing optical artifacts while
minimizing user bias. The protocol required that a single
user needed to perform the analysis in less than three days
in order to minimize drift in the user's interpretation of the
protocol. The automated approach was designed to mimic
the user protocol by programmatically encoding artifact
removal into the software.

2.5 Metrics of data quality

In order to develop a robust, automated method for
quantification of collected EV biomarkers, it was necessary to
establish metrics for data quality within the optical analysis
software. Analysis of these data quality metrics enabled us to
define a dynamic range of fluorescence intensity values that

exhibited consistent, quantitative trends with both exposure
time and particle concentration. The first quality metric was
the percentage of the fluorescence intensity that originated
from the ROI. This metric was used to ensure that the
fluorescence intensity in the ROI was substantially higher
than the surrounding BG. We overlaid all the identified
electrode areas (yellow boxes in Fig. 7) and averaged
respective pixels to generate a representative image of the
average electrode. We categorized ROI and BG pixels in the
averaged electrode image with the same digital mask we used
to calculate noise levels at individual electrodes (Fig. 7e and
S2xvi†). We integrated pixel intensities within the ROI as well
as intensities within the BG, noting that the sum of the two
integrals equaled the fluorescence intensity value. Both
fluorescent polystyrene NPs and immunolabeled EVs were
collected using DEP, quantified, and presented in Fig. 2.
Fluorescence intensities above 1 a.u. consistently exhibited
contributions from the ROI of at least 90% (Fig. 2a–c).
Therefore, we set the cutoff for the contribution from the
ROI to the overall fluorescence intensity to be greater than
90%.

The second metric for data quality was the percentage of
saturated pixels contributing to the fluorescence intensity.
Due to inherent limitations of the camera, a saturated pixel
indicated that the upper limit of incident photons had been
recorded. Photons subsequently incident upon the
photodetector were not measured, leading to an
underestimation of fluorescence. For this reason, reliable
data required negligible numbers of saturated pixels. From
the data shown in Fig. 2f, fluorescence intensities above 2000
a.u. showed a strong positive correlation with pixel
saturation. Intensities in this set of values exhibited
saturation rates above 1.5%. Therefore, the second condition
for high-quality data was that the pixel saturation rate must
be less than 1.5%.

3. Results & discussion
3.1 Automation of software for optical quantification

3.1.1 Automatic artifact removal is preferred to manual
artifact removal. We evaluated the impact of automated
artifact removal on the accuracy of quantifying fluorescence
images. Two critical sections of the described algorithm were
devoted to the identification and removal of bright field and
fluorescence artifacts from analysis of fluorescence intensity
around the circumference of the electrodes (Fig. 7c and h
and S2viii–xi and xxii†). Fluorescence intensities from
automated artifact removal were plotted against the
intensities from manual artifact removal for two fluorescently
labeled biomarkers (Fig. 6). Bivariate correlations were
performed separately for each biomarker. Automated and
manual methods yielded fluorescence intensities that
correlated strongly for biomarker 1 (r = +0.999) and
biomarker 2 (r = +0.998), confirming that the automated
system worked as well as manual artifact removal. We used
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automated artifact removal for the analysis of the data
presented in this paper.

3.2 Characterization of software for optical quantification

3.2.1 Metric of data quality for the lower limit of the
dynamic range. Data points plotted in Fig. 2 were referred to
as “fluorescence intensity,” where each value quantitates the
average fluorescence signal from up to 208 locally noise-
subtracted electrodes in a single field-of-view. The data
quality metric for the lower limit of detection was the
percentage of the fluorescence intensity originating from the
ROI. Both fluorescent polystyrene NPs and immunolabeled
EVs were collected using DEP, quantified, and presented in
Fig. 2. Fluorescence intensities above 1 a.u. consistently
exhibited contributions from the ROI of at least 90%
(Fig. 2a–c). We noticed empirically during algorithm
optimization that fluorescence intensities less than 1 a.u.
yielded low signal at the ROI that was usually undiscernible
from noise in the BG. Therefore, we set the cutoff for
acceptable contributions from the ROI to be greater than
90%.

Fluorescence from collected particles in the ROI showed a
discernible ring-shaped pattern where simulations suggested
the accumulation of biomarkers that were responsive to
pDEP. We wanted to elucidate the lower limit of fluorescence
intensity values that correlated with high contributions from
the ROI (i.e. above 90%) to yield ring-shaped fluorescence
patterns. When there was no difference in the distribution of
pixel intensities in the ROI (high-field DEP) and the
distribution of pixel intensities in the BG (low-field DEP),
there was no discernible pattern of fluorescence after noise-
subtraction. Assuming a Gaussian noise distribution of pixel
intensities spanning the ROI and BG, the contribution from
the ROI to the fluorescence intensity should have been
approximately 31% because the BG contained approximately
2.2 times as many pixels as the ROI (1/(2.2 + 1) = 0.31). ROI
contributions of 31% therefore indicated pure noise, and
fluorescence intensities with contributions from the ROI
greater than 31% contained some signal. We empirically
decided that contributions from the ROI needed to be at least
90% for patterns of fluorescence to be discernible. The
contribution from the ROI could not equal 100% because the
process for thresholding noise eliminated approximately
99.7% of pixels in the BG (assuming a normal distribution of
pixel intensities). Therefore, approximately 0.3% of pixels in
the BG would always contribute to fluorescence intensity
values, meaning that there would always be a nonzero BG
contribution and a non-unity contribution from the ROI.
Therefore, fluorescence intensity values indicative of NP
collection should have had contributions from the ROI in the
set of percentages [90, 100]. Furthermore, fluorescence
intensity values would be greater than zero because there
would always be a nonzero level of BG noise, regardless of
exposure time during image acquisition and the amount of
fluorescent particles isolated via DEP.

Pearson coefficients were calculated to assess correlations
between contribution from the ROI and fluorescence
intensity over three sets of intensity values. Fluorescence
intensity values in the set [0, 1 a.u.] correlated strongly with
contribution from the ROI (r = +0.717; Fig. 2a). Contribution
from the ROI tended toward approximately 30% as
fluorescence intensities approached zero. Both observations
agreed with expectations: contribution from the ROI
increased as fluorescence intensity increased, ranging from
pure noise (approximately 30%) for intensities approaching
zero to fluorescence patterns (at or above 90%) for intensities
approaching 1 a.u. Fluorescence intensities in the set [1 a.u.,
2000 a.u.] correlated weakly with contribution from the ROI
(r = +0.261; Fig. 2b). Fluorescence intensities in this set were
also exclusively above the cutoff for detectable fluorescence
(contribution from ROI greater than or equal to 90%),
meaning that all intensities in the set [1 a.u., 2000 a.u.]
exhibited patterns of ring-shaped fluorescence. Fluorescence
intensities in the set [2000 a.u., 6000 a.u.] demonstrated a
strong negative correlation with contribution from the ROI;
however, all intensities in the set [2000 a.u., 6000 a.u.]
exhibited discernible patterns of ring-shaped fluorescence
through contributions from the ROI above 90% (r = −0.960;
Fig. 2c). The unanticipated negative correlation was likely
caused by increasing amounts of photon noise leaking into
the BG region from increasingly strong signal at the ROI
(Fig. 7e).

3.2.2 Metric of data quality for the upper limit of the
dynamic range. The percentage of saturated pixels
contributing to the fluorescence intensity was the data
quality metric for the upper limit of the dynamic range. From
the data shown in Fig. 2f, fluorescence intensities above 2000
a.u. showed a strong positive correlation with pixel
saturation. We also observed that fluorescence intensities
above 2000 a.u. were usually associated with regions of
adjacent pixels that formed saturated intensity plateaus. Most
intensities above 2000 a.u. corresponded to pixel saturation
rates above 1.5%. Therefore, the second condition for high-
quality data was that the pixels saturation rate must be less
than 1.5%.

Pearson coefficients were calculated to ascertain
correlations between the amount of pixel saturation and
fluorescence intensity over three sets of intensity values. We
determined that the population of saturated pixels needed to
be at or below 1.5% for the fluorescence intensity value to be
quantitative. All images were acquired with a 14-bit camera
and exported as 16-bit TIFs. The multiplicative conversion
from 14-bit format to 16-bit did not change the resolution of
the image as the relative spacing between adjacent intensity
values remained the same.

Fluorescence intensities in the set [0, 1 a.u.] did not
correlate with pixel saturation because no saturation was
detected (Fig. 2d). Fluorescence intensity over the set [1 a.u.,
2000 a.u.] positively correlated with pixel saturation, as
expected (r = +0.746; Fig. 2e). Fluorescence intensities in this
set were exclusively below 1.5% pixel saturation. Fluorescence
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intensities in the set [2000 a.u., 6000 a.u.] demonstrated a
strong positive correlation with rates of pixel saturation (r =
+0.976; Fig. 2f). Pixel saturation rates for fluorescence
intensities in this set exceeded 1.5%, confirming that
substantial pixel saturation was prevalent in fluorescence
intensities above 2000 a.u.

3.2.3 Usable dynamic range. Based on these observations,
we concluded that the usable dynamic range over which
fluorescence intensities exhibited consistent, quantitative
trends with both exposure time and particle concentration
would exist between 1 and 2000 a.u. We tested correlations
with fluorescence intensities and data quality metrics over
three sets of intensity values: [0, 1 a.u.] in Fig. 2a and d; [1 a.
u., 2000 a.u.] in Fig. 2b and e; and [2000 a.u., 6000 a.u.] in
Fig. 2c and f. All fluorescence intensities in the set [1 a.u.,
2000 a.u.] exhibited good data quality, including high
contributions from the ROI and low rates of pixel saturation.
This dynamic range was further evaluated for robustness with
different exposure times and particle concentrations.
Understanding these relationships was necessary to make
reliable, quantitative comparisons across clinical samples of
unknown disease states.

3.2.4 Fluorescence intensity increased linearly with
exposure time. Fluorescent polystyrene NPs were collected via
DEP to characterize quantitative trends in fluorescence
intensity and to determine the appropriate concentration of
NPs to use as an internal standard in later experiments.
Fluorescence intensity was plotted against exposure time for
three concentrations of fluorescent polystyrene NPs spiked
into healthy human plasma (0.52, 1.6, 4.7 × 1010 beads per
mL; Fig. 3a). Simple linear regressions were performed on
the data in each contour. Coefficients of determination
indicated a linear relationship between exposure time and
fluorescence intensity over the usable dynamic range.

The observed relationship between fluorescence intensity
and exposure time was consistent with how exposure time
scales distributions of pixel intensities. Both the ROI and BG
should scale by the same factor, c, for a c-fold increase in
exposure time. The mean and standard deviation of the
distribution of BG pixels should also increase by a factor of c.
The noise threshold should increase by a factor of c as well
(noise threshold = BG mean + 3 × BG std). The factor c should
propagate through the remainder of the calculation to scale
the final fluorescence intensity value, assuming the intensity
value is within the dynamic range. Low contributions from the
ROI and high pixel saturation outside the usable dynamic
range suggested that limitations of the camera caused the
ROI and BG pixel distributions to overlap or saturate (Fig.
S3†), adversely affecting linearity with exposure time.

Similar trends were observed in fluorescence intensity and
exposure time for EVs, which were labeled with anti-CD9-
AF488 prior to isolation via DEP (Fig. 3c). Individual data
represent the average of the sample means of fluorescence
intensity of usable, noise-subtracted electrodes (one image
per replicate; error bars show one standard deviation above
and below the mean fluorescence intensity). We wanted to

confirm that signal from the internal standard in the DAPI
fluorescence channel would not affect intensity values from
labeled EVs in the adjacent EGFP channel. Control
experiments confirmed that fluorescence from the internal
standard was undetectable in the EGFP channel.
Fluorescence levels from immunolabeled EVs through the
DAPI channel were less than 1.5% of levels through the EGFP
channel (data not shown). Together, these data indicate
minimal spectral bleed through in adjacent DAPI and EGFP
filter sets for the fluorescent labels used in these
experiments.

Linear regressions were performed on fluorescence
intensities within the dynamic range for separate contours of
EV concentration. Best-fit lines were plotted through data
within the dynamic range. All contours exhibited a high
degree of linearity, suggesting that the presence of the
internal standard had no effect on the relationship between
fluorescence intensity and exposure time; however, the size
of error bars in technical triplicate data suggested that non-
physiological differences in collection efficiency across
individual microfluidic chambers might adversely affect
linearity. Intensities were adjusted later using the internal
standard to account for collection efficiency, reducing
variability in biomarker levels.

Fluorescence intensities above 2000 a.u. were not reliably
quantitative due to pixel saturation. To obtain quantitative
fluorescence values in situations with high pixel saturation,
the acquisition exposure time could be reduced by a factor of
c to shift the pixel distribution to lower values within limits
of the photodetector in the camera. If quantification of the
new image yielded a fluorescence intensity within the
dynamic range and minimal pixel saturation, multiplying the
fluorescence intensity by a factor c would yield a better
estimate of the true fluorescence level than the original
image acquired at a higher exposure. Therefore, linearity with
exposure time can be exploited to expand the upper limit of
the dynamic range.

3.2.5 Fluorescence intensity increased linearly with
particle concentration. We characterized the relationship
between fluorescence intensity and the concentration of
fluorescent particles in the plasma samples and found that it
was linear over the dynamic range (Fig. 3b). Linear fits were
applied to fluorescence intensity values plotted against
fluorescent particle concentration as three contours of exposure
time (0.1, 0.2, 0.5 s). The physical presence of the internal
standard did not prohibit observations of a linear relationship
between fluorescence intensity and EV concentration for three
contours of exposure time (0.5, 1.0, 2.0 s; Fig. 3d). Linear
relationships between fluorescence intensity and particle
concentration were anticipated over the usable dynamic range
and consistent with other findings in the literature.

3.3 Characterization of the internal standard

A critical component of standardized fluorescence
quantification is minimizing chip-to-chip variability in
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collection efficiency. Our technique for minimizing variability
across technical replicates was to use an internal standard
consisting of a known concentration of fluorescent
polystyrene NPs, which we spiked into biological samples.
DEP forces collected the polystyrene NPs and the biological
target particles simultaneously. The polystyrene NPs were
selected to fluoresce at different wavelengths than the
reporters used to label biological targets.

Adjusting fluorescence levels of labeled biomarkers to
levels of the internal standard accounted for non-
physiological differences in intensity. A chip with a low
collection efficiency would isolate fewer polystyrene NPs and
fewer biomarkers compared to a chip with high collection
efficiency. Without the internal standard, we cannot be sure
if a difference in biomarker fluorescence is due to a
physiological difference in biomarker concentration, a
difference in collection efficiencies across chips, or a combined
effect. The internal standard enables us to adjust biomarker
levels to minimize the impact of collection efficiency.

3.3.1 Colocalization analysis confirms simultaneous
collection of EVs and polystyrene NPs. An analysis was
performed using the Image J2 Coloc 2 plugin on individual
electrodes within the array to determine the degree to which
the polystyrene NPs colocalized with the EVs around the
electrode edge. The average Pearson's R value (no threshold)
for the polystyrene NPs (in red) and the CD9-labeled EVs (in
green) was 0.75 ± 0.03 (mean ± standard deviation, n = 10).
This indicates a strong positive spatial correlation between
the polystyrene NPs and the EVs as shown in yellow in
Fig. 4e and f. This analysis shows that the DEP force acts
similarly on both the polystyrene NPs and the EVs, making
the NPs an appropriate internal standard for the EVs.

3.3.2 Internal standard: linearity of fluorescence intensity
with exposure time. Adjusting intensities of
immunofluorescently labeled EVs for collection efficiency
using the internal standard did not affect the linear
relationship between fluorescence intensity and exposure
time. Comparisons of panels c and e in Fig. 3 highlighted
that coefficients of determination for linear fits did not
change after adjusting for collection efficiency.

3.3.3 Internal standard: linearity of fluorescence intensity
with concentration. Adjusting intensities of
immunofluorescently labeled EVs for collection efficiency
using the internal standard improved the linear relationship
between fluorescence intensity and EV concentration.
Comparisons of panels d and f in Fig. 3 demonstrated that
coefficients of determination for linear fits increased from
approximately 0.96 to 0.99 for all contours of exposure time
(0.5, 1.0, 2.0 s) after adjusting for collection efficiency.

3.3.4 Internal standard reduced variability in technical
replicates. To determine how differences in collection
efficiency affected biomarker levels, coefficients of variation
(CVs) were calculated for technical triplicates of
immunofluorescently labeled EVs. CVs were also calculated
for intensities that had been adjusted for collection efficiency
using the internal standard (Fig. 5). All intensity values used

to calculate CVs were within the dynamic range. Adjusted
intensities exhibited lower CVs at all detectable
concentrations of EVs, confirming that the internal standard
partially corrected for variability in technical replicates.

Taken together with data shown in Fig. 3f, the internal
standard effectively reduced the variability in technical
replicates while improving the linear relationship between EV
concentration and fluorescence intensity. Furthermore, the
presence of the internal standard did not affect the linear
relationship between fluorescence intensity and exposure
time (Fig. 3e). Therefore, the internal standard was shown to
be beneficial for quantifying biomarkers collected with DEP
chip technology.

Conclusion

We designed an algorithm to quantify the fluorescence
intensity of labeled NPs collected in predictable locations
within a microfluidic device. We demonstrated the utility of
this algorithm by using an electrode microarray chip to
collect EVs and polystyrene NPs from blood plasma via DEP
forces. Quantification was achieved by comparing pixel
intensity values in regions of high-field DEP, where the
particles preferentially accumulated, to values at adjacent
regions of low-field DEP, which served as BG. We automated
the entire process including removal of optical artifacts, the
determination of fluorescence intensity, and the creation of
reports. Automation helped standardize analysis by
minimizing user bias and improving throughput. We then
identified a usable dynamic range in fluorescence intensity
values. We established the lower limit of the usable dynamic
range by correlating fluorescence intensity with the predicted
location of the source of fluorescence. Correlations between
fluorescence intensity and the percentage of saturated pixels
defined the upper limit of the usable dynamic range. As
anticipated, we observed linear relationships between
fluorescence intensity and exposure time at multiple
concentrations of particles within the dynamic range. We
also demonstrated that fluorescence intensity increased
linearly with particle concentration at multiple exposure
times within the dynamic range. By tailoring the digital mask
to encompass regions of collection, the algorithm described
in this paper can be translated to other fluorescence-based
platforms for liquid biopsy.

We also developed an internal standard to correct for
chip-to-chip variability in collection efficiency. Spiking a
known concentration of fluorescent polystyrene NPs into
biological samples enabled us to partially correct for
variability in fluorescence intensity across technical
replicates. Adjusting for collection efficiency did not change
linear trends between fluorescence intensity and exposure
time; however, use of the internal standard improved the
linearity of fit for fluorescence intensity and biomarker
concentration. Use of the internal standard reduced the
measured variability in technical replicates by correcting for
differences in collection efficiency across DEP chips. The
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internal standard will be important for comparing biomarker
levels between clinical patient samples of unknown disease
states. Controlling for non-physiological variability in
biomarker levels is especially critical for the detection of early
stage cancer, which often exhibits low circulating
concentrations of prognostic biomarkers.
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