CO₂ hydrogenation over heterogeneous catalysts at atmospheric pressure: from electronic properties to product selectivity

Yaning Wang, Lea R. Winter, Jingguang G. Chen* and Binhang Yan* a

The production of chemicals and fuels via chemical reduction of CO₂ by green H₂ represents a promising means of mitigating CO₂ emissions. The heterogeneous catalytic reaction of CO₂ and H₂ under atmospheric pressure primarily produces CO and CH₄, while CH₃OH and C₂+ hydrocarbons are obtained at high pressure. Improving the catalytic selectivity improves the energy efficiency for a given yield and greatly reduces the downstream separation costs. In this work, we review the recent progress in tuning the selectivity of CO₂ hydrogenation over heterogeneous catalysts at atmospheric pressure. We describe fundamental insights into the relationships among the electronic properties of active metals, the binding strengths of key intermediates, and the CO₂ hydrogenation selectivity. The manipulation of the electronic properties, and consequently the product selectivity, can be achieved mainly by controlling the particle size, bimetallic effects, and strong metal–support interactions. Finally, we discuss challenges and opportunities for the rational design of CO₂ hydrogenation catalysts with high activity and desired selectivity.

1. Introduction

In recent decades, global warming has become an increasingly serious problem that affects human survival and development. Rising temperatures have led to many global environmental crises such as the melting of glaciers, worsening wildfires, and extreme weather. There is considerable evidence that the excessive emission of infrared-trapping gases such as carbon dioxide to the atmosphere is indeed the primary culprit for global warming. The CO₂ emissions are mainly contributed by the burning of fossil fuels, and since CO₂ remains in the atmosphere for hundreds of years, the concentration of atmospheric CO₂ is increasing steadily. Thus, significant efforts are required to mitigate atmospheric CO₂ emissions.

Among the strategies for decreasing the concentration of atmospheric CO₂, the most common methods are CO₂ capture, storage, and chemical utilization. Compared with sequestration, transforming CO₂ into commodity chemicals, especially with CO₂-free H₂, not only consumes CO₂ but also reduces the use of fossil-derived raw materials. The research of Tackett et al. revealed that a process powered by electricity emitting less than 0.2 kg of CO₂ per kW per h would achieve a net reduction in CO₂, although the high price of renewable energy limits the large-scale application of the CO₂ hydrogenation processes at present. Zhang et al. have demonstrated that the economic profit can be gained when a suitable carbon tax is implemented and the cost of renewable energy is greatly decreased in the future. Generally, a net CO₂ reduction via the hydrogenation processes can be achieved with the availability of low-carbon or carbon-free energy. Nowadays, thermochemical and electrochemical reductions of CO₂ represent the two main pathways of CO₂ conversion; this perspective article focuses on thermochemical methods. Although the thermal reduction of CO₂ is promising, the efficient activation of the thermodynamically stable C=O bond in CO₂ (bond energy = 806 kJ mol⁻¹) poses a major challenge. The development of highly efficient catalysts is crucial to reduce the activation barrier and hence the energy required for converting CO₂ into commodity chemicals.

Under atmospheric pressure, the products of CO₂ thermocatalytic reduction with H₂ are CO and CH₄, through the reverse water–gas shift (RWGS) reaction and methanation (also known as the Sabatier reaction), respectively:

\[
\text{CO}_2 + \text{H}_2 \leftrightarrow \text{CO} + \text{H}_2\text{O} \quad \Delta H_{\text{298°C}} = +41.2 \text{ kJ mol}^{-1} \quad (1)
\]

\[
\text{CO}_2 + 4\text{H}_2 \leftrightarrow \text{CH}_4 + 2\text{H}_2\text{O} \quad \Delta H_{\text{298°C}} = -165 \text{ kJ mol}^{-1} \quad (2)
\]

Conversion of CO₂ to either product with high selectivity is desired according to specific application requirements. CO can be further converted to valuable chemicals and fuels through well-developed synthesis gas conversion technologies, such as...
Fischer–Tropsch (FT) synthesis and methanol synthesis. The methanation reaction is widely explored as one of the potential Power-to-Gas (PtG) technologies to foster interaction of gas and electric grids, enabling the methane production (from anthropogenic captured CO2 and renewable generated hydrogen) to be injected into the gas grid or locally used (industrial process, heating system, vehicles).

Other hydrogenation products such as methanol and C2+ hydrocarbons are obtained under high pressure with low yields. There are many similarities between the atmospheric-pressure and high-pressure reactions in the reaction mechanism and catalyst design, although this perspective article mainly discusses the atmospheric-pressure reactions. Most research was aimed at increasing catalytic activity to boost production. However, the demand for selective heterogeneous catalysis has become more apparent in CO2 hydrogenation. It is of paramount importance that a molecular-level understanding of the factors that control the selectivity of a catalytic reaction from the phenomenological or “trial and error” mode into the rational design of catalysts. The activity and selectivity of CO2 hydrogenation have been demonstrated to be very sensitive to the catalyst structure. Therefore, understanding catalyst structure is paramount to the rational design of heterogeneous catalysts for selective CO2 hydrogenation.

Several articles have reviewed the progress in experimental and theoretical studies of CO2 hydrogenation. Porosoﬀ et al. discussed the challenges and opportunities for CO2 hydrogenation into CO, methanol, and hydrocarbons. Aziz et al. summarized the progress in the development of various catalysts for CO2 methanation. Daza et al. compared RWGS catalysts and the corresponding reaction mechanisms. Chen et al. reviewed single-atom catalysts and their extraordinary performance during RWGS. In addition to these reviews of experimental findings, Li et al. provided a theoretical overview of CO2 hydrogenation. Several other reviews focus on recent advances in a single CO2 hydrogenation pathway, i.e., CO2 methanation, reverse water gas shift, or CO2 to methanol. In contrast, this perspective article aims to provide insight into recent developments in the competing atmospheric-pressure pathways of CO2 methanation and RWGS. We focus on providing guidance for fine-tuning the electronic properties of active metals in order to enable the design catalysts with high selectivity and activity for CO2 hydrogenation. Accordingly, the basic principles underlying the design and development of nanostructured catalysts also are discussed.

According to the Sabatier principle, the most active catalysts should bind adsorbates with a moderate strength: catalysts showing weak adsorbate binding energy are insuﬃcient for activating reactants, but strong binding energy prevents product desorption. Research on reaction mechanisms has improved the development of a rationale for optimizing catalyst composition. Kattel et al. proposed a reaction mechanism based on density functional theory (DFT) calculations (Fig. 1), suggesting that the key intermediate of CO2 hydrogenation via the RWGS + CO-hydrogenation pathway or the direct C–O bond cleavage pathway is adsorbed CO. This mechanism has been verified through in situ characterization. For example, Heine et al. used ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) to demonstrate that the methanation reaction over Ni(111) proceeded via dissociation of CO2, followed by reduction of CO to atomic carbon and its sub-

Fig. 1 Possible reaction pathways of CO2 hydrogenation to CO, CH3OH, and CH4. *(X)* indicates adsorbed species. Reproduced from ref. 28.
sequent hydrogenation to methane. Zhao et al.30 unraveled the surface reaction mechanism of CO\textsubscript{2} hydrogenation on Ru/Al\textsubscript{2}O\textsubscript{3} via \textit{in situ} control of the individual formation and hydrogenation steps for each adsorbed species, using operando diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) combined with iterative Gaussian fitting. According to their research, CO\textsubscript{2} \rightarrow *HCO- on the metal-support interface \rightarrow *CO on the metal surface \rightarrow CH\textsubscript{4} is the dominant reaction step. Martin et al.31 observed the linearly-adsorbed CO species on reduced Rh (Rh-CO\textsubscript{lin}) as the active intermediate in CO\textsubscript{2} methanation over Rh/Al\textsubscript{2}O\textsubscript{3}. According to their results, the rate-determining step for CO\textsubscript{2} reduction and RWGS was the conversion of *HCOO, whereas that for CH\textsubscript{4} formation was the hydrogenation of *CO. As shown in Fig. 1, absorbed CO serves as the key intermediate of the CO\textsubscript{2} hydrogenation pathways that lead to either CO or CH\textsubscript{4} as the final products.

In this perspective article, we focus on CO\textsubscript{2} hydrogenation pathways for which adsorbed CO leads to selective CO or CH\textsubscript{4} production. The key factor that determines the reaction pathway is the activation energy difference between CO desorption and further reaction of adsorbed CO. The adsorption strength of CO is determined by the electronic structure of the catalyst and in particular that of the active metals.32,33 Thus, understanding and controlling the intrinsic electronic properties of the active metal is crucial to the design of catalysts with high selectivity. The electronic properties of the active metal can be tuned through the electron transfer resulting from the formation of bimetallic bonds and interactions with catalyst supports. In this work, we review recent progress in CO\textsubscript{2} hydrogenation at atmospheric pressure and discuss the relationship between CO binding energy and the catalytic selectivity. We summarize the effects of intrinsic electronic properties, particle sizes, bimetallic formation, supports, and other related factors on CO\textsubscript{2} hydrogenation selectivity. Finally, challenges and opportunities for achieving the rational design of CO\textsubscript{2} hydrogenation catalysts with high activity and selectivity will be discussed.

2. Intrinsic electronic properties of metal catalysts

The catalytic performance of supported catalysts is closely related to the adsorption strength and orientation of reactants, intermediates, and products, which are mainly determined by the intrinsic electronic properties of the active metal. For example, Mutschler et al.34 examined a series of pristine transition metals for CO\textsubscript{2} hydrogenation and found that Co exhibited high activity and selectivity toward methane. Garbarino et al.35 have investigated the CO\textsubscript{2} hydrogenation performance of unsupported Co and Ni nanoparticles. According to their research, unsupported metallic cobalt nanoparticles showed significant activity in CO\textsubscript{2} methanation but deactivated upon time on stream due to fast sintering and the formation of encapsulating carbon. Unsupported Ni nanoparticles exhibited weak activity in either the RWGS reaction or the methanation reaction.16,37 In the research of Kim et al.,38 unsupported Fe-oxide NPs (10 to 20 nm) were tested at 873 K, showing 85% CO selectivity and medium CO\textsubscript{2} conversion (~30%). According to the research of Bersani et al.,39 copper nanoparticles yielded mixtures of CO and CH\textsubscript{4} in the temperature range of 250 °C to 500 °C. As for precious metals, Panagiotopoulou40 revealed that the activity for CO\textsubscript{2} conversion over TiO\textsubscript{2}-supported metal catalysts followed the order of Pd < Pt < Ru < Rh, where the Ru- and Rh-based catalysts favored methanation and the Pt- and Pd-based catalysts mainly produced CO. In general, the main product of atmospheric-pressure CO\textsubscript{2} hydrogenation over Rh\textsubscript{31,41}, Ru\textsubscript{34,42–44}, Co- and Ni-based45–48 catalysts is methane, while the Pd-49, Fe-50–52, Pt-53–55 and Cu-based catalysts favor the RWGS reaction, as shown in Fig. 2.

A summary of the catalytic performance of several monometallic catalysts is shown in Table 1, revealing that different transition metals exhibit widely different selectivity for CO\textsubscript{2} hydrogenation. The electronic properties of metal catalysts, which affect the CO binding energy and the reaction selectivity, can be modified by various means in order to promote desired reaction pathways and inhibit side reactions. The methods for tuning the intrinsic catalyst performance are detailed in the following sections.

3. Particle size effect

As shown in Table 1, intrinsic catalytic performance depends on the particle size of the active metal, which correlates with metal loading (it is common for the particles to grow up with the increasing of loading). When the particles decrease to sub-nm size or even to the scale of single atoms, the methanation reaction is inhibited.59

In recent years, single-atom and sub-nm catalysts have been studied intensively because of their unique chemical pro-

![Fig. 2](Image) Schematic showing possible products and potential catalysts for CO\textsubscript{2} hydrogenation.
Table 1: Summary of reaction conditions, CO₂ conversion, and selectivity for CO₂ reduction by H₂ on transition metal catalysts

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>Loading (wt%)</th>
<th>H₂ : CO₂ ratio</th>
<th>Temperature (K)</th>
<th>Conversion (%)</th>
<th>CO Selectivity (%)</th>
<th>CH₄ Selectivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni/SiO₂</td>
<td>5</td>
<td>9 : 1</td>
<td>473</td>
<td>3.2</td>
<td>0.6</td>
<td>99.4</td>
</tr>
<tr>
<td>Ru/SiO₂</td>
<td>0.5</td>
<td>4 : 1</td>
<td>653</td>
<td>74.7</td>
<td>1.2</td>
<td>98.8</td>
</tr>
<tr>
<td>Ru/TiO₂</td>
<td>0.5</td>
<td>4 : 1</td>
<td>623</td>
<td>~21</td>
<td>14</td>
<td>86</td>
</tr>
<tr>
<td>Ru/CeO₂</td>
<td>1.8</td>
<td>1 : 1</td>
<td>573</td>
<td>~83</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Ru/MSN₅₇</td>
<td>5</td>
<td>4 : 1</td>
<td>623</td>
<td>95.7</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Rh/SiO₂</td>
<td>3</td>
<td>5 : 1</td>
<td>723</td>
<td>~39</td>
<td>~22</td>
<td>99.9</td>
</tr>
<tr>
<td>Rh/Al₂O₃</td>
<td>0.2</td>
<td>4 : 1</td>
<td>473</td>
<td>~98</td>
<td>~0</td>
<td>~100</td>
</tr>
<tr>
<td>Rh/TiO₂</td>
<td>0.5</td>
<td>4 : 1</td>
<td>623</td>
<td>~75</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Rh/CeO₂</td>
<td>3</td>
<td>5 : 1</td>
<td>623</td>
<td>~46</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Rh/MSN₅₇</td>
<td>5</td>
<td>4 : 1</td>
<td>623</td>
<td>99.5</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Ni/SiO₂</td>
<td>0</td>
<td>4 : 1</td>
<td>793</td>
<td>54.7</td>
<td>20.1</td>
<td>79.9</td>
</tr>
<tr>
<td>Ni/SiO₂</td>
<td>6.2</td>
<td>4 : 1</td>
<td>723</td>
<td>36.8</td>
<td>18.2</td>
<td>81.8</td>
</tr>
<tr>
<td>Ni/SiO₂</td>
<td>3</td>
<td>4 : 1</td>
<td>623</td>
<td>27.6</td>
<td>11.6</td>
<td>85.5</td>
</tr>
<tr>
<td>Ni/SiO₂</td>
<td>10</td>
<td>4 : 1</td>
<td>573</td>
<td>42.4</td>
<td>3.4</td>
<td>96.6</td>
</tr>
<tr>
<td>Ni/SiO₂</td>
<td>3</td>
<td>5 : 1</td>
<td>723</td>
<td>~45</td>
<td>~54</td>
<td>~46</td>
</tr>
<tr>
<td>Ni/SiO₂</td>
<td>8.2</td>
<td>9 : 1</td>
<td>473</td>
<td>1</td>
<td>0.2</td>
<td>99.8</td>
</tr>
<tr>
<td>Ni/SiO₂</td>
<td>3</td>
<td>5 : 1</td>
<td>723</td>
<td>~5</td>
<td>~54</td>
<td>~46</td>
</tr>
<tr>
<td>Ni/SiO₂</td>
<td>8.2</td>
<td>9 : 1</td>
<td>473</td>
<td>2.6</td>
<td>0.6</td>
<td>99.4</td>
</tr>
<tr>
<td>Ni/SiO₂</td>
<td>10</td>
<td>4 : 1</td>
<td>623</td>
<td>~42</td>
<td>~24</td>
<td>~76</td>
</tr>
<tr>
<td>Ni/SiO₂</td>
<td>3</td>
<td>5 : 1</td>
<td>623</td>
<td>85.4</td>
<td>0.1</td>
<td>~100</td>
</tr>
<tr>
<td>Ni/SiO₂</td>
<td>3</td>
<td>5 : 1</td>
<td>623</td>
<td>~44</td>
<td>~0</td>
<td>~100</td>
</tr>
<tr>
<td>Pt/SiO₂</td>
<td>1.7</td>
<td>2 : 1</td>
<td>623</td>
<td>9.0</td>
<td>98.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Pt/SiO₂</td>
<td>1.0</td>
<td>7 : 10</td>
<td>673</td>
<td>18</td>
<td>~100</td>
<td>~0</td>
</tr>
<tr>
<td>Pt/SiO₂</td>
<td>1.7</td>
<td>2 : 1</td>
<td>623</td>
<td>10.2</td>
<td>~100</td>
<td>~0</td>
</tr>
<tr>
<td>Pt/SiO₂</td>
<td>1</td>
<td>1 : 1</td>
<td>673</td>
<td>~16</td>
<td>~100</td>
<td>~0</td>
</tr>
<tr>
<td>Pt/SiO₂</td>
<td>3</td>
<td>5 : 1</td>
<td>723</td>
<td>~13</td>
<td>~40</td>
<td>~60</td>
</tr>
<tr>
<td>Pt/SiO₂</td>
<td>3</td>
<td>5 : 1</td>
<td>723</td>
<td>~25</td>
<td>~50</td>
<td>~50</td>
</tr>
<tr>
<td>Pt/SiO₂</td>
<td>0.5</td>
<td>4 : 1</td>
<td>623</td>
<td>~7</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Fe/SiO₂</td>
<td>3</td>
<td>5 : 1</td>
<td>723</td>
<td>~51</td>
<td>~87</td>
<td>~13</td>
</tr>
<tr>
<td>Fe/SiO₂</td>
<td>3</td>
<td>5 : 1</td>
<td>813</td>
<td>26.7</td>
<td>84.1</td>
<td>15.9</td>
</tr>
<tr>
<td>Fe/SiO₂</td>
<td>5</td>
<td>4 : 1</td>
<td>623</td>
<td>4</td>
<td>8</td>
<td>92</td>
</tr>
<tr>
<td>Cu/SiO₂</td>
<td>5</td>
<td>3 : 1</td>
<td>493</td>
<td>0.5</td>
<td>83.6</td>
<td>16.4</td>
</tr>
<tr>
<td>Cu/SiO₂</td>
<td>5</td>
<td>3 : 1</td>
<td>493</td>
<td>0.5</td>
<td>80.2</td>
<td>19.8</td>
</tr>
<tr>
<td>Ni/SiO₂</td>
<td>5</td>
<td>4 : 1</td>
<td>623</td>
<td>3.3</td>
<td>21</td>
<td>79</td>
</tr>
</tbody>
</table>

The underlying properties of single-atom catalysts that give rise to these unique characteristics have been widely studied.²⁵,⁶⁴ It is generally accepted that the electron density of single-atom catalysts is changed due to the low-coordination environment and strong metal-support interaction. Single-atom catalysts are positively charged (usually noted as M⁺), leading to a weaker interaction with CO. Kwak et al.⁶⁵,⁶⁶ prepared atomically-dispersed Pd/Al₂O₃ and Ru/Al₂O₃ catalysts to investigate...
the influence of particle size on the CO₂ hydrogenation process. The results suggested that the RWGS reaction was the dominant reaction pathway over single-atom catalysts. The same trends were obtained using Rh/CeO₂ single-atom catalysts. Similarly, Matsubu et al. investigated CO₂ hydrogenation over Rh/TiO₂ with different Rh loadings. They observed a close correspondence between the turnover frequency (TOF) of RWGS and the fraction of isolated Rh sites, as shown in Fig. 3. A similar result was obtained by Li et al. As shown in Fig. 4, the CO selectivity increased as the Ir loading amount decreased. In addition to achieving high selectivity toward CO, single-atom catalysts also show extraordinary activity. Wang et al. compared the difference between 0.5 wt% Pt single-atom and 2 wt% Pt nanocluster catalysts on CeO₂ during CO₂ hydrogenation. The activity results indicated that the single-atom catalysts exhibited a more than 7-fold increase in rate compared with the nanoclustered catalyst and with 100% CO selectivity. The authors demonstrated that the weak binding between isolated Pt atoms and CO restricted the further hydrogenation of CO.

The same trend that single-atom or sub-nanometer catalysts favor CO formation also has been observed over non-precious metal catalysts. However, the synthesis of highly-dispersed non-precious metal catalysts is much more difficult than the preparation of precious-metal single-atom catalysts. In general, metals are highly dispersed on the support at low metal loadings, whereas the metal particles aggregate at high metal loadings, forming large particles. Therefore, small clusters or single-atom catalysts are usually synthesized by reducing metal loading (≤0.5%).

Applying this method, Wu et al. compared the catalytic performance of 0.5 wt% Ni/SiO₂ and 10 wt% Ni/SiO₂. The authors proposed a consecutive reaction pathway (intermedi-

Fig. 3 (a) DRIFT spectrum obtained from a saturated layer of CO adsorbed at 300 K on 4% Rh/TiO₂. Insets show ball-and-stick models of assigned vibrational modes. (b) DRIFT spectra of CO on all five weight loadings of Rh/TiO₂ catalysts. The spectra are displayed in Kubelka–Munk (KM) units and normalized by the symmetric gem-dicarbonyl peak (2097 cm⁻¹) height to allow for comparison. (c) Site fraction (%) of isolated (Rhiso) and nanoparticle-based Rh sites (RhNP) as a function of wt% Rh. (d) CH₄ selectivity as a function of wt% Rh for 0.25, 3, and 10 CO₂ : H₂ feed ratios measured at 200 °C.

Fig. 4 (a) The coordination number of Ir–Ir and Ir–O shells (line graph, right axis) relative to catalyst selectivity (bars, left axis) for CO₂ hydrogenation over Ir/Ce catalysts with different Ir loadings. (b) Ir L₃-edge Extended X-ray Absorption Fine Structure (EXAFS) of the Ir/Ce-used catalysts. Reproduced from ref. 69.
CO and intermediates results in CO formation and high CO selectivity. Lu et al. demonstrated that monodispersed NiO/CeO2 and NiO/SBA-15 catalysts exhibited 100% CO selectivity regardless of the reaction temperature. Gonçalves et al. employed magnetron sputtering deposition to prepare small Ni nanoclusters on SiO2 and reached the same conclusions that small Ni particles tended to produce CO rather than methane. The relationship between selectivity and the Ni electronic properties was investigated by Vogt et al. Through operando quick X-ray absorption spectroscopy (Q-XAS), the authors suggested that sub-2 nm Ni particles exhibited lower d-band energy or higher electron localization than large nanoparticles, which had a considerable impact on the catalytic activity.

The enhanced CO selectivity using single-atom catalysts also was demonstrated by theoretical calculations. Yan et al. illustrated that the RWGS route was more energetically favorable over monolayer Ru sites with a relatively low energy barrier for CO2 activation and CO formation, while methanation was favored over 3D Ru nanoclusters. Chen et al. combined experimental data with DFT calculations to investigate single-atom catalysts for CO2 hydrogenation. Single-atom Ir/TiO2 exhibited 100% selectivity toward CO due to the low coordination number of Ir. The authors demonstrated that the desorption energy of CO was lower than the dissociation barriers of the intermediates for single-atom Ir/TiO2, Pt/TiO2, and Au/TiO2 catalysts. As displayed in Fig. 5, the DFT calculation results correlated well with the experimental data over a series of catalysts.

While single-atom catalysts demonstrate promising activity and selectivity for CO2 hydrogenation, the instability of single atoms poses a major challenge for practical applications. Single-atom active metals tend to agglomerate into larger particles during the reaction, especially at high temperatures. Therefore, the observed decline of catalytic activity and CO selectivity is ascribed to the sintering of the single atoms. Currently, the synthesis of single-atom catalysts with high thermal stability and sintering resistance remains challenging.

Overall, the CO2 hydrogenation selectivity varies with the metal particle size. The methanation selectivity gradually decreases as the particle size decreases until the electronic properties of the metal become altered due to the electron transfer. Notably, when the particle size decreases to the sub-nm and even single-atom scale, the metals become positively charged and the exhibits high CO selectivity.

However, except for the electron properties, there are other factors that have impact on CO2 hydrogenation performance. Control of nanoparticle shape and size will ultimately determine the dominant surface-active terrace, edge, and corner sites. However, the geometric effect of catalysts in CO2 hydrogenation reaction is quite complicated, and different authors have drawn different conclusions. DFT calculations showed a stronger backdonation from the metal atoms to the 2π* antibonding of adsorbed CO on low coordinated surface atoms (corners and edges). Martins et al. found that high CH4 selectivity was favored in the presence of small particles with a majority of surface sites being edges and corners. However, Loveless et al. demonstrated that the corner sites were less active due to the lack of vacancies required for H-assisted hydrogenation paths. The catalytic investigation of Beierlein et al. showed that CO2 methanation on Ni-Al2O3 was a structure-insensitive reaction and terrace atoms were the active sites. Additionally, the H-spillover effect also should be taken into account. Guo et al. demonstrated the methanation activity was determined jointly by strong metal–support interactions and H-spillover effects, suggesting a more complex relationship between particle size and selectivity. The strong metal–support interactions between single Ru atoms and CeO2 suppressed the activation of carbonyls, while the significant H-spillover effects over large Ru nanoparticles greatly hindered the removal of H2O – conditions which are both unfavorable for methanation. As displayed in Scheme 1, the methanation activity reached a maximum over intermediate-sized Ru nanoparticles when both factors were taken into account.

![Fig. 5](image-url)

(a) (Left) Difference between activation energies E_a for CO dissociation and desorption free energies of CO. (Right) Difference in activation energies between HCO \rightarrow HC + O and HCO \rightarrow H + CO on Ir/TiO2 and stepped Ir5, Pt5, and Au5 surfaces. (b) Calculated TOFs for RWGS and methanation reactions on Ir/TiO2-0.1%, Ir/TiO2-1%, Pt/TiO2-1%, and Au/TiO2-1% catalysts. Reproduced from ref. 15.
4. Bimetallic effect

The introduction of a second metal is another effective way to tune the electronic properties of the active metal. The electron transfer between the two metals modifies the electronic properties of the active metal and changes the selectivity of the products. For example, the introduction of typical methanation metals such as Rh, Ru, Co, and Ni to a catalyst improves the methane selectivity. Liu et al.85 found that the bimetallic NiCo/Al\textsubscript{2}O\textsubscript{3} catalysts exhibited enhanced methanation activity and stability compared to monometallic Ni/Al\textsubscript{2}O\textsubscript{3}. Xu et al.86 revealed that the addition of Co to Ni/Al\textsubscript{2}O\textsubscript{3} decreased the activation energy of methanation. Bimetallic Ni–Rh/LaAlO\textsubscript{3} achieved a 52\% enhancement in the methanation turnover frequency [13.9 mol (mol h)−1] compared to Rh/LaNi\textsubscript{0.08}Al\textsubscript{0.92}O\textsubscript{3} [9.16 mol (mol h)−1].87 Shang et al.88 and Liu et al.89 demonstrated that the addition of Ru boosted the methanation yield of Ni-based catalysts.

According to the literature,37,50,90–94 the effect of Fe addition on Ni-based catalysts is quite complicated. Mebrahtu et al.92 reported that CH\textsubscript{4} selectivity continuously decreased as the Fe content increased in FeNi bimetallic catalysts. Results from Winter et al.50 showed that a bimetallic FeNi catalyst with a 3:1 molar ratio of Ni to Fe exhibited comparable activity to a monometallic Ni catalyst but improved CO selectivity. The Fe K-edge X-ray absorption near edge structure (XANES) spectra in Fig. 6 revealed that Fe in the bimetallic Ni\textsubscript{3}Fe\textsubscript{1} and Ni\textsubscript{3}Fe\textsubscript{3} catalysts was less oxidized than that in the monometallic Fe\textsubscript{3} catalyst. They elucidated that the metallic Ni enhanced H\textsubscript{2} dissociation and facilitated spillover of atomic hydrogen, which in turn promoted the reduction of Fe oxides in the Ni–Fe catalysts. The synergetic effect of Fe and Ni in ZrO\textsubscript{2}-supported bimetallic catalysts was investigated through DFT calculations and \textit{in situ} DRIFTS by Yan et al.94 As the scanning transmission electron microscopy with electron energy loss spectroscopy (STEM-EELS) analysis displayed in Fig. 7, Fe tended to precipitate on the surface of Ni particles. The theoretical calculations and experimental observations indicated that CH\textsubscript{4} was formed mainly via the RWGS + CO-hydrogenation pathway with *CO as a key intermediate. The interaction of *CO with
the Ni–ZrO$_2$ interface was revealed to be strong enough to facilitate further *CO hydrogenation to CH$_4$, while the weak interaction of *CO on the Ni–FeO$_x$ interface enabled CO desorption as the product.

In addition to changing the electronic properties, the introduction of a second metal also plays an important role in enhancing the metal dispersion and contributes to the activation of the reactants. Mihet et al.95 concluded that the CO$_2$ conversion of Al$_2$O$_3$-supported catalysts was enhanced in the series: Ni–Pd \geq Ni–Pt $>$ Ni and methane selectivity followed the trend: Ni–Pt \geq Ni–Pd $>$ Ni. The authors attributed the promotion effect to the enhancement of metal dispersion and the improvement of NiO reducibility. Beaumont et al.96 revealed that the individual Pt nanoparticles next to Co nanoparticles supported on silica enhanced the methanation activity. \textit{In situ} XANES measurements during the reduction of the Co NPs showed that the addition of Pt NPs significantly enhanced the reduction of Co. The hydrogen atoms dissociated on Pt were transferred to the Co NPs via long-distance hydrogen atom spillover,97 as shown in Scheme 2. The results of DFT calculations conducted by Ou et al.98 provided theoretical insight into the promotion effects of Pt in bimetallic catalysts. The authors found that introducing Pt to Ni(111) facilitated the chemisorption of gaseous carbon dioxide.

Alkali and alkaline earth metals have promoter effects on CO$_2$ hydrogenation as well. Bacariza et al.99 tested the effect of the addition of a series of alkaline cations into Ni/USY zeolites. The results showed that the order of improvement of the methanation activity was Cs$^+$ $>$ Na$^+$ $>$ Li$^+$ $>$ K$^+$ for the monovalent cations and Mg$^{2+}$ $>$ Ca$^{2+}$ $>$ Ba$^{2+}$ for the divalent cations. The impregnation of 0.9–2.5% Mg on a 4.8% Ni/USY considerably improved the dispersion of Ni89 and increased the CO$_2$ conversion up to 15% higher than that for the un-promoted 4.8% Ni/USY. Büchel et al.100 investigated the effect of Ba and K addition to Rh/Al$_2$O$_3$ catalysts on CO$_2$ hydrogenation. Below 440 °C, Rh/Al$_2$O$_3$ exhibited 100% CH$_4$ selectivity while K-promoted catalysts shifted to 100% CO selectivity. The change in selectivity was ascribed to the effect of Ba and K on the Rh(0)/Rh(I) ratio and on the adsorption behavior, according to the DRIFTS and CO adsorption measurements. Heyl et al.101 revealed that the addition of K to Rh/Al$_2$O$_3$ affected the adsorption sites of CO on Rh and influenced the catalyst’s ability to activate H$_2$. Thus, more facile desorption of adsorbed CO from the catalyst surface was favored and the methanation of CO was hindered. Porosoff et al.102 modified Mo$_2$C/γ-Al$_2$O$_3$ with a K promoter and observed a significant enhancement in CO selectivity and yield. Liang et al.103 and Yang et al.104 provided insights into the influence of K modification by comparing K-promoted Pt/mullite and Pt/L catalysts. Their results revealed that the formation of Pt–O(OH)–K interfacial sites promoted CO desorption, thus preventing the further hydrogenation of CO to methane.

![Fig. 7](https://example.com/fig7.png)

Fig. 7 Annular dark-field (ADF)-STEM images and corresponding EELS elemental maps of the spent Ni$_3$Fe$_3$/ZrO$_2$ and Ni$_3$Fe$_9$/ZrO$_2$ samples: (a) ADF-STEM image of Ni$_3$Fe$_3$/ZrO$_2$, (b–d) Ni (green), Fe (red), and mixed maps in Ni$_3$Fe$_3$/ZrO$_2$; (e) ADF-STEM image of Ni$_3$Fe$_9$/ZrO$_2$, (f–h) Ni (green), Fe (red), and mixed maps in Ni$_3$Fe$_9$/ZrO$_2$94

![Scheme 2](https://example.com/sch2.png)

Scheme 2 (a) Production of surface oxide species from CO$_2$ hydrogenation and (b) transfer of adsorbed hydrogen from Pt to Co via a spillover mechanism to re-reduce the cobalt oxide surface, releasing water.96
5. Support effect

The catalytic performance of supported catalysts is not only determined by the active metal but also affected by the support materials. Catalyst supports provide certain structural and physicochemical properties that ensure that the active metals remain well-dispersed. During CO2 hydrogenation reactions, the support also participates in the adsorption and activation of CO2. Thus, the reducibility and basicity of the support play an important role in the catalytic behavior. Dreyer et al.105 selected Al2O3 as a representative irreducible support, ZnO and MnO2 as representative neutral reducible oxides, and CeO2 as a representative basic reducible support to investigate the influence of support reducibility and basicity on catalytic behavior. The trend of CO2 conversion over the pristine supports followed the strength of the support basicity as determined with CO2 temperature-programmed desorption (TPD), following in the order of ZnO > CeO2 > MnO2 > Al2O3. For pristine supports, the CO2 conversion was determined by the ability of the materials to activate CO2. Loading metals onto the supports changed the activity trend due to the interaction between the support and the active metal. After the addition of Ru, the CO2 conversion and CH4 selectivity followed the order of Ru/CeO2 > Ru/Al2O3 > Ru/MnO2 > Ru/ZnO. Diez-Ramirez et al.106 studied the effect of the support on Co-catalyzed CO2 hydrogenation. The authors reported that methane selectivity followed the order of Co/CeO2 (96%) > Co/ZnO (54%) > Co/Ga2O3 (53%) ~ Co/ZrO2 (53%) at 573 K. The enhanced methanation activity of Co/CeO2 catalysts was mainly ascribed to its superior reducibility linked to Co–ceria interactions. According to results from Muroyama et al.107 CH4 yield over supported Ni catalysts at 523 K followed the trend of NiY2O3 > Ni/Sm2O3 > Ni/ZrO2 > Ni/CeO2 > Ni/Al2O3 > Ni/La2O3 and the catalytic activity could be partly explained by the basic property of the catalysts.

In general, reducible metal oxide supports, such as CeO2 and ZrO2, activate CO2 effectively through the metal oxide redox cycles. Since the oxygen vacancies generated by the reducible supports favor CO2 adsorption and activation, many studies have illustrated that employing a reducible metal oxide support improves the catalytic performance.45,109–112 The beneficial effect of Zr and Ce doping on the catalytic activity and stability has been ascribed to the enhancement of the concentration of oxygen vacancies and oxygen mobility.111,114 Winter et al.108 conducted isotope exchange studies using C18O2 in a batch reactor equipped with Fourier transform infrared spectroscopy and mass spectrometry to determine the involvement of oxygen atoms of CeO2 in CO2 hydrogenation reaction. The results in Fig. 8 suggested that oxygen was exchanged by both simple heteroexchange (between one oxygen atom of a gas-phase molecule and one oxygen atom of the oxide support) and multiple heteroexchange (between two oxygen-containing gas-phase molecules and at least two oxygen atoms of the support) mechanisms. The exchange appeared to occur in two steps, where one oxygen atom in CO2 was exchanged rapidly, and the exchange of the second oxygen atom occurred subsequently for some of the singly-exchanged 16C18O molecules. Nie et al.115 provided theoretical insights into the effect of supports (ZrO2 and Al2O3) on the adsorption and activation of key species. DFT results showed that the binding energies of CO2, H2, and CO on Co/ZrO2(111) are stronger than those on Co/Al2O3(110), in agreement with experimental TPD results. The reducibility and oxygen mobility of the supports can be promoted further by using a CeO2–ZrO2 solid solution, which has exhibited enhanced activity with respect to CeO2 and ZrO2.116–118

The chemical properties of the supports are influenced by many parameters, such as the morphology and the crystal phase. Different morphologies of a support with a specific crystal surface exposed exhibit distinct activity and selectivity.119,120 Sakpal et al.121 compared Ru/Co/CeO2 catalysts with different morphologies in the methanation reaction. Compared to cubes and octahedras, Ru/Co/CeO2 nanorods containing more oxygen vacancies showed higher activity in CO2 methanation. As reported by Lin et al.,122 Ru supported on rutile TiO2 exhibited higher activity than on anatase TiO2. Electron microscopy measurements revealed that RuO2 was prone to sintering on anatase TiO2 but became more dispersed on rutile TiO2.123 Therefore, rutile TiO2-supported catalysts exhibited much higher activity and thermal stability for CO2 methanation than those supported on anatase TiO2.124,125

The preparation methods used for the supports also affect methanation activity. The pretreatment temperature was found to affect the density and strength of the acid sites and methanation activity of Ni/Nb2O5.126 Over Ru/rutile TiO2, the TOF values increased significantly, from 0.26 s−1 to 1.59 s−1, with increasing pretreatment temperature.127 The enhanced methanation activity resulted from the increase in the extent of encapsulation of Ru particles by TiO2 layers and in the amount of hydroxyl groups on the TiO2 surface, which facilitated CO2 dissociation. Zhang et al.128 observed that selectivity toward CO over Ir/TiO2 catalysts increased with the reduction temperature, as shown in Fig. 9. Ir/TiO2 catalysts reduced at temperatures lower than 300 °C exhibited complete methanation of CO2 conversion, while samples reduced beyond 600 °C led to complete CO formation. The reduced TiO2 species that originated from SMSI played a crucial role in tuning the product selectivity. Moreover, catalysts derived from a metal–organic framework (MOF) template exhibited a specific activity towards methanation.129 Ru/ZrO2 derived from a Ru/UIO-66 material exhibited better methanation activity and selectivity than impregnated Ru/ZrO2 due to the high specific surface area of UIO-66.130

In summary, support materials influence CO2 hydrogenation activity and selectivity due to their role in the activation of CO2. The basic and reducible metal oxide supports usually show greater activity toward CO2 activation. The supports also contribute to tuning the electronic properties of the active metals through metal-support interactions: the electron transfer between the active metal and support modifies the binding
strength of CO. In addition, the specific interfacial sites between the active metal and the support also modify the catalyst selectivity.131–133

6. Other effects

In addition to controlling the materials and structural characteristics of the active metals and supports, there exist other methods for modifying the electronic properties of the catalyst. Electrons generated by the photoelectric effect can improve the electron density. Kim \textit{et al.}134 revealed that Rh- and Ru-based catalysts exhibited enhanced methane yields under light irradiation. As shown in Fig. 10, the CO\textsubscript{2} conversion was 1.6% at 150 °C without light on Ru, but the conversion increased to 32.6% at 150 °C with light. Other metals, such as Pt, Ni, and Cu, showed no difference with or without light irradiation.

In addition to generating emitted electrons from the active metals, the photoelectric effect also can induce electron emissions from the supports. Lin \textit{et al.}135 exhibited the effect of visible light on methanation over Ru/TiO\textsubscript{2}. As a result of the photoelectric effect, the TiO\textsubscript{2} support generated electrons that were transferred to the Ru particles, increasing the surface electron density of Ru and consequently promoting the activation of CO\textsubscript{2}. Doping nitrogen into TiO\textsubscript{2} further improved the photoelectric effect, thus promoting methanation more effectively under visible light. However, this method is only appli-
Another method of tuning the electronic properties is to derive the catalysts with higher valence state from the structured catalysts such as perovskites. Zhao et al.136 reported that the CO\textsubscript{2} hydrogenation selectivity could be tuned by controlling the valence state of nickel using lanthanum–iron–nickel perovskites through a doping-segregation process. The higher valence states of nickel weakened the binding of CO, increasing the activation barrier for further CO hydrogenation and leading to a higher CO selectivity than that obtained with metallic nickel.

In addition to the structural and electronic properties of the catalyst, other species involved in the reaction, such as water, can affect the promotion or inhibition of CO desorption. The introduction of water vapor decreased the CO\textsubscript{2} conversion because H\textsubscript{2}O inhibited CO\textsubscript{2} activation, reducing the amount of CO adsorbed on Ru sites.137 Therefore, these results suggest that strategies for \textit{in situ} water removal – such as sorption-enhanced processes or membrane reactors – may improve CO\textsubscript{2} conversion and merit further investigation.

Changing the coordination environment of the active metal through targeted synthesis also influences the electronic properties. Arandiyan \textit{et al.}138 synthesized mesoporous Rh (meso-Rh) nanoparticles by a soft template method to obtain a large distribution of atomic steps. In contrast with Rh nanoparticles prepared by a simple wet chemical reduction, the meso-Rh with low coordination atoms favored methanation over RWGS.

7. Challenges and opportunities

Thermocatalytic reduction of CO\textsubscript{2} by green H\textsubscript{2} represents a promising strategy for producing chemicals and fuels using CO\textsubscript{2} as an environmentally-friendly carbon source. This perspective article presents recent advances in atmospheric-pressure CO\textsubscript{2} hydrogenation to CO and CH\textsubscript{4} with a focus on the electronic properties of heterogeneous catalysts. The key descriptor of CO\textsubscript{2} hydrogenation selectivity is the binding energy of the key intermediate (e.g., CO), which is closely related to the electronic properties of the active metal. The intrinsic properties, particle size, bimetallic effects, and metal–support interactions are critical factors that influence the electronic properties of the active metal and, therefore, the hydrogenation selectivity. Generally, catalysts with high electron density adsorb CO strongly, leading to the further hydrogenation of CO into CH\textsubscript{4}, while catalysts with low electron density favor CO desorption.

For the selective hydrogenation of CO\textsubscript{2} over heterogeneous catalysts, significant challenges and research opportunities remain the following areas:

7.1. Identifying key reaction intermediates for tuning selectivity

As discussed earlier, CO is the most important intermediate in the selective catalytic hydrogenation of CO\textsubscript{2} to CO and CH\textsubscript{4}. The product selectivity correlates well with the CO binding energy of the key intermediate (e.g., CO). Understanding the factors that influence CO binding energy can provide insights into the design of catalysts with improved selectivity.

7.2. Developing strategies for in situ water removal

The introduction of water vapor decreases the CO\textsubscript{2} conversion because H\textsubscript{2}O inhibits CO\textsubscript{2} activation. Developing efficient strategies for \textit{in situ} water removal is crucial for improving CO\textsubscript{2} conversion. Techniques such as sorption-enhanced processes or membrane reactors may be explored to mitigate water vapor effects.

7.3. Exploring bimetallic effects

Bimetallic catalysts can exhibit superior performance compared to monometallic catalysts due to the synergistic interaction between different metals. Investigating the electronic and structural properties of bimetallic catalysts could lead to the development of catalysts with enhanced selectivity.

7.4. Developing high-surface-area catalysts

High-surface-area catalysts with a large active site density can increase the reaction rate and improve CO\textsubscript{2} conversion. Developing catalysts with improved surface area and active site distribution is crucial for achieving high CO\textsubscript{2} conversion efficiency.

7.5. Exploring metal-support interactions

Metal-support interactions play a vital role in determining the electronic properties of the active metal. Investigating the effect of different supports on the electronic properties of the active metal can provide insights into the design of catalysts with improved selectivity.

Fig. 10 Light enhancement effects on the CO\textsubscript{2} hydrogenation activity of metal catalysts. CO\textsubscript{2} conversion on (a) Ru, (b) Rh, and (c) Pt, Ni, and Cu catalysts deposited onto silica with (solid bars) and without (hatched bars) light irradiation.134
energy, which is determined by the electronic properties of the active metal. Catalysts with a weaker CO binding energy favor CO formation (e.g., NiFe/ZrO₂, LaFe₀.₃Ni₀.₇O₅, etc.) while those with a stronger CO binding energy favor CH₄ synthesis (e.g., Ni/ZrO₂, NiCeO₂, etc.). For the selective hydrogenation of CO₂ to methanol and other hydrocarbons, the identification of key reaction intermediates is critical for controlling the selectivity for the desired product. Therefore, future research efforts should focus on identifying the correct intermediate(s) for promising heterogeneous catalysts.

7.2. Stabilizing key intermediates for CH₄/CH₃OH/hydrocarbons synthesis

For direct CH₄/CH₃OH/hydrocarbons synthesis at elevated pressure, the stabilization of key intermediates is necessary for increasing the selectivity of the desired product. Therefore, significant work remains for identifying key intermediates and developing catalysts whose interactions with those intermediates facilitate further hydrogenation to the desired products. Future research in this area might aim to identify optimized M^{δ⁺} catalysts that selectively promote CO₂ to CH₄, CH₃OH, or long-chain hydrocarbons. Through electron transfers from supports and other metals to the active metal, the realization of M^{δ⁺} catalysts is potentially possible, which would improve the catalytic performance for the CO₂-to-CH₄/CH₃OH/hydrocarbons processes. Recently, negatively charged Au species (Au^{δ−}) were found in Au/TiO₂ as a result of the electron migration of anatase-TiO₂ onto the metal surface due to the SMSI effect. The Au^{δ−} catalysts exhibited enhanced catalytic activity toward CO oxidation and the water–gas shift reaction. Electron-rich Ni^{δ−} species were also observed through electron transfer from Ti and O on the anatase TiO₂ surface to atomically dispersed Ni.

7.3. Promoting CO desorption for RWGS

Low-cost M^{δ⁺} catalysts. Metals that bind CO more strongly tend to produce CH₄/CH₃OH/hydrocarbons whereas metals with higher valence states (i.e., with low electron density compared to their metallic state) favor CO formation. As mentioned above, single-atom catalysts are generally referred as M^{δ⁺} catalysts. Positively charged single atom Ir^{δ⁺}, Pt^{δ⁺}, Pd^{δ⁺}, Rh^{δ⁺}, Au^{δ⁺} (ref. 146) and Cu^{δ⁺} (ref. 147) catalysts were recently reported and exhibited enhanced activity in several catalytic reactions such as the water–gas shift reaction and CO oxidation. The electronic properties of a specific metal also can be tuned by controlled doping-segregation in AB₂O₃-type complex oxides such as perovskites, spinels, and mullites. Future efforts should focus on the development of stable and low-cost M^{δ⁺} catalysts to attenuate the CO binding energy and therefore enhance the selectivity of the RWGS reaction.

Excitation-induced desorption. In addition to tuning the CO binding energy, other methods may be pursued to enhance CO desorption, such as excitation-induced desorption. In recent decades, photoexcitation-induced CO desorption has been reported by several groups. The proper application of these methods may facilitate desorption and inhibit further hydrogenation of adsorbed CO, improving the selectivity toward RWGS.

Competitive adsorption. Recent studies have revealed that water occupies the active metal sites and influences the catalytic performance. Due to the limited number of adsorption sites on the surface of the active metal, the introduction of other strongly-adsorbed species should lead to the desorption of *CO and prohibit its further hydrogenation. The addition of a proper amount of competitively adsorbed species should promote the selectivity of the target product.

The determination and controlled synthesis of active sites are necessary to enable the development of active, selective, and stable catalysts for scaling up in industrial processes. For the reduction of CO₂ by H₂, dual-functional catalysts that are active for binding CO₂ and for its subsequent hydrogenation are required. Strong metal–support interactions (SMSIs) and metal–oxide interfaces facilitate these mechanisms, where a support with strong oxygen affinity enhances CO₂ adsorption, and well-dispersed transition metals dissociate H₂, which then spill over onto the support to hydrogenate CO₂. Therefore, efforts to improve CO₂ hydrogenation catalysts may aim to characterize the active sites and roles of the metal and the support in order to enable controlled synthesis of more effective catalysts.

SMSIs and bimetallic formation can modify the electronic properties of a catalyst, but these properties may be affected by reaction gas atmosphere and temperature. Therefore, accurate characterization of catalysts under reaction conditions (in situ or operando characterization) is crucial for correctly describing the active sites. These accurate descriptions of active sites under reaction conditions can then be used in models (for example, using DFT calculations and Kinetic Monte Carlo simulations) to correlate fundamental descriptors with reaction trends. Furthermore, this characterization is necessary for the identification of appropriate descriptors, such as oxidation state, adsorbed intermediates, and oxygen, CO, or hydrogen binding energy, to be used for predicting more active catalysts. The identification of accurate descriptors through correlating DFT calculations with reaction trends can save significant amounts of catalyst screening time.

The effects of oxide support properties and oxygen exchange on CO₂ activation are significant, but the specific mechanisms are not well understood. The oxygen storage capacity and oxygen mobility in reducible metal oxides, particularly ceria, may favor CO₂ adsorption onto oxygen vacancies and promote C–O bond scission. Therefore, future studies may explore the effects of oxygen storage capacity of high surface area reducible metal oxide supports on CO₂ reduction under reaction conditions.

Conflicts of interest

There are no conflicts to declare.
Acknowledgements

Authors from Tsinghua University acknowledge support from the National Natural Science Foundation of China (NSFC) under Grant No. 21978148 and 21673125. Authors from Columbia University acknowledge support from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Catalysis Science Program, under Contract No. DE-SC0012704. We would like to thank Dr Qiyuan Wu from Stony Brook University for his suggestions on this perspective article.

References

34 R. Mutschler, E. Moioli, W. Luo, N. Gallandat and A. Züttel, CO\textsubscript{2} hydrogenation reaction over pristine Fe, Co, Ni, Cu and Al\textsubscript{2}O\textsubscript{3} supported Ru: Comparison and determination of the activation energies, *J. Catal.*, 2018, **366**, 139.

43 S. Tada, O. J. Ochieng, R. Kikuchi, T. Haneda and H. Kameyama, Promotion of CO\textsubscript{2} methanation activity and CH\textsubscript{4} selectivity at low temperatures over Ru/Co/CeO\textsubscript{2}/Al\textsubscript{2}O\textsubscript{3} catalysts, *Int. J. Hydrogen Energy*, 2014, **39**(19), 10090.

44 T. Avanesian, G. S. Gusmão and P. Christopher, Mechanism of CO\textsubscript{2} reduction by H\textsubscript{2} on Ru(0 0 0 1) and general selectivity descriptors for late-transition metal catalysts, *J. Catal.*, 2016, **343**, 86.

47 J.-N. Park and E. W. McFarland, A highly dispersed Pd-Mg/SiO\textsubscript{2} catalyst active for methanation of CO\textsubscript{2}, *J. Catal.*, 2009, **266**(1), 92.

53 X. Chen, X. Su, B. Liang, X. Yang, X. Ren, H. Duan, Y. Huang and T. Zhang, Identification of relevant active sites and a mechanism study for reverse water gas shift reaction over Pt/CeO\textsubscript{2} 2 catalysts, *J. Energy Chem.*, 2016, **25**(6), 1051.

54 S. Kattel, B. Yan, J. G. Chen and P. Liu, CO\textsubscript{2} hydrogenation on Pt, Pt/SiO\textsubscript{2} and Pt/TiO\textsubscript{2}: Importance of synergy between Pt and oxide support, *J. Catal.*, 2016, **343**, 115.
Green Chemistry

91 H. Lu, X. Yang, G. Gao, J. Wang, C. Han, X. Liang, C. Li, Y. Li, W. Zhang and X. Chen, Metal (Fe, Co, Ce or La) doped nickel catalyst supported on ZrO2 modified mesoporous clays for CO and CO2 methanation, Fuel, 2016, 183, 335.

Green Chemistry

Perspective

133. X. Yang, S. Kattel, S. D. Senanayake, J. A. Boscoebnok, X. Nie, J. Graciani, J. A. Rodriguez, P. Liu, D. J. Stacciola and J. G. Chen, Low Pressure CO2 Hydrogenation to...

159 F. Dong, A. Suda, T. Tanabe, Y. Nagai, H. Sobukawa, H. Shinjoh, M. Sugiuara, C. Descorne and D. Duprez, Dynamic oxygen mobility and a new insight into the role
