Food & Function ## CORRECTION View Article Online Cite this: Food Funct., 2021, 12, 6117 ## Correction: Tracking physical breakdown of riceand wheat-based foods with varying structures during gastric digestion and its influence on gastric emptying in a growing pig model Joanna Nadia, a,b Alexander G. Olenskyj, Natascha Stroebinger, Suzanne M. Hodgkinson, Talia G. Estevez, Parthasarathi Subramanian, Harjinder Singh, R. Paul Singh, and Gail M. Bornhorst, DOI: 10.1039/d1fo90045e rsc.li/food-function Correction for 'Tracking physical breakdown of rice- and wheat-based foods with varying structures during gastric digestion and its influence on gastric emptying in a growing pig model' by Joanna Nadia et al., Food Funct., 2021, DOI: 10.1039/D0FO02917C. The authors regret that there was an error in the calculation of dry matter gastric emptying affecting both Fig. 5 and Table 6. This error does not affect a significant portion of the data in the article, only a single parameter, and does not change the trends or interpretation of the data. The correct version of Fig. 5 and Table 6 are given below. ^aSchool of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand ^bRiddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand ^cDepartment of Biological and Agricultural Engineering, University of California, Davis, CA 95618, USA. E-mail: gbornhorst@ucdavis.edu Correction **Food & Function** Fig. 5 Gastric emptying of dry matter (A and C) and whole stomach content (B and D) of pigs fed with wheat-based diets (A and B) or rice-based diets (C and D) during 240 min of digestion. Points represent measured values (mean + SEM $n \ge 5$ for each diet x time, except rice grain x 60 min (n = 4)). Dashed lines represent the predicted dry matter gastric emptying profile based on modified exponential model (eqn (2)) or predicted total meal gastric emptying profile based on linear-exponential model (eqn (3)). Dry matter half-emptying times from (A) and (C) were plotted against initial median particle area (E) of the cooked diets or gastric softening half-time (F). Gastric softening half-time for each diet was represented by the longest softening half-time between the proximal and distal stomach regions for each diet. Note that the x-axis for (E) and (F) is shown on a logscale due to the wide range of the values across the six diets. Food & Function Correction Table 6 Gastric emptying parameters (expressed as predicted parameter \pm 95% confidence interval) and predicted emptying half-time of dry matter and whole stomach content. Note that the confidence interval for k_{whole} and β_{whole} of semolina was very wide due to the lack of initial increase in its W_t/W_0 profile (Fig. 5B) that was supposed to be predicted by the linear-exponential model. Despite the wide confidence interval, the linear-exponential model still fit well to the data ### Dry matter gastric emptying (predicted with modified-exponential model, eqn (2)) | Diet | Gastric emptying parameter | | | - 1 10:1 | |---------------|--|---------------------------------------|-------|--| | | $k_{\rm DM} \times 10^3 (\rm min^{-1})$ | β_{DM} (dimensionless) | R^2 | Emptying half-time, $t_{1/2,\mathrm{DM~GE}} \left(\mathrm{min} \right)$ | | Semolina | 4.14 ± 3.12 | 0.59 ± 0.32 | 0.75 | 88 | | Couscous | 4.16 ± 2.18 | 0.96 ± 0.42 | 0.82 | 160 | | Pasta | 0.81 ± 0.73 | 0.50 ± 0.18 | 0.79 | 360 | | Rice grain | 3.72 ± 2.20 | 1.21 ± 0.62 | 0.80 | 223 | | Rice couscous | 4.13 ± 1.75 | 0.90 ± 0.32 | 0.87 | 150 | | Rice noodle | 3.51 ± 1.34 | 1.09 ± 0.35 | 0.89 | 213 | #### Whole stomach content gastric emptying (predicted with linear-exponential model, eqn (3)) | Diet | Gastric emptying parameter | | | | |---------------|--------------------------------|---|-------|--| | | $k_{ m whole}$ (dimensionless) | $\beta_{\text{whole}} (\times 10^3 \text{ min}^{-1})$ | R^2 | Emptying half-time, $t_{1/2,\mathrm{whole~GE}}\left(\mathrm{min}\right)$ | | Semolina | 0.009 ± 204.09 | 4.04 ± 832.98 | 0.65 | 173 | | Couscous | 2.38 ± 0.39 | 9.38 ± 2.04 | 0.61 | 288 | | Pasta | 1.40 ± 0.35 | 3.81 ± 2.10 | 0.18 | 536 | | Rice grain | 2.06 ± 0.33 | 7.88 ± 1.72 | 0.54 | 319 | | Rice couscous | 2.01 ± 0.29 | 8.21 ± 1.49 | 0.70 | 302 | | Rice noodle | 1.84 ± 0.21 | 7.21 ± 1.08 | 0.78 | 329 | The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.