

CORRECTION

[View Article Online](#)
[View Journal](#) | [View Issue](#)

Cite this: *Food Funct.*, 2021, **12**, 6117

Correction: Tracking physical breakdown of rice- and wheat-based foods with varying structures during gastric digestion and its influence on gastric emptying in a growing pig model

Joanna Nadia,^{a,b} Alexander G. Olenskyj,^c Natascha Stroebinger,^b Suzanne M. Hodgkinson,^b Talia G. Estevez,^c Parthasarathi Subramanian,^b Harjinder Singh,^b R. Paul Singh^{b,c} and Gail M. Bornhorst*^{b,c}

Correction for 'Tracking physical breakdown of rice- and wheat-based foods with varying structures during gastric digestion and its influence on gastric emptying in a growing pig model' by Joanna Nadia *et al.*, *Food Funct.*, 2021, DOI: 10.1039/D0FO02917C.

DOI: 10.1039/d1fo90045e
rsc.li/food-function

The authors regret that there was an error in the calculation of dry matter gastric emptying affecting both Fig. 5 and Table 6. This error does not affect a significant portion of the data in the article, only a single parameter, and does not change the trends or interpretation of the data. The correct version of Fig. 5 and Table 6 are given below.

^aSchool of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand

^bRiddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand

^cDepartment of Biological and Agricultural Engineering, University of California, Davis, CA 95618, USA. E-mail: gbornhorst@ucdavis.edu

Fig. 5 Gastric emptying of dry matter (A and C) and whole stomach content (B and D) of pigs fed with wheat-based diets (A and B) or rice-based diets (C and D) during 240 min of digestion. Points represent measured values (mean \pm SEM $n \geq 5$ for each diet \times time, except rice grain \times 60 min ($n = 4$)). Dashed lines represent the predicted dry matter gastric emptying profile based on modified exponential model (eqn (2)) or predicted total meal gastric emptying profile based on linear-exponential model (eqn (3)). Dry matter half-emptying times from (A) and (C) were plotted against initial median particle area (E) of the cooked diets or gastric softening half-time (F). Gastric softening half-time for each diet was represented by the longest softening half-time between the proximal and distal stomach regions for each diet. Note that the x-axis for (E) and (F) is shown on a log-scale due to the wide range of the values across the six diets.

Table 6 Gastric emptying parameters (expressed as predicted parameter \pm 95% confidence interval) and predicted emptying half-time of dry matter and whole stomach content. Note that the confidence interval for k_{whole} and β_{whole} of semolina was very wide due to the lack of initial increase in its W_t/W_0 profile (Fig. 5B) that was supposed to be predicted by the linear-exponential model. Despite the wide confidence interval, the linear-exponential model still fit well to the data

Dry matter gastric emptying (predicted with modified-exponential model, eqn (2))

Diet	Gastric emptying parameter		R^2	Emptying half-time, $t_{1/2,DM\ GE}$ (min)
	$k_{\text{DM}} \times 10^3$ (min $^{-1}$)	β_{DM} (dimensionless)		
Semolina	4.14 \pm 3.12	0.59 \pm 0.32	0.75	88
Couscous	4.16 \pm 2.18	0.96 \pm 0.42	0.82	160
Pasta	0.81 \pm 0.73	0.50 \pm 0.18	0.79	360
Rice grain	3.72 \pm 2.20	1.21 \pm 0.62	0.80	223
Rice couscous	4.13 \pm 1.75	0.90 \pm 0.32	0.87	150
Rice noodle	3.51 \pm 1.34	1.09 \pm 0.35	0.89	213

Whole stomach content gastric emptying (predicted with linear-exponential model, eqn (3))

Diet	Gastric emptying parameter		R^2	Emptying half-time, $t_{1/2,\text{whole}\ GE}$ (min)
	k_{whole} (dimensionless)	$\beta_{\text{whole}} (\times 10^3 \text{ min}^{-1})$		
Semolina	0.009 \pm 204.09	4.04 \pm 832.98	0.65	173
Couscous	2.38 \pm 0.39	9.38 \pm 2.04	0.61	288
Pasta	1.40 \pm 0.35	3.81 \pm 2.10	0.18	536
Rice grain	2.06 \pm 0.33	7.88 \pm 1.72	0.54	319
Rice couscous	2.01 \pm 0.29	8.21 \pm 1.49	0.70	302
Rice noodle	1.84 \pm 0.21	7.21 \pm 1.08	0.78	329

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

