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Bacterial resistance to antibiotics constantly remodels the battlefront between infections
and antibiotic therapy. Polymyxin B, a cationic peptide with an anti-Gram-negative
spectrum of activity is re-entering use as a last resort measure and as an adjuvant. We
use fluorescence dequenching to investigate the role of the rough chemotype bacterial
lipopolysaccharide from E. coli BL21 as a molecular facilitator of membrane disruption
by LPS. The minimal polymyxin B/lipid ratio required for leakage onset increased from
59 x 107* to 1.9 x 1077 in the presence of rLPS. We confirm polymyxin B activity
against E. coli BL21 by the agar diffusion method and determined a MIC of 291 pg ml™™.
Changes in lipid membrane stability and dynamics in response to polymyxin and the
role of LPS are investigated by 3P NMR and high resolution *!P MAS NMR relaxation is
used to monitor selective molecular interactions between polymyxin B and rLPS within
bilayer lipid membranes. We observe a strong facilitating effect from rLPS on the
membrane lytic properties of polymyxin B and a specific, pyrophosphate-mediated
process of molecular recognition of LPS by polymyxin B.

Introduction

Bacterial infections remain the primary cause of morbidity and mortality in
humans despite the success of antibiotic chemotherapy. Bacteria have natural
defences against xenobiotics but also the ability to adapt as a population under
sustained antibiotic pressure that selects favourable phenotypes. In addition,
such adaptations can be transferred within and between bacterial populations,
which leads to a growing prevalence of bacterial phenotypes that do not respond
well or are resistant to antibiotics. Particularly challenging are Gram-negative
bacteria, which have an outer membrane (OM) that hinders antibiotic accessi-
bility to target sites and reduces bacterial susceptibility to antibiotics. One
approach to the management of such infections is the use of adjuvants in
combination with conventional antibiotics.

The definitive feature of Gram-negative bacteria is the presence of an outer
membrane that envelopes the entire bacterial cell and forms a periplasmic
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compartment containing bacterial peptidoglycan and a number of specialised
enzymes, often with roles in the post-translational modification of proteins. The
bacterial OM is an asymmetric bilayer with an inner leaflet made largely of
phospholipids common to the inner membrane (IM), while the outer leaflet of the
OM is almost entirely made of lipopolysaccharide (LPS). The OM also contains
a significant fraction of membrane proteins with a unique, beta-barrel fold.

LPS lines the bacterial exterior where it performs a number of important func-
tions, including cell recognition and xenobiotic defence. While the molecular
structure of LPS has unique features that identify the bacterial species, its overall
architecture commonly contains three parts - lipid A, the core oligosaccharide and
O-antigen (Fig. 1). Lipid A has a largely conserved structure, which comprises a N-
acetylated disaccharide, commonly derivatised at positions 2,3,2" and 3’ with six
or seven 14-carbon saturated chains and often phosphorylated or pyrophosphory-
lated in positions 1 and 4'. Also conserved, the polysaccharide core attached at 6' on
lipid A contains unique 3-deoxy-p-manno-oct-2-ulosonic acid (Kdo) and heptose
(Hep) monosaccharides that can be phosphorylated, pyrophosphorylated or

()

E. coli

LPS
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Fig. 1 Schematic structure of LPS from E. coli (a) and of polymyxin B (b).
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derivatised with phosphoethanolamine (pEtN). A variable length, species-specific O-
antigen, consisting of up to 40-50 saccharide repeats, extends beyond the core and
serves as the characteristic recognition motif that identifies the bacterial species.
LPS that has all three components is of the smooth chemotype (sLPS), while LPS
lacking the O-antigen is of the rough chemotype (rLPS). Commonly studied
Escherichia coli strains BL21 and K12 have truncated rLPS (Fig. 1). Phosphorylation
and pyrophosphorylation in LPS are essential for establishing and maintaining OM
stability via divalent cation-mediated (chiefly Ca** or Mg®") LPS/LPS interactions.
Using solid state NMR, we have shown recently that such phosphorylation and
pyrophosphorylation is extensive in the core region but sub-stoichiometric within
lipid A, revealing the pivotal role of the core in OM stability.*

The conserved structure of LPS has driven co-evolution of antibacterial
proteins,” peptides® and other xenobiotics that rely on molecular LPS recognition
to disrupt bacterial OMs and exercise antibacterial functions. Polymyxins and
colistins are a family of cyclic polycationic peptides derived from progenitors
naturally produced by Bacillus polymyxa.* They were in clinical use until the 1980s,
when their use declined due to relatively high nephrotoxicity.’ Due to the rise in
antibiotic resistance, despite their nephrotoxicity, polymyxins find use as last
defence drugs against carbapenem-resistant Gram-negative infections® and can
be used as adjuvants in antibiotic cocktails.”

Polymyxins disrupt both the outer and inner bacterial membranes.® Crossing
the OM is sensitive to variation in the LPS chemotype, suggesting an LPS-
dependent receptor-specific mechanism, while crossing the IM is sensitive to
lipid composition. Besides the disruption of both membranes, cellular targets
have been suggested to include DNA and ribosomes where polymyxin induces
DNA clotting and ribosomal condensation.®*® The mechanism of antimicrobial
action and bacterial adaptations and resistance have been reviewed recently."*

Modifications of LPS, specifically the pEtN-ation of lipid A, reduce suscepti-
bility to polymyxins through the reduction of the LPS negative charge (for a review
see ref. 12). Polymyxin resistant strains of P. aeruginosa have been shown to
produce less phospholipid,** most likely through a pressure selection rather than
as an adaptive response in protecting the bacterial IM. A study of polymyxin
mediated glucose release from lipid vesicles has shown reduced release from
phosphatidylcholine and methyl phosphatidyl ethanolamine compared to phos-
phatidyl ethanolamine membranes.**

In this report, we investigate the role of rLPS as a molecular receptor for
polymyxin in lipid membranes using fluorescence dequenching and we monitor
its antimicrobial activity. We investigate specific molecular interactions between
polymyxin and LPS using longitudinal relaxation *'P magic angle spinning (MAS)
NMR. Relative changes in fast molecular dynamics are compared to the
membrane phospholipid. We monitor membrane stability and collective
dynamics by following changes in the *'P chemical shift anisotropy (CSA) using
wideline *'P solid state NMR.

Experimental

Phospholipids, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dimyr-
istoyl-sn-glycero-3-phosphocholine (DMPC) (Avanti Polar Lipids Inc. Alabaster,
Alabama, USA) were used as purchased at >98% purity.
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Phenol extraction of rLPS

Rough chemotype lipopolysaccharide (rLPS) was purified from E. coli (BL21) as
previously described.*>*® Briefly, 3 g of the E. coli (BL21) bacterial pellet was
resuspended in deionised water and heated to 68 °C. To this, 90% phenol (w/v)
was added dropwise and stirred at 68 °C, cooled on ice for 15 min and centri-
fuged at 1000g for 45 min at 10 °C. The aqueous phase was collected and a further
10 ml of deionised water at 68 °C was added to the remaining sample, which was
cooled and centrifuged and the aqueous phase was collected and dialysed to
remove any remaining phenol, then freeze dried. The crude product was resus-
pended in 0.1 M Tris pH 7.0 and 175 mM Nacl, 0.05% w/v sodium azide at 10 mg
ml~" and underwent a further purification process, as described previously.'®
Briefly, the sample was treated with DNase and RNase (both 50 pg per 10 mg of
crude LPS) at 37 °C for 30 min. This was followed by treatment with proteinase K
(50 pg per 10 mg of crude LPS) at 55 °C for 3 h and then at room temperature for
16 h with fresh proteinase K added. The proteinase K treatments were repeated
and LPS was precipitated with 4 volumes of methanol at 18 °C for 2 h. The
precipitate was recovered by centrifugation at 6000g for 15 min at 4 °C and freeze-
dried.

LPS-containing membranes

LPS was suspended in distilled water and incubated at 56 °C for 15 min, vortexed
for 2 min and then cooled to 4 °C. This was repeated thrice. Samples were
incubated with either DOPC (Avanti) (1 : 1 w/w ratio of DOPC : LPS) or DMPC
(Avanti) (2 : 1 ratio of DMPC : LPS w/w) prepared as small unilamellar vesicles by
sonication, as previously described.'® The sample was then freeze dried.

Polymyxin B preparation

20 mg of polymyxin B (Fisher bioreagents) was resuspended in 1 ml HPLC water
and then centrifuged for 10 min at 3000g to remove precipitates. This was then
loaded onto a C18 RP-HPLC column. The elution of polymyxin B was with a linear
gradient from 3.5% to 70% acetonitrile with 0.1% v/v TFA over 30 min, measured
using a UV-vis detector at 220 nm. The acetonitrile was then removed and a small
amount was sent to ESI MS (Bruker MicroTOF) to confirm the presence of poly-
myxin B. Polymyxin B was resuspended at 50 mg ml~* in HPLC water and then
lyophilised LPS in DMPC was either hydrated in HPLC water or polymyxin B in
HPLC water (50 mg ml ). Polymyxin B was added at a 1:1 molar ratio of
LPS : polymyxin B. When the samples were completely hydrated and mixed with
a glass stirring rod, they were freeze-thawed 5 times and loaded into 4 mm MAS
NMR rotors.

Solid state NMR

Solid state NMR experiments were carried out on a Varian 400 MHz VNMRS
widebore spectrometer equipped with a 4 mm T4 MAS NMR probe. The
temperature was regulated with balanced heated/vortex tube-cooled gas flow."”
The phosphorus-31 MAS NMR were referenced externally to H;PO, at 0 ppm at
a frequency of 161.82 MHz.
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The results of the phosphorous-31 static wideline NMR experiments were
recorded at 28 °C, above the transition temperature of DMPC, using a Hahn echo
sequence with 100 kHz 7t/2 and 7 pulses separated by 12 ps intervals and pre-
acquisition delays. Spectra were recorded with 20 ms acquisition time with
a recycle delay of 5 s, under SPINAL-64 heteronuclear decoupling.®

The results of the high resolution *'P experiments were acquired at 5 kHz MAS
frequency at either 4 °C or 28 °C. Inversion recovery was used to investigate the *'P
longitudinal relaxation, with delay times varying between 10 ms and 1.5 s between
initial 7t pulses and /2 reading pulse. Spectra were recorded with 50 ms acqui-
sition time under SPINAL64 decoupling®® with a recycle delay of 9 s to exceed five-
fold *'P T; values in membranes. Relaxation times T; were obtained assuming
a single exponential relaxation mechanism by fitting

M(t) = M(O)(l 2 exp(%))

using Excel (Microsoft). All spectra were processed and analysed using
ACDLabs 2015.

Dye release fluorescence studies

Carboxyfluorescein (CF) fluorescence dequenching studies were performed as
previously described.* Briefly, polymyxin B was suspended in 100 mM NacCl and
10 mM Hepes (pH 7.4) and equilibrated overnight at 4 °C. DOPC films or
DOPC : rLPS (1 :1 w/w) were hydrated in 1 ml 5(6)-carboxyfluorescein (Acros
organics) buffer (50 mM CF, 50 mM NacCl, 10 mM Hepes pH 7.4) for 1 h. The
solution then underwent 5 cycles of freeze-thawing until the lipid films were fully
suspended. The resulting suspension was extruded 11 times through a 100 nm
polycarbonate filter with an Avanti extruder (Avanti Polar Lipids). CF-loaded
vesicles were separated from non-encapsulated CF using a PD-10 column (GE
Healthcare) equilibrated with 100 mM NacCl in 10 mM Hepes, pH 7.4, and used
within 24 h.

Polymyxin B-induced CF release was monitored using the fluorescence
increase (excitation 490 nm, emission 515 nm, 400 V) over 300 s, at which the time
intensity changes with time were within 1%. CF-loaded large unilamellar vesicles
(LUVs) in buffer (100 mM NaCl, 10 mM Hepes, pH 7.4) were equilibrated to
achieve steady background fluorescence. Polymyxin B was added after 60 s (with
a final concentration range of 0.025-50 pg ml™"). After equilibrium (120 s),
residual liposomes were dispersed with Triton X-100 (Fluka BioChemika). For
each polymyxin B concentration, experiments were repeated in triplicate. CF
leakage was expressed as a fraction of CF release upon Triton X-100 addition,
normalised to background fluorescence:

% leakage = (Fpo1 — Fo)/(Fr_ — Fp) x 100

where Fj is the baseline fluorescence recorded before the addition of polymyxin B,
Fpor is the steady state fluorescence after adding polymyxin B and Fr, is the
maximum fluorescence release after the addition of Triton X-100 to destroy any
remaining vesicles.
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Antimicrobial susceptibility testing

Bacterial susceptibility to polymyxin was assessed by the agar diffusion method to
determine the minimal inhibitory concentration (MIC), as described previously.*
Briefly, 2 x 107 colony forming units (CFU) of BL21 E. coli inocula were spread
onto solid agar Luria-Bertani (LB) plates, 3 mm holes were punched with a sterile
cork borer and the wells were filled with 9 ul of varying concentrations of poly-
myxin B between 5 and 0.625 mg ml~". Plates were incubated at 37 °C for 16 h and
the polymyxin diffusion distances measured from the size of bacterial growth
inhibition zones less the well diameter. Plates were individually analysed and
three biological repeats of three technical plates (nine repeats per point) were
taken to determine the final MIC. The MIC was determined using the webtool
http://www.agardiffusion.com.

Results & discussion
Role of LPS in membrane disruption by polymyxin

To investigate the role LPS plays as a receptor for polymyxin, we used a dye release
assay, in which CF-loaded large unilamellar vesicles (LUV) of DOPC without or
with E. coli rLPS were incubated with increasing amounts of polymyxin B. The
choice of phosphatidyl choline (PC) ensured membrane stability and lack of non-
specific interactions between polymyxin B and the lipid headgroups. While in
Gram-negative bacterial membranes phosphatidyl ethanolamine (PE) is present
at 70-80% molar fraction, unsupported bilayers favour negative curvature and
show higher instability in the presence of polymyxin than PC."

CF-loaded LUVs of DOPC alone or of DOPC containing 1 : 1 w : w rLPS were
incubated with polymyxin B at molar ratios of polymyxin to DOPC between 0.003
and 3 (Fig. 2). The molecular weight of rLPS was estimated at roughly 2400 +
100 Da from the *'P MAS NMR phosphate (P) to pyrophosphate (PP) intensities, as
previously described.? To estimate the impact of LPS on membrane stability, we
extrapolated the linear fits from the CF release and used the zero intercept to
obtain the minimal polymyxin/DOPC ratios required for inducing lysis. Leakage
onset in pure DOPC liposomes was observed at a polymyxin/DOPC ratio of 5.9 x
107, while the presence of rLPS reduced this to 1.9 x 107".

Polymyxin binding to membranes and changes in lipid dynamics

We used wideline *'P solid state NMR to monitor changes in the molecular
organisation and slow collective dynamics in DMPC membranes that result from
the addition of polymyxin, the presence of rLPS or both (Fig. 3). The *'P NMR
wideline spectrum from hydrated DMPC in the liquid crystalline phase at 28 °C is
reflective of the fast axial motions of phospholipid molecules with spherically
symmetric angular orientations. The spectroscopic features are characterised by
axially symmetric effective chemical shift anisotropy, which results in a charac-
teristic powder or Pake spectral intensity distribution.? The observed *'P effective
CSA from the DMPC multilamellar vesicle (MLV) suspensions is approximately
45 ppm (Fig. 3), which is consistent with reported values.?***> The addition of
polymyxin at a 1:1 molar ratio does not disrupt the membrane structure but
markedly increases the lipid disorder. The spectral features remain reflective of
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Fig. 2 Polymyxin-dependent CF release from membranes.
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Fig.3 Phosphorus-31 wideline NMR spectra of the membranes, recorded at 28 °C, above
the DMPC main transition temperature.

a powder distribution but at a much reduced effective CSA of 38.3 ppm (Fig. 3),
clearly revealing the incorporation of polymyxin B into the DMPC bilayers.

The *'P wideline NMR spectrum from DMPC/LPS 1: 1 w/w reveals the self-
assembly of a stable bilayer membrane, reflected in the CSA-dominated powder
distribution with a slightly reduced width of 43.6 ppm (Fig. 3). In addition to the
DMPC-dominated symmetric CSA wideline, we observe a much more mobile
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environment at —7.2 ppm, reflective of the increased mobility in the lipid A
region, as well as a broad isotropic resonance at 3.1 ppm. The latter arises from
the LPS phosphates and pyrophosphates in the outer core.>*** In contrast to the
phospholipid phosphates, due to the high flexibility between lipid A and the LPS
core, the phosphate and pyrophosphate CSA collapses completely and we observe
isotropic resonances superimposed onto the DMPC wideline spectrum. Such high
phosphate and pyrophosphate mobilities are also observed in the membrane
embedded polyisoprenoid cell wall intermediates lipid II, lipid I and undecap-
renyl mono- and pyrophosphate.***

The addition of polymyxin B at a 1: 1 ratio to the DMPC/rLPS bilayers also
preserved the powder distribution and the underlying mixed phospholipid bila-
yers. Akin to DMPC alone, the incorporation of polymyxin B into the mixed
DMPC/rLPS membranes further increases lipid disorder compared with that in
pure DMPC, which is observed as a greater reduction in the effective CSA to
approximately 30 ppm.

Selective targeting of LPS by polymyxin

High resolution *'P MAS NMR spectroscopy permits the independent and
quantitative observation of individual membrane components and the selective
effects of polymyxin addition. Due to pyrophosphorylation, membrane rLPS can
be followed by a well resolved resonance at —11 ppm (Fig. 4). The single sharp
resonance of DMPC observed at —0.97 ppm is broadened slightly upon the
addition of polymyxin B. The presence of LPS in the DMPC membranes leads to
a significant increase in the isotropic line width, which is countered slightly by the
addition of polymyxin B (Fig. 4). Despite this line broadening, the pyrophosphate
resonance remains clearly resolved from the compound intensity of DMPC and
LPS monophosphates. A contribution from the 3.1 ppm LPS phosphate is seen as
a shoulder on the main monophosphate resonance.

Longitudinal nuclear relaxation is a sensitive reporter of changes in fast, GHz
molecular motions, such as the axial rotation in membrane lipids that leads to
CSA and dipolar coupling modulation. We use inversion recovery *'P MAS NMR to

DMPC + LPS
+ polymyxin B

DMPC +LPS A/\
WO 4A¥ s,

DMPC
+ polymyxin B

DMPC

A

o 20 0 20 40

3P [ ppm

Fig. 4 High resolution 3P MAS NMR spectra from DMPC or DMPC/LPS membranes
without or with polymyxin, acquired at 28 °C and 5 kHz MAS.
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determine the relaxation behaviour of the lipid and LPS *'P nuclear systems and
to explore specific molecular interactions between polymyxin B and rLPS within
the DMPC membranes. Phosphorus-31 within phosphates or pyrophosphates is
a particularly appropriate nuclear reporter, as the pure O-linking severely reduces
coupling to protons and obviates the need of decoupling during the long relax-
ation intervals.

Longitudinal *'P MAS NMR relaxation times T were determined at 28 °C and
at 4 °C (Fig. 5, Table 1). At 28 °C both DMPC and rLPS are in the fast motion
regime and we observe a reduction in the rLPS pyrophosphate 7, from 130 to 90
ms, while the DMPC-dominated monophosphate T; remained almost unaf-
fected at 240 and 230 ms, respectively. The selective reduction in the pyro-
phosphate relaxation time reflects reduced mobility and the formation of an
LPS/polymyxin membrane complex. By contrast, the DMPC mobility remained
unchanged, which is consistent with the previously reported lack of molecular
interactions.™

The relaxation time T from LPS pyrophosphates remained unchanged at 130
ms when the temperature was lowered from 28 °C to 4 °C, suggesting that the
system is crossing a T; minimum and enters slow motion at the lower tempera-
ture. The molecular motions are in the slow regime within DMPC in the gel phase
and the reduction in the phosphate T; upon the addition of polymyxin B reflects
the increase in membrane disorder, consistent with the wideline and high reso-
lution *"P MAS observations. The LPS pyrophosphate relaxation time increased at
4 °C from 130 to 160 ms, which is reflective of motional restrictions in a slow
motion system and of molecular complex formation, specifically between
membrane rLPS and polymyxin B.

28°C
0,
ac 1.0
. B Phosphat
Hl Phosphate osphate
mm Pyrophosphates 0.8 mu Pyrophosphates
1.5
O O
g ™ .:
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Fig. 5 Phosphorus-31 MAS NMR longitudinal relaxation times T; for DMPC membranes
without or with LPS or polymyxin. Phosphate T; values are shown in black and pyro-
phosphate T; values from LPS are in grey.
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Table1 Phosphorus-31 MAS NMR longitudinal relaxation times T; at 4 °C and 28 °C from
DMPC membranes without or with LPS before or after polymyxin B (PMB) addition

T, [s]at4 °C T, [s] at 28 °C

P PP P PP
DMPC 1.44 0.84
DMPC/PMB 1.48 0.49
DMPC/LPS 0.77 0.13 0.24 0.13
DMPC/LPS/PMB 0.42 0.16 0.23 0.09

Biological activity of polymyxin against E. coli BL21

To confirm the efficacy of polymyxin against our test strain of E. coli BL21, we
carried out susceptibility assays using the agar diffusion method." The results
were obtained from three technical and three biological repeats and the minimal
inhibitory concentration (MIC) was calculated, using the free MIC web calculator
at http://www.agardiffusion.com, to be 291 ug ml~' using the linear zone size
model. The average regression coefficient for the linear d-model was R* = 0.974,
while for the d> model R> = 0.964. This closer fit to the linear model reflects some
loss of polymyxin during diffusion within the agar, either through degradation or
through interactions with the agarose matrix.*

Polymyxin B is an anti-Gram-negative peptide antimicrobial with a complex
mechanism of action that involves disruption and crossing both the bacterial OM
and IM. OM translocation is conditional on the availability of LPS and specific
modifications, such as pEtN-ation, reduce the ability of polymyxin B to engage
bacterial targets. Dye release studies in this study show that the presence of LPS in
lipid membranes significantly enhances the ability of polymyxin B to destabilise
and permeabilise bilayer membranes without the formation of stable non-bilayer
products. While polymyxin B binds to zwitterionic PC membranes, causing
a reduction in the lipid orientational order, membrane leakage only occurs at
high polymyxin B to lipid ratios, most likely through charge repulsion-induced
local membrane curvature. This model aligns with the reported role of
membrane charge as a destabilising factor in the membrane response to poly-
myxin B, with better chain packing countering this effect.®

The presence of LPS significantly enhances the phospholipid motional
freedom following the addition of polymyxin B. In contrast to the pure lipid case,
a different mechanism comes to the fore, in which pyrophosphate recognition by
polymyxin B leads to the assembly of lytic binary complexes that more efficiently
disrupt the LPS-containing membranes. This model is consistent with reported
bacterial adaptations in pEtN-derivatised LPS, which reduce bacterial suscepti-
bility to polymyxins.*** The OM translocation of polymyxin B relies on hijacking
natural LPS pyrophosphate groups, where the polycationic peptide challenges
membrane integrity through competition for the divalent cation binding sites
which are responsible for maintaining OM integrity. Capping LPS mono- and
pyrophosphates in polymyxin resistant strains results in a reduction of the LPS
negative charge, as well as restricting the access to pyrophosphates as docking
motifs for polymyxin B.

326 | Faraday Discuss., 2021, 232, 317-329 This journal is © The Royal Society of Chemistry 2021


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1fd00036e

Open Access Article. Published on 26 July 2021. Downloaded on 11/1/2025 2:02:04 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online
Paper Faraday Discussions

Conclusions

As last resort antimicrobials such as polymyxin B are re-entering the battle against
bacterial resistance to antibiotics, novel molecular targets and antimicrobial
mechanisms play an increasingly important role. In this work, we explore the role
of bacterial rLPS as a molecular receptor for polymyxin B and used solid state
NMR to show the specific pyrophosphate-mediated molecular interaction mech-
anism. We contrast and quantify non-specific membrane disruption by polymyxin
B to a pyrophosphate-mediated mechanism relying on the formation of LPS/
polymyxin B membrane complexes. Biologically active polymyxin B is signifi-
cantly more lytic in the presence of LPS in the target membranes and solid state
3'P MAS NMR relaxation revealed LPS pyrophosphates to be the specific loci of
polymyxin B/LPS recognition.
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