This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

This article can be cited before page numbers have been issued, to do this please use: M. Borysiewicz, J. Dou, I. Stassen and M. Dinca, Faraday Discuss., 2021, DOI: 10.1039/D1FD00028D.
COMMUNICATION

Why conductivity is not always king – physical properties governing the capacitance of 2-D Metal-Organic Framework-based EDLC supercapacitor electrodes: a Ni$_3$(HITP)$_2$ case study.

Michał Adam Borsisiewicz,† Jin-Hu Dou, Ivo Stassen,† Mircea Dincă‡

We report a systematic study on the variation of physical properties of Ni$_3$(HITP)$_2$ (HITP = 2,3,6,7,10,11-hexaiminotriphenylene) in the context of their influence on the capacitive behavior of this material in supercapacitor electrodes prepared using neat MOF. We find that, for this representative material, sample morphology has a greater impact on measured electrode performance than differences in bulk electrical conductivity.

Two-dimensional metal-organic frameworks (2D MOFs) that exhibit high electrical conductivity have seen rising interest in recent years because their combination of conductivity and relatively high porosity opens paths to several potential applications ranging from electrocatalysis, chemiresistive sensors, light emitters, thermoelectric devices, and electrochromic devices. Another area of prospective application are energy storage devices, in particular supercapacitors, where 2D MOFs exhibited promising results. Although the intrinsic ideal properties of each MOF tend to be understood as governing the whole behavior of any device fabricated using them, the real material is characterized not only by intrinsic material parameters but also by crystal size, shape, agglomerate morphology, and other bulk properties. Additionally, batch-to-batch variation is often a significant, yet rarely commented on point of concern. Indeed, physical properties of the materials can vary significantly in different batches because common laboratory settings are not as carefully controlled as an industrial or large-scale setting; traditional culprits for batch-to-batch variations have been the use of glassware not exclusively dedicated to a certain process, reagent and solvent variations due to handling and different vendors, or even differences in temperature and humidity in a given lab from season to season or from room to room. Because of these considerations, it is not always easy to determine which parameters should be optimized for ideal device performance.

To shed light on this question, we synthesized in one laboratory using the same starting materials and solvents as far as applicable, several batches of Ni$_3$(HITP)$_2$, and utilized them as supercapacitor electrodes in aqueous KOH electrolytes. The goal was to discern the physical properties of the MOF batches influencing the performance of the device. Ni$_3$(HITP)$_2$ is characterized by a strongly anisotropic structure. The ligands are made up of aromatic triphenylene units, which gives rise to tubular, cylindrical channels of approximately 1.6 nm in diameter.

Three batches of the Ni$_3$(HITP)$_2$ MOF were synthesized, denoted here as HITP_A, HITP_B and HITP_C. They were prepared taking the previously published approach as the starting point for the synthetic conditions, which were then slightly varied as described in the Supplementary Information, yielding the same type of MOF material but with considerable physical property variation as summarized in Table 1. The electrical conductivity of the three samples spanned two orders of magnitude from 2·10$^{-4}$ S·cm$^{-1}$ to 4·10$^{-2}$ S·cm$^{-1}$, for HITP_A and HITP_C, respectively. The BET surface areas, determined from fitting N$_2$ adsorption isotherms measured at 77 K, differ by a factor of three, from 260 m2·g$^{-1}$ to 825 m2·g$^{-1}$ for HITP_A and HITP_B, respectively. The PXRD patterns registered for the three batches display pronounced (100), (200) and (001) peaks for all samples; as previously determined, the materials are characterized by slipped parallel stacking with a 1.8 Å offset along the a and b directions. Notably, although the intensity ratios of the (100) to (001) for the HITP_B and HITP_C samples are similar, the intensity of the (001) reflection for HITP_A is significantly higher than that of the (001) reflection, suggesting a different, more textured, morphology of the crystallites than for the...
other two batches (Fig. 1.b), where the crystallites are expected to be more random-oriented. SEM investigations (Fig. 1.c, d) show that the crystallites in HITP_A indeed present as elongated needle-like (length/width aspect ratio 12.1), whereas the crystallites in HITP_B and HITP_C are shorter and wider (size aspect ratio 3.4 and 2.7, respectively).

Table 1. Physical characteristics of the Ni(HITP) batches.

<table>
<thead>
<tr>
<th>Batch</th>
<th>Conductivity (S·cm(^{-1}))</th>
<th>BET surface area (m(^2)g(^{-1}))</th>
<th>PXRD mean</th>
<th>Crystal length/width (nm/nm)</th>
<th>Crystal l/w aspect ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2∙10(^{-4})</td>
<td>260</td>
<td>13.7</td>
<td>202/16</td>
<td>12.1</td>
</tr>
<tr>
<td>B</td>
<td>6∙10(^{-4})</td>
<td>825</td>
<td>2.9</td>
<td>84/24</td>
<td>3.4</td>
</tr>
<tr>
<td>C</td>
<td>4∙10(^{-2})</td>
<td>585</td>
<td>1.8</td>
<td>78/29</td>
<td>2.7</td>
</tr>
</tbody>
</table>

In the electrochemical testing of electrodes made from each of the MOF samples, the CV shapes do not show any pronounced redox events (Fig. 2.a,b). The retention curves show that for rates lower than 2 mV·s\(^{-1}\) the capacitance values saturate. This may be related to fully filling the pores with the electrolyte ions for electrostatic charge storage (Fig. 2.c). The 1 mV·s\(^{-1}\) values can therefore be regarded as 'saturation' values of the capacitance that should not increase substantially when cycling at lower speeds. They can also be regarded as the capacitance values best related to the microstructure and physical properties of the material itself. The measured capacitances reach 21.9, 100.8 and 74.5 F·g\(^{-1}\) for HITP_A, HITP_B, and HITP_C, respectively, which normalized to the BET surface areas equate to 8.4, 12.2 and 12.7 μF·cm\(^{-2}\) (see Table 2). Once again, the value for HITP_A diverges significantly from the two other batches, in line with the observations derived from morphology and PXRD.

The difference in the observed normalized capacitance can be explained by the very large total internal resistance of the electrode made from HITP_A.

A closer look at the CV shapes reveals that the smallest area CV scan (HITP_A) also displays the largest curvature of the current characteristic after the voltage direction switch. For an ideal electrostatic double layer capacitor, the CV plot is a rectangle with immediate current switching following the change in the direction of the voltage sweep. For a real device, the total internal resistance of the device plays a dominating role, slowing down the current switching speed, resulting in a CV trace with rounded corners, which translates to less surface area within the CV trace than there would be for an ideal capacitor. This total internal resistance, \(R_{int}\), is related to both the electronic electrode resistance and ionic electrolyte resistance (represented jointly by equivalent series resistance, ESR) and the resistance related to filling and emptying the pores during charging and discharging (called equivalent distributed resistance, EDR).

To determine the ESR and EDR, we measured electrochemical impedance spectra for all the samples, and all display a qualitatively similar shape, a depressed high frequency semicircle to which an inclined straight line is attached for lower frequencies (Fig. 2.d). The ESR, extracted from the high frequency region of the EIS are 1.6 Ω for both HITP_A and HITP_B, and 0.6 Ω for HITP_C. The radii of the depressed semicircles evidence the most visible differences between the samples, again showing poorer performance and higher impedance for the HITP_A cell in comparison with the other two. These radii are related to the so-called charge-transfer resistance, \(R_{CT}\), which for EDLC cells can be related to the rate of depolarization of the electrolyte ions inside the electrode upon changing of the applied electrical field. The last part of the EIS, the inclined line, is related to diffusion of ions in the area adjacent to the electrode. The total internal resistance was extracted from the intercept of the interpolation of the
low frequency data of the inclined line with the real axis and was used to determine the EDR (see Table 2).

Figure 2. Results of characterization of the 3 electrode cells with three different Ni₃(HITP)₂ batches. Cyclic voltammetry at 1 mV s⁻¹ (a) and 100 mV s⁻¹ (b). Capacitance retention as a function of the voltage sweep rate (c). Electrochemical impedance spectra (d).

The electrochemical response of the electrodes can be explained based on the material morphology. Because the Ni₃(HITP)₂ crystals preferentially grow along the c-axis, the long, needle-like material has crystallites displaying small faces of the ab plane (needle ends), and large facets of the ac or bc crystallographic planes. On the other hand, the shorter crystals expose larger facets of the ab plane and smaller facets of planes containing the c axis. On an atomic scale, the facets normal to the crystallographic c axis are those that allow access to the 1.6 nm-wide channels, whereas the facets parallel to the c axis have no obvious openings, all displaying closely stacked monolayers of Ni₃(HITP)₂ that are impermeable to hydrated K⁺ ions from the electrolyte. The latter is also confirmed by the absence of intercalation peaks in the CV.

Taking into account also the general morphology of the powder, with the intertwined, agglomerated structures in HITP_A and the branched out structures in HITP_B and HITP_C, we can surmise that the branched out materials display larger capacitances due to more area available for solvated ions penetrating the pores, in contrast to the longer crystallites where ion penetration is limited.

The same observations are borne from the CV retention data: high voltage sweep rates limit pore penetration, and the CV response is primarily related to the external surface of the crystalline agglomerates, much lower for HITP_A than for the other batches. The charge transfer resistance also follows the aspect ratio of the crystals available for insertion. The HITP_A:HITP_B EDR ratio is 4.6, while the HITP_A:HITP_C EDR ratio is 4.9. Both correlate with the actual aspect ratio differences between HITP_A and HITP_B, 3.6, and between HITP_A and HITP_C, 4.5 (see Table 1). The charge transfer resistances are related to the longer crystallites, since it takes a longer time for ions to penetrate the longer slits than the shorter ones.
Comparing different batches allows us to distinguish the two most significant contributions to the capacitance of a given 2D MOF. Surprisingly, we find that both are related to morphology rather than any intrinsic parameter. The former is related to the shape of the individual crystals, and the second to their agglomerates comprising the batch. The latter significantly affects the observed gravimetric surface area of the material, even though it likely does not indicate differences in intrinsic porosity. Surprisingly, changes in conductivity over 2 orders of magnitude did not correlate significantly with the observed capacitance. Clearly, the lower the ESR of the electrodes, but the differences in intrinsic porosity.

Conclusions

Although quantifying electronic or intrinsic contributions of the material itself, here $\text{Ni}_2(\text{HTP})_2$, would likely require considerable computational resources and lies outside the scope of our report, the foregoing results allow us to compile a set of general rules making possible the in-lab optimization of a 2D MOF material, or other similarly anisotropic porous materials for electrolytes based on observable quantities such as crystal length, aspect ratio, and agglomeration behavior (e.g. branched-out, intertwined, etc.):

1. a determining factor for the electrochemical behavior for a given 2D MOF is the apparent surface area, which is clearly correlated with the mesostructural morphology. In this sense, a branched out, hierarchical structure is preferred to a globular one;
2. the longer the individual crystals, the larger the EDR of the electrode, limiting both the observable capacitance and the power available from the full device. The EDR cannot be determined based on the bulk conductivity of the MOF;
3. differences in electrical conductivity between batches of up to two orders of magnitude seem inconsequential for capacitance. Importantly, we note that for good electrical polarization, materials should exhibit electrical conductivity of at least $\approx 10^{-4}$ S cm$^{-1}$.

Finally, we note that the first two points likely do not hold for materials that present three-dimensional pores. For such materials, although agglomeration of crystallites is still likely to impede ion penetration, the effects may be less pronounced.

Conflicts of interest

There are no conflicts to declare.

Acknowledgments

I.S. thanks the Research Foundation Flanders (FWO) for a postdoctoral fellowship. Part of the characterization was performed at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF award no. ECS-0335765. CNS is part of Harvard University.

Notes and references

Notes and references

Table 2. Performance data of Ni$_2$(HTP)$_2$ electrodes.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Capacitance (F·g$^{-1}$)</th>
<th>Capacitance (μF·cm$^{-2}$)</th>
<th>ESR (Ω)</th>
<th>R_T (Ω)</th>
<th>EDR (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HITP_A</td>
<td>21.9</td>
<td>8.4</td>
<td>1.6</td>
<td>68</td>
<td>69</td>
</tr>
<tr>
<td>HITP_B</td>
<td>100.8</td>
<td>12.2</td>
<td>1.6</td>
<td>9.9</td>
<td>15</td>
</tr>
<tr>
<td>HITP_C</td>
<td>74.5</td>
<td>12.7</td>
<td>0.6</td>
<td>10.4</td>
<td>14</td>
</tr>
</tbody>
</table>

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.