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The combination of a methanol synthesis catalyst and a solid acid catalyst opens the
possibility to obtain olefins or paraffins directly from CO, and H, in one step. In this
work several PdZn/TiO,—-ZSM-5 hybrid catalysts were employed under CO,
hydrogenation conditions (240-360 °C, 20 bar, CO,/N,/H, = 1:1: 3) for the synthesis
of CHsOH, consecutive dehydration to dimethyl ether and further oxygenate
conversion to hydrocarbons. No significant changes after 36 h reaction on the
methanol synthesis catalyst (PdZn/TiO,) were observed by XRD, XAS or XPS. No olefins
were observed, indicating that light olefins undergo further hydrogenation under the
reaction conditions, yielding the corresponding alkanes. Increasing the aluminium sites
in the zeolites (Si: Al ratio 80 : 1, 50 : 1 and 23 : 1) led to a higher concentration of mild
Bronsted acid sites, promoting hydrocarbon chain growth.

Introduction

The sustainable production of energy is one of the major challenges of modern
society."” Several technologies have been developed to harvest renewable energy
(e.g., solar panels, wind farms) in the form of electricity.> However, due to the
intermittent nature of renewables, surplus produced electricity must be stored as
chemical bonds to ensure a steady production of energy when electricity
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production is low.® The production of H, via water splitting is a route with a high
renewable electricity storage capacity,* and is a possible energy vector for future
technology.>® However, energy decarbonisation is likely to occur in a subtle way.”
Therefore, it is important to develop transitory routes that allow the use of current
technology, but approach CO, neutrality.® This can be achieved by storing H,
produced via water electrolysis through renewable electricity in the form of
hydrocarbons, by its reaction with CO,.***

The production of CH;0H from syngas (CO/CO,/H,) over a CuO/ZnO/Al,03
catalyst is a mature process (250-300 °C, 50-100 bar), with an annual CH;0H
production of 57 Mt,* and increasing. Hence, renewable H, could be easily
incorporated in the CH;OH production cycle, however for the process to be CO,
neutral, CH;OH must be obtained from recycled CO, and sustainably produced
H,. Thermodynamically, CH;OH formation from CO, and H, is favoured at high
pressure and low temperature. Nevertheless, a high temperature (>200 °C) is
needed to activate CO,, which in turn results in the deactivation of Cu-based
catalysts due to Cu sintering®™ and coke deposition.”* Pd-based catalysts are
employed in CO, hydrogenation to CH;OH as a stable alternative to Cu-based
catalysts.'>™*

Research on Pd/ZnO catalysts confirmed the B-PdZn alloy as the active phase
for CH;0H synthesis.”*** Commercially sourced ZnO usually has a low surface
area which results in large PdZn particles, and hence, to improve PdZn disper-
sion, supports with a higher surface area (e.g., CeO,,"® carbon nanofibers,* carbon
nanotubes,* Al,03, or TiO, (ref. 25 and 26)) are commonly used. The higher
stability of PdZn alloy catalysts allows for higher reaction temperatures, however,
then CH;OH productivity is limited by the thermodynamic equilibrium whilst CO
formation is favoured through the reverse water gas shift (RWGS) reaction. To
increase oxygenate productivity above the limited CO, hydrogenation to CH;OH
dictated by the equilibrium, CH3;OH can be simultaneously dehydrated to
dimethyl ether (DME) by physically mixing a methanol synthesis catalyst with
a solid acid catalyst.>*° ZSM-5 zeolites are commonly employed as solid acid
catalysts to dehydrate CH;OH to DME due to their high resistance to water, high
stability and the presence of Lewis and Bronsted acid sites.** The conversion of
methanol or dimethyl ether to hydrocarbons (MTH or DMTH respectively) is
a mature process that also employs ZSM-5 zeolites as catalysts (300-500 °C, 1
bar).*>** More importantly, it has been reported that using H, or H,O in the feed
for the MTH process decreased the deactivation of several zeolites (HSAPO, HSSZ,
HFER, HBEA, ZSM-5) by limiting coke deposition within structural pores, without
significantly affecting the hydrocarbon chain distribution or the olefin-to-paraffin
selectivity.**®” Water is produced as a by-product in CO, hydrogenation to
CH,;0H, moreover H, is present in the feed. Hence, the synthesis of hydrocarbons
from CO, over a methanol synthesis catalyst combined with an acid catalyst with
reduced coke deposition is achievable. Bonura et al.*® studied different reactor
bed configurations for the direct synthesis of DME from CO, by combining
a methanol synthesis catalyst and a solid acid catalyst, and found that a physical
mixture (also known as a hybrid catalyst) of Cu-ZnO-ZrO, and H-ZSM-5 gave the
highest oxygenate (CH;OH + DME) productivity. Higher oxygenate productivity
was also observed for a Pd/ZnO-ZSM-5 hybrid catalyst compared to a PdZn on
ZSM-5 catalyst.*® Thm et al.*® reported the direct synthesis of hydrocarbons from
CO, + H, on CuO/ZnO/ZrO,-ZSM-5 (Si/Al = 22) hybrid catalysts. At 400 °C and 30

This journal is © The Royal Society of Chemistry 2021 Faraday Discuss., 2021, 230, 52-67 | 53


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0fd00135j

Open Access Article. Published on 16 February 2021. Downloaded on 2/3/2026 12:23:49 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online
Faraday Discussions Paper

bar the selectivity towards CO, oxygenates and hydrocarbons observed was 93.4,
1.8 and 4.8% respectively. Cs. products were detected, although C; and C,
products accounted for 95.4% of the hydrocarbon product distribution. Over
a ZnZrO,/SAPO catalyst at 380 °C and 20 bar (~18% CO, conversion), the CO
selectivity was reduced to 47%, whilst C,-C, olefins accounted for 80% of the total
hydrocarbon distribution, and the remaining hydrocarbons were assigned to C,-
C, alkanes (14%), C; (3%) and Cs. (3%).* Light olefins synthesised on hybrid
catalysts from CO, can also undergo further reduction to their corresponding
alkanes on the methanol synthesis catalyst, which effectively acts as a hydroge-
nation catalyst. Park et al.*' reported ethane (76.4%) as the main hydrocarbon
product over a CuZnOZrO,-ZSM-5 catalyst (28 bar, 400 °C), with little formation of
C; (4.5%), C,4 (0.8%) and Cs. (0.2%) products. However, as reported by Giordano,
Frusteri and co-workers*** for CO, conversion to DME over CuZnZr/ferrierite
hybrid catalysts, Cu remains prone to severe sintering under the reaction
conditions (260 °C, 30 bar). This makes catalyst stability the bottle neck of this
process.

To the best of our knowledge, reports on PdZn hybrid catalysts for CO,
hydrogenation focus on DME,*”*® but no detailed attention has been paid to the
produced hydrocarbons. We therefore assessed the activity and stability of diverse
PdZn/TiO,-ZSM-5 hybrid catalysts under CO, hydrogenation conditions (20 bar,
<360 °C) and identified produced hydrocarbons derived from MTH and DMTH.

Experimental section
Materials

All ZSM-5 zeolites used in this work were purchased from Alfa Aesar (NH, -form of
ZSM-5, Si/Al = 23, 50 and 80); Pd acetylacetonate (Pd(acac),, 99%) and Zn acety-
lacetonate (Zn(acac),, 99%) were supplied by Sigma-Aldrich; titanium oxide (TiO,-
P25) was ordered from Aeroxide.

PdZn/TiO, catalyst synthesis

The synthesis of PAZn/TiO, by chemical vapour impregnation (CVI) was reported
previously.”*” For the synthesis of 3 g of PdZn/TiO, catalyst with a 5 wt% Pd
loading and a 1 : 5 palladium to zinc molar ratio, Pd(acac), (0.43 g, 1.40 mmol),
Zn(acac), (2.06 g, 6.93 mmol) and TiO, (2.39 g) were physically mixed in a glass
vial until homogeneous. The mixture was then transferred into a Schlenk flask,
evacuated (102 bar) and heated (145 °C, 1 h). The as prepared materials were
recovered and annealed in static air (10 °C min~*, 500 °C, 16 h). PdZn/TiO,
characterisation was performed on a portion of catalyst reduced in flowing 5% H,/
Ar (400 °C, 5 °C min~ ', 1 h).

PdZn/TiO,-ZSM-5 hybrid catalyst preparation

The as received (NH,)-ZSM-5 zeolites were annealed in static air (550 °C,
10 °C min~ %, 6 h) to obtain the H-ZSM-5 form prior to reaction. 0.5 g of PdZn/TiO,
and 0.5 g of treated ZSM-5 were physically mixed in a vial until homogeneous. The
mixture was pelleted (10 ton) and crushed (425-600 um) to obtain the hybrid
catalyst. Zeolites are named in the text according to their Si/Al ratio, for instance
ZSM-5 with a Si/Al ratio of 23 : 1 will be referred to as ZSM-5(23).
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CO, hydrogenation and consecutive MTH/DMTH catalyst testing

Catalytic activity for CO, hydrogenation to CH;0H, DME, olefins and hydrocar-
bons was achieved in a stainless steel fixed-bed (50 cm length, 0.5 cm internal
diameter) continuous flow reactor. 0.5 g of hybrid catalyst without diluent (or
0.25 g of pelleted PdZn/TiO, with 0.25 g of SiC as diluent) were secured in the
reactor tube using quartz wool. Prior to reaction, the hybrid catalysts were pre-
reduced in 5% H,/He (400 °C, 5 °C min %, 1 h). Subsequently, the reactor was
cooled down to 50 °C, the 5% H,/He flow was switched to the reaction mixture
(COy/Ny/H, = 1:1:3,30 ml min~"), and the reactor was pressurised to 20 bar
and heated to the desired reaction temperature (240, 270, 300, 320, 340 and
360 °C, 5°C min~", 6 h dwell). To avoid product condensation, post reactor lines
and valves were heated to 130 °C. Products were analysed via online gas chro-
matography (Agilent 7890, fitted with FID and TCD detectors). Details of how CO,
conversion, product selectivity and productivities were calculated can be found in
the ESI (eqn (S1-S117)).

Catalyst characterisation

X-ray absorption spectroscopy (XAS) was carried out in transmission mode at the
Pd K-edge, at the B18 beamline of the Diamond Light Source, Harwell, UK, and
a Pd foil was examined simultaneously with the sample and used as a reference.
Three spectra were averaged to minimise the noise signal. The X-ray absorption
fine structure (EXAFS) was analysed with the Demeter software package (Athena
and Artemis).** X-ray photoelectron spectroscopy (XPS) was carried out on a Kra-
tos Axis Ultra-DLD fitted with a monochromatic Al Ka (75-150 W) source and
analyser, using a pass energy of 40 eV. The XPS data were analysed using Casa XPS
software. Powder X-ray diffraction (XRD) patterns were obtained on a (f-6) PAN-
alytical X’pert Pro powder diffractometer fitted with a hemispherical analyser
using a Cu Ka radiation source (40 keV, 40 mA). The pore sizes and BET surface
areas of the ZSM-5 zeolites were obtained through N, adsorption isotherms using
a 3-flex Micromeritics instrument. Samples were degassed in situ at 250 °C for 10 h
prior to analysis. Coke deposition during CO, hydrogenation was measured
through thermogravimetric analysis on a PerkinElmer TL9000 with a TG-IR-MS
interface.

Results and discussion
PdZn/TiO,-ZSM-5 hybrid catalysts for direct CO, conversion to hydrocarbons

In addition to PdZn/TiO, employed as a CH3;O0H synthesis catalyst,”*** commer-
cial ZSM-5 zeolites with various Si/Al ratios (23, 50 and 80) were used as solid acid
catalysts to promote consecutive CH;OH dehydration to DME*~° and further
MTH/DMTH.*>?** XRD patterns, pore sizes and BET surface areas for the
commercial ZSM-5 zeolites after annealing (static air, 550 °C, 10 °C min™ ", 6 h)
can be found in the ESI (Fig. S1 and Table S1,f respectively). Thorough charac-
terisation of PdZn/TiO, synthesised by chemical vapour impregnation (CVI) with
5 wt% Pd and a Pd/Zn molar ratio of 1 : 5 was previously reported.***

Firstly, the catalytic activity of PdZn/TiO, (0.25 g catalyst diluted with 0.25 g of
SiC) for CO, hydrogenation was assessed (20 bar, CO,/N,/H, = 1:1: 3, 240-
360 °C). As observed in Table S2,t raising the reaction temperature from 240 to
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Fig. 1 (a) CHsOH, DME and CH, productivities and CO, conversion for CO, hydroge-
nation (20 bar, 30 mlmin™, CO,/H,/N, =1: 3 : 1, 240-360 °C, 6 h dwell) over PdZn/TiO5.
(b) Theoretical CH3zOH yield obtained from Shen et al** compared to experimental
CH3OH yield with temperature over PdZn/TiO,.

360 °C resulted in an increase in the CO, conversion from 6.8 to 31.2%, accom-
panied by an increase in the CO selectivity (from 74.6 to 97.9%) at the expense of
CH;OH selectivity (from 24.3 to 1.3%), in accordance with the reaction thermo-
dynamics.*® Below 300 °C, CH3;OH synthesis proceeded in the kinetic regime
(Fig. 1a), as shown by the increase in the CH;OH productivity with temperature up
to 518 mmol kg.,. " h™'. At 300 °C, the CH;OH yield reached equilibrium (1.45%
CH;OH yield),” and hence, above 300 °C CH3OH synthesis is controlled by the
thermodynamic equilibrium (Fig. 1b), as shown by the sharp decrease in CH;OH
productivity. Low selectivity toward CH, (<0.8%) and DME (<1.0%), produced by
CH;0H decomposition on TiO, (ref. 46 and 47) and CH3;OH dehydration,”
respectively, was observed. Nevertheless, in the absence of ZSM-5 solid acid
catalysts, no other hydrocarbons were detected.

Comparable CO, conversion and CO productivity to PdZn/TiO, were observed
for all PdZn/Ti0O,-ZSM-5 hybrid catalysts (Fig. 2), indicating that the activity of the
methanol synthesis catalyst is not altered by the proximity of solid acid zeolites,
and that ZSM-5 zeolites are not active towards the RWGS. To ensure that ZSM-5
zeolites do not act as RWGS or as CH;OH synthesis catalysts, blank ZSM-5(23)
was employed for the CO, hydrogenation reaction (Table S37), and negligible
CO,, conversion was observed at 270 °C. The efficient dehydration of CH;OH to
DME occurred over all PdZn/TiO,-ZSM-5 hybrid catalysts. The highest oxygenate
productivity (CH;OH + DME) was obtained at 270 °C. At this temperature almost
no methanol to olefins (MTH) or dimethyl ether to olefins (DMTH) conversion
takes place, with only small traces of ethane detected over hybrid catalysts with
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Fig. 2 CO, conversion and CO productivity over PdZn/TiO, and PdZn/TiO,-ZSM-5
hybrid catalysts during CO, hydrogenation (20 bar, 30 ml min~*, CO,/H,/N, = 1:3: 1,
240-360 °C, 6 h dwell).
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Fig. 3 CO, oxygenate and hydrocarbon selectivity and total CHsOH productivity for CO,
hydrogenation (20 bar, 270 °C, CO,/H,/N, = 1: 3 : 1) over PdZn/TiO, and PdZn/TiO,—
ZSM-5 hybrid catalysts.

ZSM-5(50 and 80), and small amounts of higher hydrocarbons observed for PdZn/
TiO,-ZSM-5(23). DME is the major oxygenate product with a selectivity close to
20%. Moreover, the total methanol productivity (CH;OH;y), considering that all
hydrocarbons originate from CH;OH by either dehydration to DME or through
the MTH/DMTH process, was higher for all hybrid catalysts compared to PdZn/
TiO, (Fig. 3).

The hydrocarbon productivities and CH;O0H,) over PdZn/TiO,~ZSM-5 hybrid
catalysts can be found in Table S4.7 At 300 °C, the hybrid catalysts showed higher
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CH;0Ho) compared to PAdZn/TiO,, thus overcoming the theoretical CH;0H yield
dictated by the equilibrium. Increasing the alumina ratio in the zeolite promoted
the formation of longer hydrocarbons. The presence of aluminium sites is related
to Bronsted acid sites with mild acidity, and hence, a higher concentration of
Bronsted acid sites promotes chain growth via the hydrocarbon pool mecha-
nism.**** Light olefins produced as intermediates in MTH* undergo further
hydrogenation over PdZn/TiO,, yielding the corresponding alkanes (ethane and
propane); a mixture of n-butane and 2-butene was observed, whilst only olefins
were detected in the Cs fraction (1-pentene and 2-cis/trans-pentene). Thus, when
PdZn alloys are used for the synthesis of hydrocarbons from CO, via a methanol
mediated route over hybrid catalysts, they behave as methanol synthesis catalysts
but also as olefin hydrogenation catalysts, limiting hydrocarbon chain growth as
also reported for Cu-based catalysts.**>* CH;OHy,) over hybrid catalysts is higher
compared to PdZn/TiO, at any temperature, with total CH3;0H productivity
surpassing the equilibrium yield above 300 °C. The highest total CH;OH
productivity for hybrid catalysts was observed in the 270-300 °C range; hybrid
catalysts with ZSM-5(80 and 50) gave the highest oxygenate productivity (CH;OH
and DME), while ZSM-5(23) led to higher hydrocarbon productivity (Fig. 4) via
faster MTH/DMTH. Although the total CH;0H productivity was higher than the
equilibrium yield, above 300 °C, the hydrocarbon productivity is limited by
CH,;O0H availability which leads to a decrease in the total CH;OH productivity at
higher temperatures. The hydrocarbon selectivity based on MTH/DMTH showed
that increasing the aluminium concentration in ZSM-5 in the hybrid catalyst
resulted in improved selectivity towards higher hydrocarbons (Table S51). In the
320-340 °C temperature range ethane and propane accounted for 50% of MTH/
DMTH product selectivity for all hybrid catalysts. Note that the real CH,
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Fig. 4 Productivities based on carbon (e.g., two molecules of CO, converted per ethane
molecule and three molecules of CO, converted per propane molecule) during CO,

hydrogenation (20 bar, 30 ml min~Y, CO,/Ha/N, = 1:3: 1) over the PdZn/TiO»,—ZSM-
5(23) hybrid catalyst.

58 | Faraday Discuss., 2021, 230, 52-67 This journal is © The Royal Society of Chemistry 2021


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0fd00135j

Open Access Article. Published on 16 February 2021. Downloaded on 2/3/2026 12:23:49 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online
Paper Faraday Discussions

selectivity via the MTH and DMTH process is lower than the reported values, since
CH, is also produced as a by-product in CH;0H decomposition on PdZn/TiO,.*

Catalytic stability of PdZn/TiO, under the reaction conditions

The higher stability of PdZn alloy catalysts compared to their Cu-based counter-
parts was proven under methanol reforming conditions,"***** which is the
opposite reaction to the intended CO, hydrogenation to CH;OH. Copper sinters
in the presence of water at elevated temperatures, and hence, due to the higher
water content when the feed is CO, instead of CO, PdZn alloys are employed as
stable alternatives to Cu-based catalysts for the synthesis of CH;0H from CO,."*™**
According to the Pd-Zn phase diagram developed by Massalski** and Vizdal
et al.,>® the B-PdZn alloy is thermally stable up to 1200 °C. However, in the pres-
ence of oxygen at 300 °C, the surface of the PdZn alloy segregates into ZnO and
metallic Pd,> whilst under H,, the B-PdZn alloy was experimentally proven to be
stable up to 600 °C.*” Chen et al.,*® based on DFT calculations, suggested that Zn
segregates from the PdZn alloy when the alloy is supported on ZnO. Nevertheless,
Ahoba-Sam et al.*® reported no changes in the PdZn phase and no formation of
extra Pd-phases through operando XAS during CO, hydrogenation to CH;OH (8
bar, 350 °C).

The stability of the PdZn phase in the PdZn/TiO, methanol synthesis catalyst
was assessed through XAS, XRD and XPS characterisation pre- and post-reaction
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Fig. 5 (a) EXAFS spectra of PdZn/TiO, after reduction and PdZn/TiO, after reaction (240—

360 °C). Recorded spectra and fits (window 1.8—3.5 A) are represented by solid and dashed

lines, respectively. Spectra of Pd foil and PdO are included for comparison; (b) XRD
patterns recorded for PdZn/TiO, after reduction and PdZn/TiO, after reaction.
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(20 bar, CO/H,/N, =1 : 3 : 1,30 ml min~ ", 240-360 °C, 6 h dwell, 36 h reaction).
Extended X-ray absorption fine-structure spectroscopy (EXAFS) at the Pd K-edge
was employed to detect structural and electronic changes in the PdZn phase
after reaction. No noticeable differences were observed between the EXAFS
spectra up to 3.5 A of PdZn/TiO, after pre-reduction (5% H,, 400 °C, 1 h) and after
CO, hydrogenation at up to 360 °C (Fig. 5a). Bulk Pd has a cubic structure with
a Pd-Pd bond distance of 1.75 A, whilst the B-PdZn alloy has a tetragonal struc-
ture. As expected for the intercalation of a Zn atom between two Pd atoms, on
average shorter bond distances for the first coordination shell compared to bulk
Pd were observed (shorter Pd-Zn bond distance compared to the Pd-Pd distance
in Pd foil).*® Moreover, comparison with a PdO standard could suggest the
presence of a Pd-O bond at 2.02 A, with the concomitant but lower intensity Pd-
O-Pd bond at 3.41 A in the second coordination shell.*’ This could be attributed
to oxidation of the first atomic layer of the PdZn alloy in contact with air.*® Peak
fitting using Artemis** allowed us to obtain the Pd-Pd and Pd-Zn bond distances
and the Pd coordination environment (Table 1). Details of the fitting can be ob-
tained from Table S6.1 Based on previous reports, PdZn alloy formation begins at
the surface of Pd nanoparticles via hydrogen spillover to adjacent ZnO, and the
alloy grows inwards, generating a PdZn layer over a Pd core.”**” Therefore, the
incorporation of bulk Pd-Pd bond distances was necessary to obtain a good fit. No
differences in the Pd-Zn or Pd-Pd bond distances or coordination number were
observed, suggesting high bulk structural stability of the PdZn alloy under reac-
tion conditions, as also reported by Olsbye and co-workers.*® Despite the apparent
bond distance at 2.02 A, no good fit was obtained after the introduction of the Pd-
O scattering path, indicating that this contribution can be attributed to noise or to
marginal PdO content.

Phase changes in the B-PdZn alloy during reaction were investigated by
recording the XRD pattern of PdZn/TiO, after reduction (400 °C, 1 h) and after
reaction (240-360 °C, 20 bar, 36 h). In agreement with the EXAFS analysis, no
changes were observed in the (111) and (200) B-PdZn reflections at 41.2° and 44.1°
respectively,"***” showing the high thermal stability of bulk PdZn under the
reaction conditions (Fig. 5b). Moreover, no significant changes were observed in
the XRD peak at 40.1° assigned to metallic Pd (PDF 00-046-1043), which
presumably is protected underneath a PdZn layer.***” Unincorporated Zn in the

Table 1 Bond distances and coordination numbers for PdZn/TiO, after reduction and
PdZn/TiO, after reaction obtained from EXAFS fitting

PdZn/TiO, Bond Distance CN a? R¢

Reduced Pd-Znyi0y) 2.59 2.62-0.21 0.0047-0.0014 0.019
Pd-Pd; (alioy) 3.06 7.58 0.0217-0.0055
Pd-Pda10) 3.35 3.79 0.0215-0.0111
Pd-Pd(metal) 2.75 12 (fixed) 0.0238-0.0030

AR. Pd-Zn(a1i0y) 2.60 2.71 0.0050-0.0015 0.020
Pd-Pd;aiioy) 3.03 7.52 0.0216-0.0068
Pd-Pd,ai10) 3.31 3.76-0.2 0.0218-0.0115
Pd-Pd(metal) 2.74 12 (fixed) 0.0220-0.0030

Pd foil Pd-Pd, 2.75 12 (fixed) 0.0055-0.0002 0.016
Pd-Pd, 3.89 6 (fixed) 0.0097-0.0022
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PdZn alloy is observed as ZnO at 31.7°, 34.4° and 36.3° (PDF 00-036-1451). In line
with PdZn and Pd, no changes in the ZnO reflections were observed after reaction.
Nevertheless, the TiO,-related reflections become more intense after reaction,
suggesting an increase in the particle size of the support (Fig. S27).

EXAFS and XRD are averaging techniques sensitive to bulk changes. Catal-
ysis, however, is a surface process, and hence small changes at the surface
greatly affect the catalytic activity. To follow surface changes in the PdZn alloy
composition, the Pd(3d) and Zn(LM,) orbitals of the PdZn/TiO, catalyst before
and after reaction were analysed by X-ray photoelectron spectroscopy (XPS). The
Zn(2p) orbital is not sensitive towards chemical changes (e.g. the binding
energies for Zn® and Zn>" are reported at 1021.7 and 1022 eV, respectively),” and
as observed by XRD, the unalloyed zinc remained as ZnO, hence the Pd(3d) and
Zn(LM,) orbitals were calibrated against the Zn(2p) orbital at 1022 eV. The
Pd(3d) peak for PdZn/TiO, after reduction and after reaction was centred at
335.6 eV (Fig. 6), between the binding energy values reported for metallic Pd
(334.8-335.4 eV)**** and the PdZn alloy (335.6-336.7 eV).***® Peak fitting using
finite Lorentzian line shapes for the Pd and PdZn peaks (including satellites)
and Gaussian line shapes for the PdO peaks and satellites with a Shirley back-
ground as described previously*” indicated the presence of Pd, PdZn and PdO at
335.0, 335.9 and 337.2 eV, respectively (Fig. S3at).”*** The presence of Pd and
PdZn was confirmed by the XRD and EXAFS bulk characterisation techniques,
however bulk PdO was not observed. The broadening of the Pd(3d) peak after
reaction indicated an increase in the proportion of surface PdO, suggesting that
surface PdZn phase separation into ZnO and Pd occurred, with concomitant
palladium passivation when in contact with air.*®* No significant changes were
observed in the Zn(LM,) Auger electron spectra before and after reaction
(Fig. S3b¥); the main peak at 998 eV with a minor satellite contribution at 991 eV
was attributed to the presence of ZnO.*”

—— PdZn/TiO,-red
|——PdZn/TiO,-AR

Int. / a.u.

T T T T T
360 355 350 345 340 335 330
Binding Energy / eV

Fig. 6 Pd(3d) XPS analysis for PdZn/TiO, after reduction (5% H,, 400 °C, 1 h) and after
reaction (20 bar, 240-360 °C, 36 h, CO,: Hy : N, =1:3:1).
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No significant changes in the PdZn phase were detected by EXAFS or XRD, con-
firming the bulk thermal stability of PdZn under reaction conditions (20 bar, 240-
340 °C, CO,/Hy/N, = 1:3: 1, 36 h). However some surface PdZn phase separation
into Pd and ZnO was suggested by the XPS characterisation. Coke deposition is often
reported as the main deactivation mechanism for MTH over acid zeolite catalysts.
Coke inhibits CH;OH diffusion to the acid active sites by either filling zeolite cavities
or blocking pores.* Zeolites can be regenerated at high temperature (500-600 °C) by
oxidising deposited coke to CO, with oxygen.*® To assess the extent of coke deposition
during CO, hydrogenation (20 bar, 240-340 °C, CO,/H,/N, =1 : 3 : 1, 36 h) over PdZn/
TiO,~ZSM-5 hybrid catalysts, TGA-MS was performed on fresh and spent catalysts
(Fig. S4t). The mass loss observed below 200 °C can be assigned to physi/chemisorbed
water. Just above 200 °C, an extra 1 wt% mass loss compared to the fresh samples was
observed for the PdZn/TiO,-ZSM-5(80 and 50) hybrid catalysts with a corresponding
release of CO,, which could be assigned to coke deposits with high oxygen content as
reported for CH;OH conversion to olefins over ZSM-5.% No additional mass loss at
higher temperature, which would be assigned to coke deposits with low oxygen and
hydrogen content (e.g. aromatics), was detected.® No coke deposition was detected for
PdZn/TiO,-ZSM-5(23). This should not be interpreted as ZSM-5(23) being less sensi-
tive to coke deposition, since a higher concentration of acid sites generally leads to
faster deactivation,” but instead the initial rate of coke formation might be slower in
this system. This might be attributed to the presence of H,O and H, in the feed*” as
well as the low concentration of CH;OH throughout the catalyst bed.*

Conclusions

The combination of a PdZn/TiO, methanol synthesis catalyst with solid acid ZSM-
5 zeolites in the form of a hybrid catalyst allowed for consecutive CO, hydroge-
nation to CH;OH, CH;OH dehydration to DME, and MTH/DMTH in a one-pass
single bed reactor. Thus, the total CH;0OH productivity from CO, hydrogenation
over PdZn/TiO,-ZSM-5 hybrid catalysts was higher compared to PdZn/TiO,. The
synthesised light olefins undergo further hydrogenation to the corresponding
alkanes (ethane, propane and butane) as also reported for Cu-based catalysts,
which limit hydrocarbon chain growth. Hence, future research using PdZn alloys
for the synthesis of hydrocarbons via the methanol route should focus on limiting
the activity towards olefin hydrogenation whilst maintaining good selectivity for
CH,;O0H. Increasing the concentration of aluminium sites in ZSM-5, correlated
with mild Brensted acid sites, resulted in the production of higher hydrocarbons.
The bulk stability of the PdZn/TiO, catalyst up to 360 °C under the reaction
conditions (20 bar, CO,/H,/N, = 1:3:1, 30 ml min~?, 36 h) was confirmed by
XAS and XRD. However XPS suggests that some surface PdZn separation into Pd
and ZnO occurred during the reaction.
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