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Molecules in gas and liquid states, as well as in solution, exhibit significant and random
Brownian motion. Molecules in the solid-state, although strongly immobilized, can still
exhibit significant intramolecular dynamics. However, in most framework materials,
these intramolecular dynamics are driven by temperature, and therefore are neither
controlled nor spatially or temporarily aligned. In recent years, several examples of
molecular machines that allow for a stimuli-responsive control of dynamical motion,
such as rotation, have been reported. In this contribution, we investigate the local and
global properties of a Lennard-Jones (LJ) fluid surrounding a molecular motor and
consider the influence of cooperative and non-directional rotation for a molecular
motor-containing pore system. This study uses classical molecular dynamics
simulations to describe a minimal model, which was developed to resemble known
molecular motors. The properties of an LJ liquid surrounding an isolated molecular
motor remain mostly unaffected by the introduced rotation. We then considered an
arrangement of motors within a one-dimensional pore. Changes in diffusivity for pore
sizes approaching the length of the rotor were observed, resulting from rotation of the
motors. We also considered the influence of cooperative motor directionality on the
directional transport properties of this confined fluid. Importantly, we discovered that
specific unidirectional rotation of altitudinal motors can produce directed diffusion. This
study provides an essential insight into molecular machine-containing frameworks,
highlighting the specific structural arrangements that can produce directional mass
transport.
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Introduction

Transport properties of fluids in confinement are essential for both biological and
artificial systems. Enhancement of diffusion with the preservation of selectivity is
essential for the improvement of separation technologies,® particularly for
membrane-based systems.>* In biological systems, diffusion enhancement is
primarily facilitated by pore shape agitation of the channels embedded in soft
matter.*® However, similar effects can also be found in artificial porous media
such as carbon nanotubes in which phonon-induced oscillating friction is found
to enhance diffusion of fluids.”** In both cases the nanoscopic oscillation of pore
contraction and expansion propagates cooperatively through the lattice allowing
for accelerated transport properties on a larger length scale.

Recently, Marbach et al. established a general model to describe the “transport
and dispersion across wiggling nanopores”, which is primarily activated by
thermal processes and occurs in a variety of different materials, with differing
effects on diffusion properties.*> Although this global vibration-induced diffusion
enhancement in nanochannels might in principle also allow for separation of
solutes as a function of their own Peclet number,”® diffusion enhancement
dictated by local stimuli-responsive dynamic molecular species in artificial
systems remains largely unexplored. In fact, biological systems frequently
manipulate transport properties by local dynamic mechanisms beyond the acti-
vated processes of pore shape agitation.’*® Transmembrane diffusion is often
facilitated by enzymatic molecular machines (MMs) that allow transport against
a concentration gradient with unprecedented efficiency and selectivity.'”*®

The combination of local and global dynamic mechanisms to impact transport
properties, as employed in biological systems, is expected to drastically enhance
properties of artificial nanomaterials.” Inspired by natural systems, chemists
have successfully produced artificial MMs that can act as artificial muscles® and
also be bound to and open membranes for diffusion of guest species.***
However, only a few examples show that these dynamic molecular systems can
enhance diffusion in solution®** and the actual effects, as well as their origin, are
currently controversially discussed.” Similarly, for the dynamics of nanoscopic
swimmers.”® Instead, controlled rotational motion by MMs in porous systems is
expected to enhance diffusion due to confinement effects.””*® Recently, Danowski
et al. reported on the incorporation of 2™ generation light-driven MMs in the
backbone of a porous metal-organic framework.> They demonstrated that the
unidirectionality of rotation is maintained and that the immobilized motors
exhibit rotational frequencies similar to the motors in solution. This is one of the
few examples of artificial MMs employed in ordered porous solids* and the only
example that illustrates regular spatial organization of unidirectionally rotating
molecules in a porous crystal. Although rotational intramolecular motion is well
known®! also in crystalline solids,*” stimuli-driven unidirectional rotation in light
driven molecular motors represents the ability to control the frequency and
directionality by molecular design.*® Using E-Z photoisomerization of an over-
crowded alkene, the rotor can be switched into a metastable state. A subsequent
thermal relaxation step produces 180° rotation, where the stereocenter adjacent
to the double bond dictates the directionality. Successive photoisomerisation and
thermal relaxation steps lead to unidirectional 360° rotation of the rotor around
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the double bond axis (Fig. 1).** A broad variety of artificial light driven molecular
motors with different structures, properties and functionalities were established
by changing the molecular design.*

In this contribution, we demonstrate the interactions and transport properties
of fluids in motorized porous frameworks and investigate the influence of coop-
erative synchronized and non-cooperative rotation of molecular motors. This study
is performed by molecular dynamics simulations using a minimal toy-model,
which resembles known molecular rotors. The molecular machine design incor-
porates elements of existing molecular motors including their geometry and
hypothetical orientations in a one-dimensional pore, in an effort to establish a close
representation of a real-world system. Initially, the result of an isolated motor
surrounded by fluid was considered. Subsequently, different pore sizes were
investigated so that the effects of confinement on the transport properties of the
fluid can be captured. We also probed the influence of cooperativity on the trans-
port properties of the confined fluid by computing systems where the rotation of
two rotors are either correlated, in direction, or uncorrelated. This allows us to
investigate fundamental scenarios present in materials currently known in litera-
ture® and compare this to proposed cooperatively working motorized frameworks.

This study provides a physical blueprint for molecular machine-containing
frameworks poised as new devices by which external stimuli can act to provide
activated diffusion for directional mass transport or nanoscale microfluidic
devices, mimicking biological systems. The introduction of MMs into the back-
bone of periodic framework materials has yielded stimuli-responsive assemblies
of controlled dynamics in the solid-state.” Although this specially defined
arrangement of MMs in the solid-state represents dynamic heterogeneous inter-
faces, the collective synchronized work of MMs in the solid-state is unprecedented
and molecular simulations, like that presented here, provide essential insight for
experimental endeavours.

Methodology

MM-systems were investigated using molecular dynamics (MD) simulations,
employed by the lammps code.*” We simulate the motor as Lennard-Jones (LJ)
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Fig. 1 The prototypical light driven molecular motor, highlighting the steps that provide
rotation (a). The underlying potential energy surface for the molecule (solid line) and the
excited state potential energy surface (dashed line), which induces the motion (b). Portions
of this figure are reprinted from ref. 36.
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particles, which interact with surrounding LJ particles by interatomic interactions
described by the classic L] potential (eqn (1))

oo -~ 0] g

where ¢ is the characteristic energy, ¢ represents the size of the particle and r the
distance between particles. Our simulation truncates this potential at the cut-off
distance 2.5¢. The simulation results are described using reduced LJ units. For
simplicity, we consider particles of all the same size, mass (m) and characteristic
energy for interatomic potentials (m = 1, ¢ = 1 and ¢ = 1). Temperature is

kg

described by reduced temperature, where T* = T— and kg represents the

€
Boltzmann constant. Importantly, time is defined as © = (e/ma?)"*t. We have
employed these units here for simplicity, as the aim of this study is a qualitative
assessment of molecular motor systems in confined fluids. The timestep for
simulations was set to 0.005t. The MMs were modelled by six particles with
additional bond, angle and dihedral interactions computed by harmonic poten-

tials (eqn (2)-(4)).

E(r) = Kpond(r — r0)’ (2)
E(V) = Kangle(e - 00)2 (3)
E(r) = Kdihedrall1 + d cos(ng)] (4)

The energy coefficients Kyond, Kangle aNd Kgihedral Were set to 500¢, 300e and
100¢, respectively. The specified geometry and thus equilibrium values of these
potentials are discussed in detail later. This provides a robust and customizable
framework for modelling molecular motifs.

The dynamics of the fluid, and dynamics of the MMs, were simulated using
a Langevin thermostat®® in the NVE ensemble, which effectively performs Brow-
nian dynamics.* The temperature of the fluid was controlled to 1.07* using
a damping parameter of 1.0t. Confinement was achieved using wall potentials
that interact with fluid particles using only the repulsive part of the L] potential
(eqn (1).

Representative input files for the simulation reported in this study are avail-
able online in our data repository at https://github.com/jackevansadl/supp-data.

Results
Minimal representation of a molecular rotor

Our model drew inspiration from the prototypical 2" generation molecular
motor with a rotor that reassembles the structure embedded in the previously
discussed motorized framework® (Fig. 2a). However, we sought to simplify this
molecular motif using the fewest number of particles, bonds and angles and
symmetrize the rotor. This led us to our first and generic model displayed in
Fig. 2b and c. This model uses six particles arranged such that two particles act as
the rotor (A and A’), two as the axle (B and C) and two as the stator (D and D’). Only
the particles of the rotor and axle (A, A’, B and C) were chosen to noncovalently
interact with surrounding LJ fluid particles with the same strength and particle
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Fig. 2 The prototypical molecular motor used as motivation for this work (a). Description
of the azimuthal motor (b), where particles are labelled, and the effect of the potential
switch demonstrated. A similar arrangement can also be used to model an altitudinal
motor (c).

size parameters as the surrounding LJ fluid, ¢ = 1 and ¢ = 1. These values were
chosen as, generally, molecular rotors do not interact strongly with solvents and
are of similar relative size. Particles D and D’ have no interactions as they are
employed to define the necessary dihedral potential. Moreover, the forces and
velocities of B, C, D and D’ particles were set to 0, fixing their position throughout
the simulation. The key bond parameter that dictates the size of the rotor, r,
between particles A-B and A'-B, was set to 1.5¢. Notably, this arrangement can be
rotated so that both azimuthal® and altitudinal** motion can be modelled
(Fig. 2¢).

Simulations of the prototypical 2™¢ generation molecular motor have used
excited-state MD simulations, where the mechanism for light-driven unidirec-
tional rotation was investigated.*> These simulations use expensive atomistic
descriptions of the MM, which indeed are useful to provide accurate details about
the free energy landscape. However, these simulations are difficult to extend in
understanding long timescale dynamics. To our knowledge the consistent rota-
tional motion of these systems using classical molecular dynamics has not been
described and this is an important development for the investigation of molecular
motors.” In the literature, the motion of other important stimuli-responsive
molecular machines and switches, such as azobenzene, is typical treated by
a two potential system.* This straightforward approach describes the two long
lived states, which these molecules exhibit. Depending on the molecular struc-
ture, rotary motion of MMs might involve multiple steps, however for simplicity
we will consider a bistable scenario in this work.

To dictate the photoactive motion displayed by this MM we define two
potential states of the system. This uses the dihedral potential between the
particles A-B-C-D and A’-B-C-D’ noted in eqn (4). This potential has the
parameter d, which is set as 1 or —1. This can be changed during the simulation to
produce two distinct potential states as demonstrated in Fig. 3. These potential
states have a minimum at either 0° or 180°, which effectively switches the stable
configuration of particles A and A’ to opposite sides of the molecule. Sequentially
switching the potential parameter d during the simulation, after a set number of
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Fig. 3 The potential energy surface for the dihedral interaction in the motor system (a).
Potential 1 and potential 2 refer to the two potential states and the arrow depicts the effect
of switching between these states. The stepwise periodic rotation observed by switching
the potential every 507 (b). This is demonstrated by the relative x-position of the A particle,
where the axle of the rotor is orientated in the z-direction.

time steps, a stepwise periodic rotation is achieved. This stepwise rotation is
comparable to the type of motion observed in the experimental system. The
motion between the two states occurs over a few simulation steps, which is
comparable to the ultrafast dynamics reported for the excited-state photo-
isomerization rotation found in the experimental system.** Throughout this
study, the switching period, between the two potentials, was chosen as 50t.
Currently, molecular rotary motors exhibit MHz-scale rotational frequencies.***
If we consider the particles in this study to have similar size and characteristics to
argon, the rotation rate is approximately 4.6 GHz. This is currently faster than is
observed for MMs but represents the potential for such systems, as with specific
functionalisation these systems could in principle function in the GHz regime.*®

The simple switching of the dihedral potentials can effectively produce
a rotation about the axes of the molecule. However, because the potential switch
sets this structural configuration atop the symmetric maximum of the dihedral
potential energy surface the system can equally relax (by rotation) in either
direction. This results in the non-directional rotation of the motor as demon-
strated in Fig. 4a. Unidirectional motion is a sought-after characteristic of
molecular rotors known to work in porous frameworks.”” However, as with bio-
logical motor systems, directionality is essential to perform mechanical tasks.*
Synthetically this is achieved by photo-responsive sterically overcrowded alkenes,
which results in four distinct steps as outlined in Fig. 1.>° To achieve unidirec-
tional rotation in our simulations we employ a torsional bias force, orientated in
the direction of the axle, thus mimicking the influence of sterically crowded
functionalisation. This use of applied torque avoids increasing complex
descriptions of the dihedral potential energy surface. While large bias forces
result in continued and uncontrolled rotation, subsequent to the potential switch
event, a bias force of 30a/¢ results in singular and unidirectional rotation (Fig. 4b).
Notably, the sign of this bias torque dictates the direction of rotation, either
clockwise or counter clockwise allowing the control of directionality, similar to
the experimental MM for which rotational directionality is dictated by the nature
of the stereocentre adjacent to the double bond.*

As detailed here, we have demonstrated that a six-particle system can produce
a minimal description of a molecular motor for classical molecular dynamics
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Fig. 4 The direction of rotation observed for the rotor model is demonstrated by the y-
position of one of the rotor particles (A, for example), perpendicular to the stable orien-
tation of the rotor, which is the x-direction. Non-directional rotation is demonstrated for
the rotor model (a), however, the application of a bias torque results in unidirectional
rotation (b).

simulations. Our model switches between two distinct dihedral potentials and
when combined with a bias torque this results in unidirectional rotation.
Importantly, the motion we observe is comparable to the ratchet-like rotation
designed in many synthetic molecular motors.>

Dynamics of rotor surrounded by fluid

Initially, we investigated the results obtained by surrounding the model motor
with LJ particles, which act like a fluid. The motor model, described in the
previous section, was placed in a simulation box of 200 x 200 x 20, with peri-
odic boundary conditions. L] particles were included in this simulation box with
a density of 0.34p, which at 1.07* behave as a liquid.** Simulations where the
motor remains fixed, by virtue of a consistent dihedral potential, and where the
motor rotates unidirectionally were performed and system properties sampled
over 4 million steps (equivalent to 20 x 10°7). The trajectories show constant
temperatures but when the potential is switched there is a spike in total energy,
associated with the drastic increase in potential energy of the system. This high
energy state quickly subsides as the motor rotates to the new stable configuration.
These simulations demonstrate that the global dynamics of the fluid show no
changes resulting from rotation of the motor. In particular, the structure of the
fluid, determined by the radial distribution function, and the dynamics of the
fluid, revealed by mean-squared displacement, remain unaffected (Fig. S2, ESIT).
Given the size of the molecular rotor is equivalent to the size of the fluid particles
this is perhaps not surprising. To completely understand the effect of artificial
molecular rotation in this system the local properties of the rotor and fluid were
investigated. As displayed in Fig. 5a, the rotation produces a lower density of fluid
in a spherical area directly surrounding the centre of the rotor (particle B). This
local defect in the structure is attributed to the constant reorganisation of the
fluid due to rotation. Moreover, the dynamics in this region also appear to be
influenced by the motion. The average velocity of spherical slices surrounding the
rotor (Fig. 5b) show an increase in absolute velocity. This increase is apparent in
the locations where the rotor particles (A and A’) are located, suggesting that the
movement of the rotor produces this increase in local velocity of the fluid.
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Fig. 5 Local properties of the molecular rotor model surrounded by the LJ liquid for
trajectories where the rotor is fixed and rotates. The average number of LJ fluid particles
for spherical shell segments, centred at the centre of the rotor particles (a). Absolute
velocity for the same spherical shell segments (b).

Clearly the relatively small size of the molecular rotor limits its influence on
the properties of a surrounding medium, which is known to influence the rota-
tional speed of light driven motors®*** and rotors.**** The effects of the motor
rotation and its frequency are neglected in this model but are expected to play an
important role in a real world system. By increasing the rotor size the interactions
with surrounding fluid could be enhanced, allowing in principle for molecular
stirring.”

Azimuthal rotor in a one-dimensional pore

One appealing method to increase the effectiveness of molecular machines is
their positions within materials.*® Especially confining a reaction media in
close proximity to the motion of rotors is expected to enhance dynamic
effects.”” We consider the effect of this by arranging our motor system on the
walls of a one-dimensional pore (Fig. 6a). The pore is constructed using
repulsive wall potentials that interact with only fluid particles. This confine-
ment arrangement is analogous to simulations of nanoconfined water, and
these repulsive walls are suggested to act like hydrophobic walls.”” Two

4] b) q)

20000 1 —— 204, no rot. o 20 1 107
— 200, rot. = 8

15000 4 —— 100, no rot. s 151
NE —— 100, rot. E 64

9 10000 1 5 101
s 2 41
. 5000 - 3 51 5

7
01 01 04
Al» y T T T T T —T— —T—
X 0 5000 10000 15000 20000 —0.010.00 0.01 —0.010.00 0.01

time/t AT/ T*

Fig. 6 One-dimensional pore system with azimuthal rotors (a). Mean-squared displace-
ment (MSD) of the confined fluid for the large and small pores (b) with the motors fixed (no
rot.) or with unidirectional rotation (rot.). Average change in temperature for the trajec-
tories with and without rotation (c) for the large pore (blue) and small pore (green)
computed for one-dimensional slices of the simulation box in the z-direction (perpen-
dicular to the direction of the pore).
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azimuthal rotors were positioned on opposite walls and arranged such that the
stable configuration of the rotor is aligned with the one-dimensional pore.
Unidirectional rotation is directed with the bias torque in the same direction
for each rotor. The LJ fluid was added to this system at a density of 0.09p. A
lower density, compared to the non-confined example, was employed to avoid
overcrowding the rotors. Importantly, two distinct pore sizes were investigated,
a larger pore of 200 x 200 and a smaller pore of 100 x 100. The axis of the one-
dimensional pore was 200 and includes periodic boundary conditions, only in
this dimension. Simulation results are presented as averaged observations
from 10 unique samples, each included 4 million steps, as described in the
previous section.

We find that for the large pore system the global and local properties of the
confined fluid (Fig. 6b and c) show little influence from rotation. The transport of
the fluid is observed as the slope of the mean-squared displacement, also referred
to as diffusivity (Fig. 6b). There appears to be little influence on the transport of
the fluid for this larger pore structure. Similarly, there are no local increases in the
average motion (temperature) observed (Fig. 6c).

In contrast to the larger pore, the smaller pore structure of 106 x 10¢, which
approaches the length of the rotor (3¢), demonstrated a considerable effect from
the set motion of the molecular motor. As a result of the increased confinement
the diffusivity of the fluid decreases by approximately 15%, in agreement with our
understanding of diffusion in porous media.*® However, if the motors rotate there
is an evident increase in diffusivity where the smaller pores now only result in
a 10% decrease in diffusivity. The greater confinement provided by the smaller
pore size greatly enhances the effect of the motor’s rotation on the LJ fluid.
Particularly, the analysis of the average local properties of the fluid demonstrates
an increase in local temperature at the location of the rotors. This enhanced
temperature in the area directly surrounding the rotor is representative of the
convection-like processes that have been experimentally observed to produce
enhanced diffusion in molecular catalysts.>

Altitudinal rotor in a one-dimensional pore

The synthetic design of molecular motors can hypothetically produce rotors that
rotate in distinctive directions. When immobilized on a surface these motors can
exhibit different orientations.” As a result, we also investigated the effects of
rotation arranged in an altitudinal fashion,* as illustrated in Fig. 2c. This
arrangement can localize the specified motion towards the centre of a porous
structure where it may have a greater influence on the transport properties. An
equivalent one-dimensional pore system was constructed for investigating the use
of altitudinal rotors (Fig. 7a) which includes two motors orientated perpendicular
to the pore direction, such that the rotation is orientated in the direction of
diffusion. The unidirectional rotation for this case is also arranged with the bias
torque in the same direction for each rotor. The sampling and simulation details
are analogous to that discussed for the azimuthal case.

Similar to the system containing azimuthal motors, we observe no discernible
influence from the motor rotation in the large pore structures. Moreover, for the
small pore structures, where the positions of the rotor particles are in close
proximity there is also the same relative decrease in diffusion.
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Fig. 7 One-dimensional pore system with altitudinal rotors (a). Mean-squared displace-
ment (MSD) of the confined fluid for the large and small pores (b) with the motors fixed (no
rot.) or with unidirectional rotation (rot.).

When the motors rotate, however, we observe no significant change in diffu-
sivity, in direct contrast to that observed for the azimuthal rotor system. This
result suggests that only specific orientations of rotation by molecular motors
aligned in pore channels may lead to an increase in transport properties.

Non-directional rotation in a one-dimensional pore

The unidirectional motion of molecular rotors is considered imperative for
directing movement at the molecular level. Thus, we sought to consider how non-
directional motion manifests and effects diffusion in small pore systems, for both
the azimuthal and altitudinal rotors. In fact, such a case resembles the scenario of
rotors frequently incorporated in the backbone of porous frameworks but not
governed by a stimulus, such as light.>® To investigate this, we conducted similar
simulations as described in the previous two sections, but with the absence of the
bias torque. This resulted in non-directional motion of the rotors (Fig. 8).

Without the application of bias force, the rotation is observed to consecutively
oscillate in random directions, clockwise or anti-clockwise. The presence and
dynamics of the confined LJ liquid is not observed to produce unidirectional or
preferred directional rotation of the rotors. Non-directional motion of the
azimuthal rotor resulted in equivalent diffusivity as the unidirectional motion
previously described. Contrastingly, the altitudinal rotor showed enhanced
diffusivity, greater than both the considered unidirectional and fixed rotor
dynamics (6% greater than the fixed rotor case). This non-directional motion can
provide the altitudinal system with the same diffusivity as the azimuthal system.

The altitudinal rotor system, as it extends into the pore, demonstrates the
profound influence of the directionality of the motor. The motion of each rotor
can interact like that of a turnstile, where rotation in a cooperative manner, if not
directed favourably, can hinder diffusion.

Directional and cooperative rotation

As the directionality, and hence cooperativity, of the motors in this small pore
structure can affect the transport properties of the confined fluid we examined
different combinations of rotation and their effect on the directionality of the
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Fig. 8 The direction of rotation observed for the azimuthal (a) and altitudinal (b) rotor
models is demonstrated by the y-position of one of the rotor particles (A, for example),
perpendicular to the stable orientation of the rotor, which is the x-direction.

diffusion in the small pore, for both orientations of the motor. Please note the
rotation of the motors are synchronous, here we only investigate the direction. We
considered six different cases: fixed rotors, non-directional rotors and the four
combinations of clockwise or anti-clockwise rotation. We label the direction of
rotation by the sign of the bias torque (Fig. 9a).

The alignment of azimuthal motors with the pore walls shows no distinct
direction of diffusivity, with the average displacement close to centre, around 0g.
This indicates equal diffusion in either direction of the one-dimensional pore.
Notably, this is not affected by different combinations of rotation by the motors.
The altitudinal motors, however, exhibit important dependence on the set rota-
tion of the motors. If the rotors have no rotation (fixed), non-directional rotation
or aligned rotation the LJ fluid is observed to show no directional preference. The
cooperative, and opposite, rotation of each motor, labelled here as “+—” and “—+”

40

30 A

Cpmk

—209 m azimuthal
W altitudinal

average displacement (x) / o

—30 -

T T
fixed nondirect. ++ - +- -+

Fig. 9 Illustration of the different rotational directions considered for the azimuthal and
altitudinal motors arranged in a one-dimensional pore (a). The average displacement of
the LJ fluid in the direction of the pore, x-direction, for different combinations of rotational
directions for each of the rotors, where the standard deviation is depicted by lines (b).
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can induce a preferential direction to the diffusion of confined fluid. This
turnstile-like system can produce a flow of fluid in either direction in the pore
dependent on the combination of rotations used.

Although the magnitude of diffusion is only marginally affected by the
arrangement of motors, for example we have not demonstrated on/off switchable
diffusion, the induction of a preferential diffusion direction is certainly prom-
ising. Notably, the rotors used here are of relative size to the diffusing L] particles
and of equal interaction strength. It is the effect of cooperativity and confinement
that is responsible for this significant outcome on the global transport properties.
Amplification of these effects are expected to occur if the average rotor-fluid
interactions as well as the confinement effects are optimized. An increase in
motor density per void volume is certainly also expected to enhance the observed
diffusion effects.

Discussion

The molecular simulations, described in this study, represents a minimalistic and
qualitative picture of molecular motors, and the possible consequence of
arranging them in confined solid-state. Many approximations are made to
describe the motion of rotors in this study. For example, the rotation mechanism
is significantly reduced to a two-state motion. Notably, the rotation between the
two-states occurs almost instantaneously, when the dihedral potential is
switched. In reality molecular motors show complex rotational dynamics with
slow and fast movements to produce a full rotation.*” In future studies, it is
possible to use more complex potential energy surfaces and gradual potential
changes to more realistically reflect the intricate dynamics of real-world motors.
Nevertheless, the potential switching mechanism should provide the foundation
to build new atomistic models of molecular machines.

A key observation from considering the combined dynamics of the rotor sur-
rounded by fluid is the impervious nature of the fluid bulk. The small rotor system
is a drop in the ocean compared to the stable dynamics of a fluid. This is clear
from the global properties remaining unaffected by rotational dynamics, while
only the very local properties, for example the particles in the arc of rotation, show
some evidence of change. This observation is in line with recent scepticism about
diffusion enhancement by dynamic species in diluted solutions.* In turn, this
demonstrates the importance of regular, defined arrangement with a maximal
high motor density of these machines in confinement. It was only when the fluid
was confined in a pore of comparable size to the molecular rotor where the
applied rotation began to affect the global transport properties of the fluid. Still,
in our initial model we find relatively modest changes to diffusivity. However, by
considering the orientation of the motor and the effect of different rotations of
rotors we find the greatest change. By combination of altitudinal rotors aligned
into the pore and synchronization of the rotational directionality we could
produce a turnstile-like system able to direct the diffusion in a specified direction
of the pore. This illustrates that random orientation and non-directional rotation
of molecular motors in the solid-state are unlikely to produce diffusion
enhancement on a larger length scale let alone directed diffusion. Cooperative
rotation and specific arrangement of unidirectional rotation are required to
produce designed transport phenomena.
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Summary and outlook

In this work, we have outlined the influence of rotating molecular species and the
importance of their orientation, cooperativity and directionality on the transport
properties of confined fluids. Our findings help to understand the influence of
local dynamics of molecular motors and rotors on the surrounding fluid. This
includes, the nature of pore space functionalized with dynamic groups and
potential strategies to manipulate transport properties of confined fluids by this
dynamic pore space. Although the applied model drastically simplifies real-world
molecular motors, it captures the most important aspects being unidirectional
rotation and orientation of the rotor. Our results, however, provide helpful indi-
cations about the need for high rotational frequencies in addition to the detection
of minor changes in diffusivity locally and globally. We envision the guidelines,
presented here, to be crucial for the design of stimuli-responsive dynamic
materials, capable of manipulating guest transport properties by dynamic
molecular machines. However, the currently reported porous materials that
include molecular machines® or rotors® do not meet the specified criteria
defined by this investigation.

As discussed in the introduction, many transport phenomena are supported by
activated vibrations of the pore walls," a property neglected in the present work.
The combination and alignment of local dynamics from a functional surface, by
anchored groups, and global vibrational dynamics of the framework backbone,
towards cooperative pore agitation on different length scales, represents an
interesting avenue for novel transport phenomena in porous solids and should be
further explored.
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