Open Access Article. Published on 18 October 2021. Downloaded on 10/28/2025 6:53:57 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Environmental

Science

Processes & Impacts

W) Check for updates ‘

Cite this: Environ. Sci.: Processes
Impacts, 2021, 23, 1803

Received 23rd June 2021
Accepted 14th October 2021

DOI: 10.1039/d1em00249j

rsc.li/espi

Environmental significance

I ROYAL SOCIETY
PPN OF CHEMISTRY

Investigating the origin and tissue concentration of
polycyclic aromatic hydrocarbons in seafood and
health risk in Niger Delta, Nigeria
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The origin, tissue concentration, and health risk of polycyclic aromatic hydrocarbons (PAHs) contaminants
in three economically important species of seafood, including catfish (Chrysichthys nigrodigitatus), prawns
(Macrobrachium macrobrachium), and periwinkles (Tympanotonus fuscatus) from the crude oil-impacted
Niger Delta region, were investigated. The concentrations of PAHs were measured by coupled gas
chromatography-mass spectrometry after repeated extraction by ultrasonication in hexane and cleaning
up in silica gel. The origin of PAHs was deduced using established mathematical protocols. Health risk
from the consumption of contaminated seafood was evaluated for 60 kg bodyweight individuals at a fish
consumption rate of 36.94 g per person per day. Different tissue concentrations of PAHs residues at low,
moderate, and chronic levels were revealed. Mean total PAHs varied from 4.55 to 6.36 mg kg~ in
catfish, 4.61 to 7.75 mg kg™t in prawns, and 4.91 to 6.14 mg kg~! in periwinkles. The tissue
concentrations were high above PM, 5, enough to suspect PAHs-related health risk, especially among
residents who consume a large quantity of seafood. Carcinogenic PAHs index, benzolalpyrene, varied
from below instrument detection (<0.01) to 0.29 mg kg™t The estimated carcinogenic potency
equivalent concentrations (PEC) of PAH varied from 0.653 to 2.153 above the screening value (SV),
0.01624 in the three species investigated. Mathematical evaluation and dominant tissue concentration of
high molecular weight PAHs in all the seafood investigated showed pyrogenic origin of PAHSs.

The concentration of carcinogenic polycyclic aromatic hydrocarbons (PAHs) in body tissues, as revealed by the mass spectroscopic evaluation of seafood in Niger

Delta, is chronically high above the legal limit considered safe for human consumption. The potential health risk of PAHs exposure is cancer. Food consumption
has been shown to be the main source of polycyclic aromatic hydrocarbon (PAHs) intake, thus highlighting the importance of research on PAHs in food and the

development of mitigation strategies to reduce their contents in food. Unfortunately, there is inadequate reporting of data in Africa regarding tissue concen-
tration and health risk from the ingestion of PAHs contaminated food. Information on the origin and their formation in seafood is also lacking, thus limiting

mitigation options to prevent risk to humans and aquatic animals. Also, the nonexistence of a threshold for the cancer end point and the duration for actual
manifestation of cancer in humans, especially from dietary exposure, need further study. The absence of a database on cancer demography in Nigeria also limits
investigation on the spread and formation; thus, efforts to provide a standard regulatory agency guideline to be updated and integrated into state regulatory
processes through routine training programs are difficult. The present study has helped to bridge the knowledge-gap in the origin, tissue concentration, and

health risk from the consumption of PAHs-contaminated seafood in the Niger Delta region of Nigeria.

Introduction

degraded by petroleum. Oil spills, gas flaring, illegal bunkering
activities, and refining of crude oil locally known as ‘kpo’ fire are

The Niger Delta (N'Delta) region of Nigeria is predominantly
coastal with vast rural communities. Due to decades of crude oil
exploration, almost the entire ecosystem has been substantially
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almost unavoidable. Cleanup efforts are often inadequate,
resulting in the loss of delicate ecosystems as well as fisheries
and farmland. The luxuriant mangrove forests, swamps, and
rivers that once supported healthy human life and vibrant
ecosystem have been disastrously impacted, leaving the rural
peasant farmers with no alternative means of livelihood. As an
effect, land, water, plants, animals, and fish are polluted and
have been rendered unsafe for human consumption despite
their many benefits. Food consumption has been shown to be
the main source of polycyclic aromatic hydrocarbon (PAHs)
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intake, thus highlighting the importance of research on PAHs in
food and the development of mitigation strategies to reduce
their contents in food.* Extensive studies on oil spills and the
occurrence of PAHs in different environmental media including
fish and shellfish have been reported in the N'Delta region.>*
Unfortunately, only very few studies have highlighted the public
health consequences of exposure to PAHs. Negative concomitant
effects of oil spills on fish production in the N'Delta region from
1981 to 2015 has been reported.* The observed increased
concentration of total PAHs in the tissues of Littorina littorea,
Crassostrea virginica, and Periophthalmus koeleuteri has also been
reported.® Also, varying concentrations of PAHs in fish tissues
and health risks in the N'Delta region of Nigeria have been re-
ported for C. gariepinus, T. zilli, E. fimbriata, and S. scombrus.>®

Polycyclic aromatic hydrocarbons (PAHs), a group of
complex hydrocarbons that are formed during the incomplete
burning of oil, gas, coal, wood, garbage, or other organic
substances, such as tobacco and charbroiled meat,’ are present
in petroleum and constitute hazardous components of oil spills
in the marine ecosystem.

Seafood quality is associated with marine environment
quality. Seafood and fish can be tainted and contaminated from
being exposed to PAHs present in water and sediments due to
atmospheric pollution or oil spills. When PAHs and NPAHs
(nitro-polycyclic aromatic hydrocarbons) are contained within
particulate matter with an aerodynamic diameter of 2.5 pm
(PM, 5) or less, the particulate matter is categorized as a group 1
contaminant (carcinogenic to humans).” Under the safe
drinking water Act, the U.S. Environmental Protection Agency
set legal maximum limits of polycyclic aromatic hydrocarbons
on the level of benzo[a]pyrene in drinking water (0.2 pg L™").1!

The carcinogenic effect of PAHs has been adequately tested
on experimental animals with benzo[a]pyrene (PAH marker)
using dietary administration. The levels of PAHs in foods are
reduced to as low as reasonably achievable (ALARA) following
the nonexistence of threshold effects.* In 2008, benzo[a]|pyrene
was considered an inadequate marker of PAH contamination in
food; rather, the sum of benzo[a]pyrene, benzo[a]anthracene,
chrysene, and benzo[b]fluoranthene (collectively called PAH4)
was adopted as a suitable indicator of the total PAHs contami-
nation in food" and the maximum legal limits set. Naturally,
the average background PAH in uncooked food (including fish)
is usually 0.01 to 1 pg kg™ *.*%

Oil spills, gas flaring, and well fires in the N'Delta region are
almost unavoidable with enormous consequences. At present,
there are about 606 oilfields (355 onshore and 251 offshore),**
and over 178 flare points® in the N'Delta region, which collec-
tively flare about 1 billion standard cubic feet (SCF) of gas with
about 65% of the flare points located offshore.*® Daily, about
45.8 billion kilowatts of heat is discharged into the atmosphere
from 1.8 billion cubic feet of gas in the N'Delta region, leading
to temperatures that render large areas uninhabitable.*
Frequent pipeline leakages and vandalism have resulted in the
burning of viable mangrove habitat and vegetation, and
engulfed animals within the area.”” The United Nations Devel-
opment Programme®® estimated that Nigeria discharges 75% of
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the gas it produces more than any other country in the world,
significantly contributing to hydrocarbon pollution.

Although human health has not been considered to be at
risk, the possible consequences of bioaccumulation in body
tissues cannot be ignored, especially in coastal communities
where the consumption and exposure of aquatic lives to oil spills
is more pronounced. Polycyclic aromatic hydrocarbons readily
accumulate in the fatty tissues of fish following uptake and the
lipophilic nature of PAHs.” The primary endpoint considered
when studying the potential health risk of hydrocarbons is
cancer. Human exposure to PAHs has been associated with
increased risk of cancer in several tissues such as lung, bladder,
stomach, and skin depending on the mode of exposure and the
form of PAH.*° Also, elevated levels of cancer have been reported
in populations close to oil fields than those far from them.*
Therefore, maintaining clean environmental quality is crucial
for several socio-economic reasons.*> For instance, loss of
confidence in seafood safety can impact the seafood market.

The importance of seafood safety cannot be ignored in
international fish trade especially with its recent expansion in
the world market. Fish is an important part of household diet
in many countries around the world. In Nigeria, fish makes up
about 40% of the country's protein intake, with household
consumption at 13.3 kg per capita (36.94 g per person per day),>*
compared with the world's average of 20.3 kg per capita per
year.”* More than 80% of Nigeria's total domestic fish are
produced by artisanal small-scale fishers from the coastal
communities of N'Delta.”* Polycyclic aromatic hydrocarbons
have been extensively researched in foods and environmental
media but very few in seafood. Furthermore, literature is
available mostly for the investigation of PAHs in developed
countries but not much in Africa. The few studies reported on
the concentration of PAHs in seafood® are on smoked fish.
Information on the origin, tissue concentration, and health risk
associated with PAHs and their formation in seafood is lacking.
Due to the inadequate reporting of data, the present study,
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Fig. 1 Map of the Niger Delta coastal area showing oil and gas fields
and sampling stations (about 606 oilfields — 355 onshore, 251 offshore,
and 178 gas flare points). Source: Nigerian oil and gas (1997) and
Anifowose et al.,** (2014).
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therefore, sought to provide reliable data on PAHs in seafood
with regards to tissue concentration, origin, and health risk in
the N'Delta region, with the view of providing mitigation
options that will prevent risk to humans and aquatic animals.
The nonexistence of a threshold for the cancer end point and
the duration for the manifestation of PAHs-related cancer,
especially from dietary exposure, should be investigated. A
reliable public-based cancer demography in Nigeria needs to be
studied to understand the spread and the possible causes.

Materials and methods
Study area

The area under study lies within the coastal area of Akwa Ibom
State in N'Delta, which is the Southern coastal morphological
unit in Nigeria. This coastal system lies between longitude 07°
35’ 00"E and longitude 8° 30’ 20"E (Fig. 1 and 2). The sampling
stations were selected from crude oil impacted rivers (estuaries)
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of ‘Iko’ in Eastern Obolo Local Govt. Area, ‘Mkpanak’ in Ibeno
Local Govt. Area, and ‘Ibaka’ in Mbo Local Govt. Area, and one
reference river of ‘Ayadehe’ in Itu Local Govt. Area. The study
area is characterized by ‘pronounced’ fishing activities and
history of frequent oil spill incidents from offshore oil activities
and gas flaring; hence it was chosen for this study (Table 1). The
three species of seafood selected were based on economic
importance, habitat utilization, and feeding strategies.

Samples collection

A total of 120 mature and marketable sizes seafood samples
were collected randomly, 30 samples per zone, from different
sampling points across 4 zones using fishing nets and baskets
for this investigation. This number of samples was thought to
be sufficient, considering the absence of an official sample size
for different fish species in the study area and the potential
variability of PAH toxicity to individual fish species. The length
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Fig. 2 Map of the N'Delta showing the local Governments and oil-impacted sample collection points.
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Table 1 Geographic location of samples, coordinates, and salient landmarks®

Stations Sample codes Coordinates Landmark features
Station 1
Iko River (Eastern Obolo LGA) ucC1 N 04° 31’ 18.6" Oil wells and oil pipelines
UP1 E 007° 45’ 15.9” Commercial fishing
US1 19 m above sea level
Station 2
Mkpanak river (Ibeno LGA) uc2 N 04° 33’ 22.3" Mobil oil operation. Qua
UP2 E 007° 57 12.9” Iboe oil terminal
Us2 19 m above sea level Oil pipelines and wells
Commercial fishing
Station 3
Ibaka river (Mbo LGA) ucCs3 N 04° 38’ 19.8” Commercial fishing
UP3 E 008° 18’ 32.5" Petrol platform
Us3 18 m above sea level Oil pipelines
Station 4
Ayadehe river (Itu LGA) uc4 N 05° 10" 42.2" Commercial fishing
UP4 E 008° 03’ 54.1" Local market
Us4 21 m above sea level

“ Sample identification (samples with codes 1, 2, and 3 are from incident zones, while codes 4 are from the control zones): UC1, UC2, UC3, UC4 -

Catfish, US1, US2, US3, US4 - Periwinkle, UP1, UP2, UP3, UP4 — Prawn.

of fish, measured from the tip of the mouth to the tail end with
a ruler, was found to be 40 + 0.50 cm for catfish, 16 £+ 0.20 cm
for prawns, and 4 =+ 0.20 cm for periwinkles. The corresponding
masses were 1.1 + 0.10 kg for catfish, 0.09 + 0.02 kg for prawns,
and 0.01 + 0.01 kg for periwinkles. UC1, UC2, UC3 are catfish
from incident zones while UC4 are catfish from the control
zone. All samples were preserved separately in pollution-free
icepack coolers and taken to the laboratory for various anal-
yses “as-is”.

Determining the lipid content of tissues

The lipid content of each sample was determined in two steps.
The lipids were first extracted from samples by continuous
solvent extraction using a Soxhlet apparatus and then quanti-
fied by gravimetric analysis as follows.>* In brief, about 5 g of
each sample, wrapped in filter paper (Whatman), was extracted
continuously using petroleum ether (200 mL) over 4 h. The
residue was removed and reserved for crude fiber analysis. The
extract was concentrated to dryness and dried further in an oven
for 3 min at 60 °C. The dry samples were then cooled to room
temperature in a desiccator, reweighed a few times until
a constant mass was achieved, and then the mass of the lipids
was determined by difference of mass as follows.

% Lipids = (W, — W7)l(weight of sample)) x 100% (1)

where W; = weight of empty extracting flask, W, = weight of
flask and oil extract.

Determination of tissue moisture content

The moisture content of the tissues was determined according
to a previously published method.* In brief, 5 g of each sample

1806 | Environ. Sci.: Processes Impacts, 2021, 23, 1803-1814

was dried in a moisture can of known mass at 105 °C in an oven
for 3 h initially, then to constant mass thereafter. Mass loss due
to moisture was then determined as percent difference. Thus,

% Lipids = (W — Wy)(Ws — Wy)) x 100% 2)

where W; = weight of empty can, W, = weight of can before
drying, and W; = weight of the can + sample after drying to
a constant weight.

Determination of tissue PAHs concentration

Chemicals and reagent. Dichloromethane (DCM), hexane,
acetone, and cyclohexane, all of chromatographic grade, were
obtained from Merck, Germany. A 2000 ug mL ™" stock solution
containing 17 PAHs, namely, naphthalene, 2-methylnaphtha-
lene, acenaphthylene, acenaphthene, fluorene, phenanthrene,
anthracene, fluoranthene, pyrene, benzo[aJanthracene, chrys-
ene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyr-
ene, dibenzo[a,h]anthracene, benzo[g,h,i|perylene, and indeno
[1,2,3-c,d]pyrene, obtained from Restek Corporation, USA with
purity > 95%, was prepared. p-Terphenyl-d14 (Supelco, USA) was
used as the surrogate internal standard. A 1 pg mL~" working
solution of all the 17 PAHs was prepared in DCM. Several cali-
bration standard mixtures were prepared with concentrations
of 2, 10, 50, 100, and 500 ug mL~" by dilution of the working
solution with DCM and stored at —4 °C in dark condition to
avoid photodegradation.

Sample preparation, extraction, and cleanup

All samples were processed under fume hoods to limit exposure
to exogenous sources. Glassware were washed before use with n-
hexane and dried in an oven at 105 °C. Other materials were

This journal is © The Royal Society of Chemistry 2021
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previously washed with ultrapure water and acetone. Before
extraction, the seafood samples were removed from the icepack
coolers, thawed, and cleaned separately under tap water, and
the muscular tissues were removed and ground for homoge-
neity using a mortar and pestle. About 10 g of each homoge-
nized seafood sample was extracted with 30 mL hexane and
DCM (1:1, v/v) by the sonication bath method at 35 °C for
25 min. The cleanup process as described in the United States
Environmental Protection Agency (USEPA) method 3630C was
employed. Exactly 250 mL of the extract sample was spiked with
1 mL of the surrogate standard p-terphenyl-d14 (2 ng uL %), and
30 mL of DCM was added. The sample was agitated in a digital
shaker for 6 h, followed by shaking in an ultrasonic bath for
a further 5 min to extract any organic pollutants that may have
been adsorbed on to the wall of the flask.

The mixture was then transferred into a separation funnel
and left for 5 min to separate the water from the organic solvent
layer. The bottom DCM layer containing the hydrocarbons was
decanted into a 250 mL round-bottomed flask, and the extrac-
tion was repeated three times. The combined extract was then
allowed to mix with granule-activated copper overnight to
remove any sulphur contaminants, the extract was passed
through a glass column containing 5 g anhydrous Na,SO,
(activated at 400 °C for 4 h before use) to remove any residual
water, and then concentrated to 3 mL using a rotary evaporator
(RE52-1, PEC Medical USA). Cyclohexane (10 mL) was then
added as an exchange solvent, and the extract was concentrated
to 2 mL by rotary evaporator. The extract was then passed
through a glass column containing 5 g activated silica gel
(previously activated by heating at 200 °C for 16 h before use)
and 1 g of anhydrous Na,SO, to clean up all non-hydrocarbons.

The PAH fractions were then eluted at the rate of 2 mL min "
using a 30 mL mixture of DCM : pentane (2 : 3 v/v). Next, elution
was done using a 20 mL mixture of DCM : pentane (2 : 3 v/v).
The combined extract was concentrated to 2 mL using a rotary
evaporator. The concentrated extract was finally reduced to
1 mL under a gentle stream of nitrogen gas. All the sample
extracts were kept in amber glass vials at —4 °C until analyzed
according to 1.1 of US EPA Method 8270 (PAH only): GC analysis
of PAHs on SLB®-5ms”® and using an Agilent 7890/5975C GC/
MSD, which was previously calibrated with PAH standards
under specific conditions.

Analyses of sample extract

Briefly, the MSD was first test run and standardized with DCM
blank (1 pL). Then, 1 puL of the extract was injected into the
injection port. A fused silica TR-5ms capillary column (30 m x
0.25 mm i.d.) with a film thickness of 0.25 um (Thermo Fisher,
USA) was used in the column separation. High-purity helium
(99.9%) was used as the carrier gas, makeup gas, and purge gas at
flow rates of 0.8, 35, and 30 mL min ', respectively. The gas
chromatogram was operated in split-less mode and separation
was conducted with the oven temperature programmed as
follows: initial setting at 50 °C (2 min hold), ramped to 310 °C at
24 °C min~" (for 2 min), and, finally, to 320 °C at 5 °C min ™"
(10 min hold). The injector was held at 250 °C and the detector

This journal is © The Royal Society of Chemistry 2021
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maintained at 340 °C. The external standard calibration
comprising 17 PAH standards was used to extrapolate the iden-
tity and quantity of each component peak in the sample chro-
matogram. In the integration events, the following conditions
were ensured: slope sensitivity (3.7936), peak width (0.4248), area
reject (3.1407), height reject (0.4037), and shoulders (off).

Analytical quality control

A 2000 pg mL™" stock solution of the 17 PAHs mixture was used
for external calibrations. To determine the efficiency of extrac-
tion for the target compounds, recovery studies were conducted
by introducing known concentrations of standard PAH mixtures
to selected analyzed samples and the whole procedure of anal-
ysis from extraction to cleanup was repeated. The matrix effect
was evaluated by spiking the fish extract sample in the
concentration range (2, 10, 50, 100, and 500 ug mL ") used for
calibration. PAH working (spiked) standards, surrogate stan-
dards, and internal standard solutions were included in each
batch of samples to ensure the integrity of the analytical
method and the corresponding results. The limit of detection
(LOD) and limit of quantitation (LOQ) were estimated according
to the following equations.

LOD - Xbl + 3Sb1,
LOQ = Xp; + 108y,

where Xj,; is the mean concentration of the blank and Sy, is the
standard deviation of the blank.?”

Determination of PAHs origin

The origin of tissue PAHs in this study was established by
subjecting the data to mathematical evaluation. Thus, the ratio
of the concentration of phenanthrene/anthracene (Phe/Ant) >
10 indicates petrogenic origin of PAHs, while the concentration
of Phe/Ant < 10 indicates pyrogenic origin of PAHs.”® The ratio
of fluoranthene/pyrene (Flur/Py) > 1 indicates pyrogenic origin,
while Flur/Py < 1 indicates petrogenic origin. The ratio of low
molecular weight/high molecular weight (LMW/HMW) PAHs >1
indicates petrogenic origin, while LMW/HMW < 1 indicates
pyrogenic origin.”® The ratio of Ant/(Ant + Phe) < 0.1 indicates
petrogenic origin, while Ant/(Ant + Phe) > 0.1 indicates pyro-
genic origin; BaA/(BaA + Chr) < 0.2 indicates petrogenic origin,
while BaA/(BaA + Chr) between 0.2 to 0.35 indicates either
pyrogenic or petrogenic origin, and BaA/(BaA + Chr) > 0.35
indicates pyrogenic origin.*

Statistical analysis of data

Triplicate measurements were done and the results were re-
ported as mean and standard deviation. Data generated from
the study were subjected to analysis of variance (ANOVA) and
Tukey-Kramer multiple comparison tests to determine if there
was any statistically significant difference for the PAH concen-
trations within and between the samples means at 5% confi-
dence level. Differences with p < 0.05 were considered to be
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statistically significant. All statistical analyses were performed
with SPSS software version 16.0 (SPSS Inc., Chicago).

Health risk from the consumption of
PAHs-contaminated fish

The United State Environmental Protection Agency (USEPA)
guidelines®" were used® for determining the human health risk
from the ingestion of PAHs-contaminated fish. By this method,
benzo[a]pyrene is used as a marker for the occurrence and effect
of carcinogenic PAHs in foods, and the overall carcinogenic
health risk from the measured PAHs was estimated based on
the toxicity equivalence factors (TEFs) derived from the cancer
potencies of individual PAH compounds relative to the cancer
potency of benzo[a]pyrene.

The product of the PAH concentration (ug g~ ') and its TEF
gives a benzo[a]pyrene equivalent concentration (BaPeq) for
each PAH. All the individual benzo[a]pyrene equivalents were
summed up to give a carcinogenic potency equivalent concen-
tration (PEC) of all the PAHs according to eqn (3).*

PEC = total > (TEF x concentration) (3)

Potency equivalent concentration values were then
compared with a screening value for carcinogenic PAHs. The

screening value is calculated from eqn (4).
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SV = [(RL/OSF) x BW)J/CR (4)

SV = screening value (ug kg™ ). RL = maximum acceptable risk
level (dimensionless). OSF = oral slope factor (mg kg~ ' day). BW
= body weight (g). CR = consumption rate (g per day).

Screening value (SV) is the threshold concentration of total
PAHs/or chemicals in edible fish tissue that is of potential public
health concern; BW is the average human body weight (g) and
was set to 60 000 g (60 kg) for the adult population; CR is the
consumption rate (g per day). The fish consumption rate was set
at 36.94 g per person per day.** RL is the maximum acceptable
risk level (dimensionless), and was set to 1 x 10> (U.S. EPA,
2000) so that the maximum risk would be one additional cancer
death per 100 000 persons if an adult weighing 60 kg consumed
36.94 g of fish daily with the same measured concentrations of
PAHs for 70 years; OSF (oral slope factor) is an estimate of the
increased cancer risk from oral exposure to a dose (of carcino-
genic PAHs) of 1 mg per kg per day for a lifetime of 70 years. The
OSF can be multiplied by an estimate of lifetime exposure (in mg
per kg per day) to estimate the lifetime cancer risk.*

Results and discussion
PAHSs concentration in tissues

The occurrence of PAHs in seafood tissues is an indication of
contamination in coastal water in the study area. The present

Table 2 Mean tissue concentrations of PAHs, lipids, and MC in catfish and the potential health risk®

Samples (N = 10)

PAHs (mg kg™ ' fresh wt) UC1 uc2 uc3 uc4 TEFs (WHO/IPCS 1998)
Naphthalene ND ND ND 0.76% & 0.00 —
2-Methylnaphthalene 0.86 £ 0.00 0.18 + 0.00° 0.17 + 0.01¢ 0.76" £ 0.00 —
Acenaphthylene ND ND ND 0.04* £ 0.00 —
Acenaphthene 0.33° + 0.00 0.98% & 0.01 0.98% & 0.00 0.21° =+ 0.01 —
Fluorene 0.05°°4+0.01 0.06° + 0.01 ND 0.81% + 0.42 —
Phenanthrene ND ND ND ND —
Anthracene ND ND ND ND —
Fluoranthene ND ND ND ND —
Pyrene ND ND ND ND —
Benz[a]anthracene ND ND ND ND 0.1
Chrysene ND ND ND ND 0.01
Benzo[b]fluoranthene ND ND ND ND —
Benzo[k]fluoranthene ND ND ND ND 0.1
Benzo[a]pyrene ND ND ND ND 1
Dibenz[a,h]anthracene 1.08% + 0.00 0.64° + 0.01 0.51% 4+ 0.00 0.55 + 0.00 1.0
Benzo[g,h,i]perylene 0.23° + 0.01 0.08° £ 0.00 0.23° + 0.00 0.27% + 0.00 0.01
Indeno[1,2,3-c,d]pyrene 2.75° + 0.00 3.80° + 0.00 2.66° & 0.00 2.96° + 0.00 0.1
ZPAHS 5.30 5.74 4.55 6.36

S PAH4 — — — —

PEC 1.357 1.021 0.778 0.849

SV (ug kg %) 0.1624 0.1624 0.1624 0.1624

% Lipid 2.33* + 1.33 1.47° £ 0.47 2.46% + 0.40 2.57% + 0.49

%MC 76.53" + 1.42 74.67" + 1.80 72.14" + 1.61 74.89" + 1.51
LMW/HMW 0.31 0.27 0.34 0.68

¢ Results are means and standard deviations of triplicate measurements. UC1, UC2, UC3 are catfish from incident zones while UC4 are catfish from
the control zone. ND = below detection limit (<0.01 to < 0.03). TEFs = Toxicity equivalent factors. MC = Moisture content. Values with different
alphabet superscripts in the same rows are significantly (p < 0.05) different.
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study showed varying concentration of PAHs, lipids, and
moisture content in the tissues of seafood investigated. The
spike recoveries of PAHs ranged from 70 to 92% and the limit
of detection of PAHs varied from < 0.01 to < 0.03 mg kg " fw
(Table 5).

The method adopted for tissue PAHs measurement in sea-
food produced characteristics that met the requirement of the
European Union Commission Regulation 836/2011 (recovery
between 50 to 120%) for the PAH4 group (benzo[a]pyrene, benzo
[a]lanthracene, benzo[b]fluoranthene, and chrysene). PAH
concentrations in the present study were compared with
previously observed PAH in fish and with legal maximum limits
set by EU via Commission Regulation No. 835/2011, Commis-
sion Regulation No. 1881/2006 (as amended) for polycyclic
aromatic hydrocarbons in certain foodstuffs including 6.0 pg
kg fw for benzo[a]pyrene, 35.0 pg kg~ fw for the sum of PAH4
in smoked bivalve molluscs, 2.0 pug kg~ * fw for benzo[a]pyrene
for the muscle meat of smoked fish and smoked fishery prod-
ucts, 12.0 pg kg~* fw for sum of PAH4 for smoked crustaceans,
and 2 pg kg~ fw for benzo[a]pyrene in fish, which are consid-
ered safe for human consumption.** Also, the WHO maximum
permissible limit of PAHs in fish and shellfish, i.e., 0.001 pg
g~ ', was compared.

The present study showed significant (p < 0.05) differences in
the tissue concentration of PAHs in catfish (Table 2), prawns
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(Table 3), and periwinkles (Table 4). The total concentration of
PAHs (D> _PAHSs) in the tissues of catfish, periwinkles, and
prawns from the control zones (UC4, US4, and UP4) were higher
than the total concentration in samples from incident zones.
This suggested sources other than the suspected oil spills for
the PAHs contamination of seafood. There was elevated
concentration of PAHs in prawns' tissue than in catfish or
periwinkles tissues across the zones. The concentrations of
PAHs in the fish samples did not follow any particular trend
across the zones. The absence or rather low detection of certain
PAHs in the seafood tissues may be attributed to their rapid
depuration or biotransformation. The concentration of PAHs
observed in catfish, prawn, and periwinkles significantly
exceeded the average background PAH (0.01 ug kg™" to 1.0 pg
kg ") in uncooked foods' including seafood. The concentration
of PAH markers (benzo[a]pyrene and sum of the PAH4 group)
varied significantly higher in prawns (0.03 to 0.14 mg kg™ * fw
for benzo[a]pyrene and 0.1 to 0.12 mg kg™ fw for the sum of
PAH4) than the EU regulatory limit of maximum level of 12.0 pug
kg™" fw for the sum of PAH4 for smoked crustaceans in
Commission Regulation (EU) No 835/2011. The EU legal limit
for benzo[a]pyrene for fish considered safe for human
consumption is 2 pug kg~* (0.002 mg kg™ ") fw. This level of
concentration of PAH markers in the seafood tissues of the
present study far exceeded the maximum limit set by EU

Table 3 Mean tissue concentrations of PAHs, lipids, and MC in prawns and the potential health risk®

Samples (N = 10)
PAHs (mg kg~ fresh wt) UP1 UP2 UP3 UP4 TEFs (WHO/IPCS 1998)
Naphthalene ND ND ND 1.10 £ 0.00% —
2-Methylnaphthalene 1.21° £ 0.00 0.17% 4 0.00 1.63* + 0.01 1.24° 4 0.01 —
Acenaphthylene ND ND 0.06" + 0.00 0.13* + 0.00 —
Acenaphthene 0.16" £ 0.00 0.17° £ 0.01 0.37% % 0.00 0.12° £ 0.01 —
Fluorene 0.06° + 0.01 0.22* + 0.01 0.22* + 0.00 0.10° + 0.00 —
Phenanthrene 0.08* + 0.01 0.09* + 0.00 0.09* + 0.00 0.08* + 0.00 —
Anthracene ND 0.09* + 0.00 0.09* + 0.00 0.09* + 0.00 —
Fluoranthene ND ND ND ND —
Pyrene ND ND ND ND —
Benzo[aanthracene ND ND ND ND 0.1
Chrysene ND ND ND ND 0.01
Benzo[b]fluoranthene 0.05¢ £ 0.00 0.05¢ + 0.00 0.07° + 0.00 0.13* + 0.00 0.1
Benzo[k]fluoranthene 0.16" £ 0.00 0.03¢ & 0.00 0.05° + 0.00 0.15% + 0.01 0.01
Benzo[a]pyrene 0.07° £ 0.00 0.05° & 0.00 0.03% £ 0.00 0.14° & 0.00 1
Dibenz[a,h]anthracene 0.54% £ 0.00 1.41% + 0.01 0.65° + 0.01 0.81° £ 0.00 1.0
Benzo[g,h,{|perylene 0.409 + 0.01 3.03* £ 0.01 1.34" + 0.00 0.42° £ 0.00 0.01
Indeno[1,2,3-c,d|pyrene 1.794 + 0.01 2.38° + 0.00 2.76% + 0.00 2.70° + 0.00 0.1
> _PAHs 4.61 7.75 7.39 7.24
S PAH4 0.12 0.1 0.1 0.27
PEC 0.6385 1.5194 0.7247 0.9957
SV (ng kg™) 0.1624 0.1624 0.1624 0.1624
% Lipid 2.40° + 1.04 2.39% + 1.01 2.68" + 0.74 2.47* + 0.25
%MC 72.91° + 0.82 75.56" + 1.68 75.67" + 0.59 70.63% + 0.97
Phen/Anth 0.08 1.00 1.00 0.89
LMW/HMW 0.502 0.106 0.502 0.657
Ant/(Ant + Phe) — 0.5 0.5 0.47

¢ Results are means and standard deviations of triplicate measurements. ND = below detection (<0.01 to < 0.03) TEFs = toxicity equivalent factors.
PEC = carcinogenic potency equivalent concentration. SV = screening (threshold) value. UP1, UP2, UP3 are prawns from incident zones while UP4
are prawns from the control zone. MC = moisture content. Values with different alphabet superscripts in the same rows are significantly different.
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Table 4 Mean tissue concentrations of PAHS, lipids, and MC in periwinkles and the potential health risk®

Samples (N = 10)
PAHs (mg kg™ fresh wt) US1 Us2 US3 Us4 TEFs (WHO/IPCS 1998)
Naphthalene ND ND ND 1.01 £ 0.00% —
2-Methylnaphthalene 0.17° £ 0.01 0.48" + 0.01 0.17° £ 0.00 1.25% £ 0.01 —
Acenaphthylene ND 0.04" £ 0.00 ND 0.10% £ 0.01 —
Acenaphthene 0.12° + 0.00 0.10% + 0.00 0.21° + 0.00 0.70% + 0.01 —
Fluorene 0.32% 4 0.00 ND ND ND —
Phenanthrene 0.08% & 0.00 0.05° + 0.01 0.09% & 0.01 ND —
Anthracene ND ND ND ND —
Fluoranthene ND 0.05% & 0.00 ND ND —
Pyrene ND 0.05% & 0.00 ND ND —
Benz[a]anthracene ND ND ND ND 0.1
Chrysene ND ND ND ND 0.01
Benzo[b]fluoranthene ND 0.28% £ 0.01 ND ND 0.1
Benzo[k]fluoranthene ND 0.05% + 0.01 ND ND 0.1
Benzo[a]pyrene 0.07° + 0.01 0.29% + 0.01 ND ND 1
Dibenz[a,h]anthracene 0.55° + 0.01 1.60* + 0.00 0.60% £ 0.00 0.17° £ 0.00 1.0
Benzo[g,h,i]perylene 1.33% £ 0.00 0.35% + 0.01 1.03¢ £ 0.00 1.31° £ 0.01 0.01
Indeno[1,2,3-¢,d]pyrene 1.354 £ 0.01 2.24" £ 0.00 2.66% + 0.01 1.65° £ 0.01 0.1
> PAHSs 5.11 5.60 4.91 6.14
> PAH4 0.07 0.29 —_ —
PEC 0.7683 2.1505 0.8763 0.3481
SV (ug kg™) 0.1624 0.1624 0.1624 0.1624
% Lipid 2.17* £ 0.71 2.51% + 0.13 2.17* £ 0.71 1.63" + 0.51
%MC 73.43* £+ 0.97 74.30* + 1.14 76.46" + 0.98 76.90* + 1.77
LMW/HMW 0.16 0.04 0.07 0.85

% Results are means and standard deviations of triplicate measurements. ND = below detection limit <0.01 to <0.03. TEFs = Toxicity equivalent
factors. PEC = carcinogenic potency equivalent concentration. SV = screening (threshold) value. US1, US2, US3 are periwinkles from incident
zones while US4 are periwinkles from the control zone. MC = moisture content. Values with different alphabet superscripts in rows are

significantly different.

Commission Regulation 1881/2006 (as amended) for PAHs in
some foods. Elevated levels of indeno[1,2,3-c,d]pyrene than
other PAH congeners was observed in all the samples across the
zones. In a similar study, Nwaichi and Ntorgbo also observed
elevated levels of indeno[1,2,3-c,d]pyrene levels in Crassostrea

virginica, Littorina littorea, and Periophthalmus koeleuteri from
Sime, Iko, and Kporghor locations of N'Delta, which exceeded
the European Union (EU) limit of 5 pg kg™" wet wt.* Indeno
[1,2,3-c,d]pyrene is one of the most suitable indicators for PAHs
contamination in food." Following a single topical application,

Table 5 Limit of detection (LOD), limit of quantitation (LOQ), correlation coefficients, and % recovery range for calibration lines of the 17 PAH

standards

PAH compounds Matrix LOD (mg kg™ ") LOQ (mg kg™ ") I % Recovery range
Nap Fish 0.02 0.07 1.86 88.5-90.5
2MNap Fish 0.01 0.03 0.65 80.1-83.0
Acy Fish 0.01 0.03 0.49 70.6-73.1
Ace Fish 0.01 0.03 0.67 91.3-92.0
Flu Fish 0.01 0.03 0.74 90.8-92.1
Phe Fish 0.03 0.08 1.34 91.3-93.4
Ant Fish 0.02 0.07 1.57 76.1-80.0
Flurt Fish 0.01 0.03 0.66 80.8-82.2
Pyr Fish 0.02 0.07 1.43 99.0-101.1
Blala Fish 0.02 0.07 0.97 91.7-92.3
Chr Fish 0.03 0.08 0.65 89.6-90.2
B[b]f Fish 0.02 0.07 0.46 84.2-84.6
B[k]f Fish 0.03 0.08 0.37 83.4-83.6
Blalp Fish 0.03 0.08 0.92 82.8-84.2
D[a,h]a Fish 0.01 0.03 0.48 94.0-94.8
B[g,h,{]p Fish 0.01 0.03 1.44 90.8-91.4
In[1,2,3-¢,d]p Fish 0.01 0.03 1.97 88.1-89.0
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100 pg benzo[b]fluoranthene, benzo[j]fluoranthene, benzo[k]
fluoranthene, and indeno[1,2,3-c,d]pyrene were reported to
bind to DNA in CD-1 mouse skin (Weyand et al. 1987).*® The
relative extent of binding was benzo[b]fluoranthene > benzo[j]
fluoranthene > benzo[k]fluoranthene > indeno[1,2,3-c,d]pyrene.
The covalent binding of chemicals to DNA can result in strand
breaks and DNA damage, ultimately leading to mutations. The
incidence of forestomach tumors (papillomas and carcinomas)
in mice was reported to relate to the duration of oral exposure to
benzo[a]pyrene, following intermediate-duration administra-
tion of dietary benzo[a]pyrene at various doses up to 250 ppm
(33.3 mg per kg per day) for 30-197 days (Neal and Rigdon
1967).* Dominant concentration of high molecular weight
(HMW) PAHs was also observed in all the seafood samples
analyzed. The findings from the present study showed
increased total PAHs in seafood than those by* WHO reported
mean total PAHs levels in the tissues of fish in the N'Delta
region ranging from below detection (ND) limit to 22.400 pg
kg~" fw in Littorina littorea, ND to 87.400 pg kg~ ' fw in Cras-
sostrea virginica and from ND to 171.000 pg kg~ fw in Peri-
ophthalmus koeleuteri. High molecular weight (HMW) PAHs
were also found to be predominant in samples compared to low
molecular weight (LMW) PAHSs. Higher tissue levels of PAHs
were also reported by ref. 5-8. The observed PAHs levels in the
present study, however, exceeded the reported measurable low
levels in fresh fish and seafood studied in some communities of
N'Delta.*® The most frequently detected PAHs in all the seafood
tissues analyzed were dibenz[a,i]anthracene, benzo[g,h,{]per-
ylene, indeno[1,2,3-¢,d] pyrene, benzo[a]pyrene, acenaphthene,
and 2-methylnaphthalene. The total PAHs (Y PAHs) concen-
trations reported in the present study are within the range re-
ported in similar studies around the world, including 0.432 to
14.939 mg kg~ dry wt. for various seafood species in the Iragi
marine waters,”” and 23.90 to 57.90 mg kg~ " dry wt. for fish in
the Red Sea coast of Yemen.*® Common among the present and
previous studies are elevated tissue concentrations of high
molecular weight (HMW) PAHs than low molecular weight
(LMW) PAHs in seafood. The mean tissue concentration of low
molecular weight (LMW) PAHs in samples across the zones
varied from below instrument detection (ND) to 0.98 mg kg™ '
fw, while high molecular weight PAHs (flur, b[a]a, chry, b[b]f, b
[k]f, b[a]p, db[a,k]a, and in[1,2,3-¢,d]p) also varied from ND to
3.80 mg ke~ * fw in samples across zones. The study showed that
seafood in the N'Delta region is chronically contaminated with
total PAHs at levels (4.55 to 7.75 mg kg~ fw) considered unsafe
for human consumption. The total PAHs levels obtained in fish
from this study were higher than 45.9-171.9 pg kg™" (0.0459-
0.1719 mg kg~ ') reported in seafood from Niger Delta coastal
waters® and 48.75-166.79 pg kg~ ' reported in fish from Ghana
coastal waters.** The PAHs levels in seafood were significantly
higher than the recommended levels considered safe for human
consumption by WHO and the EU. The EU recommended limit
for bla]p (PAHs marker) for fish considered safe for human
consumption is 2 pg kg™ (0.002 mg kg™') fw. The study also
showed that tissue concentrations of PAHs in all the studied
seafood far exceeded the FAO/WHO guidelines for concentra-
tions of PAHs in food (0.001 mg kg™ " fw) considered safe for

This journal is © The Royal Society of Chemistry 2021
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human consumption.” Lower concentrations of PAHs from
non-oil impacted areas of Badagry Creek and Ologe Lagoon
were observed in C. nigrodigitatus and M. macrobrachion, which
were below the WHO maximum permissible limit of 0.001 ug
¢ " in fish and shellfish.'* Elevated levels of > PAHs have been
reported in seafood tissues from oil-impacted areas around the
world such as 251 ug g~ " dry wt. for peatl oyster, 173 to 846 pug
g~ dry wt for rock oyster in the United Arab Emirates,* and
from 91.32 mg kg™ ' to 1154.45 mg kg~ ' in the Arabian Gulf.*
Also, the PAH profile in crab (Ocypode africana) samples from
the shoreline of the N'Delta areas, crab droppings, Donax acu-
tangulus, and Tympanotonus fuscatus were reported to be below
the limit of detection in all the stations despite the high level of
total petroleum hydrocarbon (TPH) observed in the fauna.” The
concentration of b[a]p detected in periwinkles at US1 and US2
varied from 0.07 mg kg™ " fw to 0.29 mg kg~ fw above the EU
recommended limit (0.002 mg kg™ ') fw for fish considered safe
for human consumption. Bivalve mollusks such as mussels and
oysters can filter large volumes of water and accumulate high
molecular mass PAHs but are not capable of metabolizing all
PAHs efficiently.”” The absence or variation in the tissue
concentrations of PAHs in seafood in the N'Delta region and
around the world may be attributed to a number of factors such
as route and duration of exposure, uptake capacity or lip-
ophilicity of tissues, environmental factors, differences in
species age and sex, and exposure to other xenobiotics.

PAHs are readily absorbed in tissues of fish and shellfish
because of their lipophilic nature. It could be expected that the
higher the tissue lipid, the higher the PAHs concentration.
However, this was not the case in the present study. There was
no correlation between the concentrations of PAHs and tissue
lipid of fish under study. The lipid content ranged from 1.47 to
2.57% for catfish, 2.39 to 2.68% for prawns, and 1.63 to 2.57%
for periwinkles, while total PAHs () PAHs) range from 4.55 to
6.36 mg kg~ fw for catfish, 4.61 to 7.75 mg kg~ " fw for prawns,
and 4.91 to 6.14 mg kg~ ' fw for periwinkles, with no particular
trend across the four zones. Dietary fat levels have been shown
to have an effect on the disposition and toxicity of PAHs. The
metabolism of benzo[a]pyrene in hepatocytes in vitro from rats
fed high-fat (as corn oil) diets was decreased.* This effect was
not due to a decrease in the activity of AHH. The authors
postulated that the high-fat diets allowed benzo[a]pyrene,
which is highly lipophilic, to become sequestered in lipid
droplets and, therefore, become inaccessible to the P-450
enzymes. The moisture content (MC) varied from 70.63% to
76.90% in all the seafood samples across the four zones. This
result agrees with the general report that the composition of
most fish falls in the range of about 0.2 to 20% lipid, 14 to 20%
protein, 60 to 80% moisture, and 1.0 to 1.8% ash.** Therefore,
tissue concentration of PAHs in seafood in the present study
showed no correlation with the lipid and moisture composition
of the seafood.

Origin of PAHSs detected in seafood

PAHs is known to originate from three sources—diagenic, pet-
rogenic, and pyrogenic.
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Diagenic are natural PAHs generated by biological processes
(retene and perylene are examples of PAHs that may be from
diagenic or petrogenic sources). Petrogenic PAHs are typically
formed from petroleum and fossil fuels (these typically include
many alkylated PAHs). Pyrogenic PAHs are products of incom-
plete combustion (typically the biggest component of most
urban and industrial samples).

In the present study, the PAHs detected in the tissues of
catfish, prawns, and periwinkles were pyrogenic, based on
mathematical evaluation. The ratio of LMW/HMW < 1 was
evaluated for all the seafood samples across the zones. This
finding was in agreement with the fingerprinting test on water
and sediments of the ‘Post-Oil Spill Impact Assessment Study’ in
the N'Delta region, which showed that the pristine/phytane
ratios that normally indicate the petrogenic origin of hydrocar-
bons were nil. The petrogenic origin is usually indicated by
a pristine/phytane ratio of 3.0.** The observation was also in
agreement with the report® on the pyrogenic origin of tissue
PAHs in fish. The tissue concentration of PAHs varied widely
with molecular weight, which is in agreement with report on the
assessment on PAHs levels in some finsh and seafood from
different coastals water in the Niger Delta.? Studies have shown
that larger concentrations of LMW PAHSs (e.g., acenaphthene and
fluorene) most often occur in sample matrices contaminated
with naturally occurring PAHs (i.e., petrogenic and biogenic
origins), while PAHs from combustion processes (i.e., pyrogenic
origin) often contain elevated concentrations of HMW PAHs
(e.g., fluoranthene and pyrene) and fewer LMW PAHs.*® This
confirmed the fact that PAHs with HMW are typically generated
by high-temperature combustion processes*® such as gas flaring
and burning oil wells. The overall mean concentration of PAHs
in prawns across the zones ranged from below detection (ND) to
3.03 mg kg fw for high molecular weight (HMW) PAHs, and
from ND to 1.63 mg kg™ " fw for LMW PAHs.

Potential health risk of PAHs consumption

Cancer potency evaluations of environmental media are a neces-
sary component of cancer risk assessments. A number of PAHs
have shown carcinogenic effects in experimental animals, and it
has been concluded that benzo[a]pyrene is carcinogenic to
humans (group 1).° The concern, therefore, is about their pres-
ence in food and health risk from ingestion. Although the esti-
mated household fish consumption rate of 36.94 g per person per
day in Nigeria is exceedingly less than the USEPA-recommended
fish consumption rate of 142.2 g per person per day for subsis-
tence consumers® and the world's average fish consumption rate
of 20.3 kg per capita per year,* the estimated carcinogenic
potency equivalent concentrations (PEC) of PAHs from fish
consumption was higher than the screening value (SV) for about 5
to 8 times for catfish, 4 to 9 times for prawns, and 2 to 13 times for
periwinkles. This indicates significant cancer risk potential (CRP)
of PAHs from the consumption of seafood in the N'Delta region.
In a similar study,’ the estimated cumulative excess cancer risk
(ECR) for E. fimbriata and C. gariepinus and the PAH4 index for all
the assessed smoked fish species from markets in southern
Nigeria exceeded the threshold values, indicating potential
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carcinogenic risk from consumption. Mixtures of diagenic PAHs
are generally not considered to have health impacts on people at
environmental exposures levels. Short-term environmental expo-
sures to petrogenic and pyrogenic PAHs can lead to tissue irri-
tation (e.g, skin, respiratory, eyes, and gastrointestinal),** while
long-term exposures can lead to liver damage, hematological
effects, and reproductive and developmental difficulties in
animals. In addition to irritation, decreased fertility, develop-
mental neurological effects, and renal toxicity have been
demonstrated in laboratory animals exposed to relatively high
levels of PAHs.* The most studied endpoint for long term PAH
exposure is cancer. Individual carcinogenic PAHs (cPAHs) have
been shown to have different cancer potencies and may induce
different types of cancer in laboratory animals (e.g:, oral exposure
to benzo[a]pyrene or dibenzo[a,i]pyrene predominantly results in
gastrointestinal tract cancers or lung cancer, respectively).*

Conclusion

Exposure and health risk from PAHs can be prevented by
adopting appropriate control measures coupled with the
awareness of the ways that PAHs are formed in food. Foodborne
illness data are scarce and often under reported. Understanding
the linkage between the origin, formation, and ‘food vehicle’ is
important for finding the mitigation strategy to PAHs contam-
ination and the associated health risk.

The present study showed elevated tissue concentration of
polycyclic aromatic hydrocarbons in seafood in the N'Delta
region far above the legal maximum limits allowed for food
safety. Mathematical evaluation and dominant concentration of
high molecular weight PAHs revealed that the origin of PAHs in
the present study was mainly pyrogenic. This was in agreement
with the previous studies in the area.>*****” The carcinogenic
potency equivalent concentrations (PEC) exceeded the
screening value (SV) in the samples analyzed, showing that the
consumption of seafood at the rate of 36.94 g per person per day
or higher poses serious health risks. It is necessary to regularly
monitor PAHs and other contaminants levels in the aquatic
environment even when everything appears to be normal so as
to provide mitigation options that will prevent risk to humans
and aquatic animals. A comprehensive database and standard
regulatory agency guidelines relating to seafood safety should
be developed, updated, and integrated into Nigeria regulatory
processes through routine and uniform training programs.
Specialized test instruments that can quantitatively detect at the
zero level any traces of chemical contaminants in samples are
required. The mechanism of pyrogenic PAHs uptake by aquatic
organisms requires further investigation. The duration for the
manifestation of PAHs-related tumors from dietary exposure
should be investigated. Also, the need for a comprehensive
database on PAHs and the health risk on humans or organisms
at the cellular and biochemical levels require investigation.

Author contributions

Udeme Udofia: conceptualization of the research idea, data
curation, funding, investigation, methodology, formal analysis,

This journal is © The Royal Society of Chemistry 2021


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1em00249j

Open Access Article. Published on 18 October 2021. Downloaded on 10/28/2025 6:53:57 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

and original draft. Charles Ameh: for the project administra-
tion, software, and data analysis. Eula Miller: original draft, and
review and editing. Mandu Ekpenyong: resources, original
draft, and review and editing.

Conflicts of interest

There is no conflict of interest to declare.

Acknowledgements

We wish to acknowledge Michael Okpara University of Agri-
culture for providing us with the equipment to carry out this
study.

References

1 Science Committee on Food, Opinion of the Scientific
Committee on Food on the Risks to Human Health of
Polycyclic Aromatic Hydrocarbons in Food. Brussels,
Belgium, 2002 December, http://ec.europa.eu/food/fs/sc/scf/
out153_en.pdf, accessed 15.07.2018.

2 K. W. Nkpaa, M. O. Wegwu and E. B. Essien, Assessment of
polycyclic aromatic hydrocarbons (PAHs) levels in two
commercially important fish species from crude oil
polluted waters of Ogoniland and their carcinogenic health
risks, J. Environ. Earth Sci., 2013, 3(8), 128-137.

3 E. O. Nwaichi and S. A. Ntorgbo, Assessment of PAHs levels
in some fish and seafood from different coastal waters in
the Niger Delta, Toxicol. Rep., 2016, 3, 167-172.

4 E. S. Osuagwu and E. Olaifa, Effects of oil spills on fish
production in the Niger Delta, PLoS One, 2018, 13(10),
€0205114.

5 I. Tongo, O. Ogbeide and L. Ezemonye, Human health risk
assessment of polycyclic aromatic hydrocarbons (PAHs) in
smoked fish species from markets in Southern Nigeria,
Toxicol. Rep., 2017, 4, 55-61.

6 D. H. Phillips, Polycyclic aromatic hydrocarbons in the diet,
Mutat. Res., Genet. Toxicol. Environ. Mutagen., 1999, 443(1-2),
139-147.

7 L. M. Palm, D. Carboo, O. P. Yeboah, W. ]. Quasie,
M. A. Gorleku and A. Darko, Characterization of polycyclic
aromatic hydrocarbons (PAHs) present in smoked fish
from Ghana, Adv. J. Food Sci. Technol., 2011, 3(5), 332-338.

8 B. O. Silva, O. T. Adetunde, T. O. Oluseyi, K. O. Olayinka and
B. 1. Alo, Polycyclic aromatic hydrocarbons (PAHs) in some
locally consumed fishes in Nigeria, Afr. J. Food Sci., 2011
Jul 31, 5(7), 384-391.

9 Agency for Toxic Substances and Disease Registry,
Toxicological Profile for Polycyclic Aromatic Hydrocarbons
(PAHs), U.S. Department of Health and Human Services,
Public Health Service, Agency for Toxic Substances and
Disease Registry, Atlanta, 1995.

10 World Health Organization, Air Quality Guidelines: Global
Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide,
and Sulfur Dioxide, World Health Organization, 2006.

This journal is © The Royal Society of Chemistry 2021

View Article Online

Environmental Science: Processes & Impacts

11 C. Ris, US EPA health assessment for diesel engine exhaust:
a review, Inhalation Toxicol., 2007, 19(sup1), 229-239.

12 European Food Safety Authority (EFSA), Polycyclic Aromatic
Hydrocarbons in Food-Scientific Opinion of the Panel on
Contaminants in the Food Chain, EFSA J., 2008, 6(8), 724.

13 L. C. Obara and E. Nangih, Accounting practices and
performance of oil and gas industry (upstream sector) in
Nigeria: An empirical analysis, Int. J. Acad. Res. Account.
Financ. Manag. Sci., 2017, 7(2), 215-222.

14 B. Anifowose, D. Lawler, D. van der Horst and L. Chapman,
Evaluating interdiction of oil pipelines at river crossings
using Environmental Impact Assessments, Area, 2014,
46(1), 4-17.

15 T. Agbola and T. A. Olurin, Landuse and Landcover change
in the Niger delta, Excerpts from a Research Report presented
to the Centre for Democracy and Development, 2003.

16 Z. Nenibarini, Impacts of Extractive industries on the
Biodiversity of the Niger Delta National Workshop on Coastal
and Marine Biodiversity Management, 2004.

17 United Nations Development Programs, Niger Delta Human
Development Report, 2011.

18 R. Van der Oost, H. Heida, A. Opperhuizen and
N. P. Vermeulen, Interrelationships between
bioaccumulation of organic trace pollutants (PCBs,

organochlorine pesticides and PAHs), and MFO-induction
in fish, Comp. Biochem. Physiol., C: Comp. Pharmacol., 1991,
100(1-2), 43-47.

19 O. C. Adeigbe and A. A. Rahaman, Polycyclic Aromatic
Hydrocarbons (PAHs) and Carcinogenic Polycyclic
Aromatic  Hydrocarbons (cPAHs); Implications for
Groundwater and Stream qualities around Mamu Coal
Exposure in Okaba-Odagbo Mining District, Ankpa, North-
Central Nigeria, Pet. Coal, 2020, 62(3), 845-857.

20 A. K. Hurtig and M. San Sebastian, Geographical differences
in cancer incidence in the Amazon basin of Ecuador in
relation to residence near oil fields, Int. J. Epidemiol., 2002,
31(5), 1021-1027.

21 A. R. Price, C. R. Sheppard and C. M. Roberts, The Gulf: its
biological setting, Mar. Pollut. Bull., 1993, 27, 9-15.

22 C. Sheppard, M. Al-Husiani, F. Al-Jamali, F. Al-Yamani,
R. Baldwin, J. Bishop, F. Benzoni, E. Dutrieux, N. K. Dulvy,
S. R. Durvasula and D. A. Jones, The Gulf: a young sea in
decline, Mar. Pollut. Bull., 2010, 60(1), 13-38.

23 L. Ababouch, Market-based standards and certification in
aquaculture, Farming the Waters for People and Food, 2010,
p. 525.

24 Food and Agriculture Organization (FAO), The State of World
Fisheries and Aquaculture, FAO, Rome, Italy, 2004.

25 A. B. Dauda, I. Natrah, M. Karim, M. S. Kamarudin and
A. H. Bichi, African catfish aquaculture in Malaysia and
Nigeria: Status, trends and prospects, Fish. Aquacult. J.,
2018, 9(1), 1-5.

26 Nos C. Sephadex® G-25.

27 A. Shrivastava and V. B. Gupta, Methods
determination of limit of detection and
quantitation of the analytical methods, Chron. Young Sci.,
2011, 2(1), 21-25.

for the
limit of

Environ. Sci.. Processes Impacts, 2021, 23, 1803-1814 | 1813


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1em00249j

Open Access Article. Published on 18 October 2021. Downloaded on 10/28/2025 6:53:57 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Environmental Science: Processes & Impacts

28 G WHO, World Health Organization International Program on
Chemical Safety, 1994.

29 K. C. Cheung, H. M. Leung, K. Y. Kong and M. H. Wong,
Residual levels of DDTs and PAHs in freshwater and
marine fish from Hong Kong markets and their health risk
assessment, Chemosphere, 2007, 66(3), 460-468.

30 G. De Luca, A. Furesi, R. Leardi, G. Micera, A. Panzanelli,
P. C. Piu and G. Sanna, Polycyclic aromatic hydrocarbons
assessment in the sediments of the Porto Torres Harbor
(Northern Sardinia, Italy), Mar. Chem., 2004, 86(1-2), 15-32.

31 B. Vrana, A. Paschke and P. Popp, Polyaromatic hydrocarbon
concentrations and patterns in sediments and surface water
of the Mansfeld region, Saxony-Anhalt, Germany, J. Environ.
Monit., 2001, 3(6), 602-609.

32 I C. Nisbet and P. K. Lagoy, Toxic equivalency factors (TEFs)
for polycyclic aromatic hydrocarbons (PAHSs), Regul. Toxicol.
Pharmacol., 1992, 16(3), 290-300.

33 M. Tobiszewski and J. Namiesnik, PAH diagnostic ratios for
the identification of pollution emission sources, Environ.
Pollut., 2012, 162, 110-119.

34 U. Varanasi, J. E. Stein and M. Nishimoto, Biotransformation
and Disposition of Polycyclic Aromatic Hydrocarbons (PAH)
in Fish, Metabolism of Polycyclic Aromatic Hydrocarbons in the
Aquatic Environment, CRC Press, Inc., Boca Raton Florida,
1989, pp. 93-149, 20 fig, 15 tab, 171 ref., NOAA Contract Y
01-CP-40507, 1989.

35 S. A. Adeyeye, O. T. Bolaji, T. A. Abegunde and F. Idowu-
Adebayo, Polycyclic aromatic hydrocarbon profile,
chemical composition and acceptability of Suya (a West
African grilled meat), Polycyclic Aromat. Compd., 2020, 1.

36 World Health Organization, Guidelines for Drinking-Water
Quality: Second Addendum, vol. 1, Recommendations, 2008.

37 United Nations Development Programs, Niger Delta Human
Development Report, 2011.

38 B. Yan, L. A. Benedict, D. A. Chaky, R. F. Bopp and
T. A. Abrajano, Levels and patterns of PAH distribution in
sediments of the New York/New Jersey harbor complex,
Northeast. Geol. Environ. Sci., 2004, 26(1-2), 113-122.

39 H. T. Al-Saad, H. M. Bedair, H. M. Heba and M. K. Zukhair,
Sources of polycyclic aromatic hydrocarbons (PAHs) in fish

1814 | Environ. Sci.: Processes Impacts, 2021, 23, 1803-1814

View Article Online

Paper

samples from the North-West Arabian Gulf and the Red
Sea coast of Yemen, Mesopot. J. Mar. Sci., 2006, 21(1), 1-12.

40 E. Nyarko and B. E. Klubi, Polycyclic aromatic hydrocarbons
(PAHS) levels in two commercially important fish species
from the coastal waters of Ghana and their carcinogenic
health risks, West Af. J. Appl. Ecol., 2011, 19(1), 53-66.

41 1. Tolosa, S. J. De Mora, S. W. Fowler, J. P. Villeneuve,
J. Bartocci and C. Cattini, Aliphatic and aromatic
hydrocarbons in marine biota and coastal sediments from
the Gulf and the Gulf of Oman, Mar. Pollut. Bull., 2005,
50(12), 1619-1633.

42 W. Guo, M. He, Z. Yang, C. Lin, X. Quan and H. Wang,
Distribution of polycyclic aromatic hydrocarbons in water,
suspended particulate matter and sediment from Daliao
River watershed, China, Chemosphere, 2007, 68(1), 93-104.

43 R. G. Harvey, Environmental Chemistry of PAHs. PAHs and
Related Compounds, 1998, pp. 1-54.

44 J. Zaleski, G. Y. Kwei, R. G. Thurman and F. C. Kauffman,
Suppression ~ of  benzo[a]pyrene  metabolism by
accumulation of triacylglycerols in rat hepoatacytes: effect
of high-fat and food-restricted diets, Carcinogenesis, 1991,
12(11), 2073-2079.

45 B. J. Efiuvwevwere and L. O. Amadi, Effects of preservatives
on the bacteriological, chemical, and sensory qualities of
mangrove oyster (Crassostrea gasar), Br. J. Appl. Sci.
Technol., 2015, 5(1), 76.

46 S. Kelley, J. Meinert and C. Williams, Review of the Minnesota
Department of Health Contaminants of Emerging Concern
Program Process for Selecting Chemicals, 2016.

47 European Commission, Commission Regulation (EU) No
836/2011 of 19 August 2011 Amending Regulation (EC) No
1881/2006 as Regards Maximum Levels for Polycyclic
Aromatic Hydrocarbons in Foodstuffs, Off. J. Eur.
Communities: Legis., 2011, 215, 4-8.

48 C. M. Weyand, J. Goronzy and C. G. Fathman, Modulation of
CD4 by antigenic activation., J. Immunol., 1987, 138(5), 1351
1354.

49 J. Neal and R. H. Rigdon, Gastric tumors in mice fed benzo
(a) pyrene: a quantitative study, Tex. Rep. Biol. Med., 1967,
25(4), 553-557.

This journal is © The Royal Society of Chemistry 2021


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1em00249j

	Investigating the origin and tissue concentration of polycyclic aromatic hydrocarbons in seafood and health risk in Niger Delta, Nigeria
	Investigating the origin and tissue concentration of polycyclic aromatic hydrocarbons in seafood and health risk in Niger Delta, Nigeria
	Investigating the origin and tissue concentration of polycyclic aromatic hydrocarbons in seafood and health risk in Niger Delta, Nigeria
	Investigating the origin and tissue concentration of polycyclic aromatic hydrocarbons in seafood and health risk in Niger Delta, Nigeria
	Investigating the origin and tissue concentration of polycyclic aromatic hydrocarbons in seafood and health risk in Niger Delta, Nigeria
	Investigating the origin and tissue concentration of polycyclic aromatic hydrocarbons in seafood and health risk in Niger Delta, Nigeria
	Investigating the origin and tissue concentration of polycyclic aromatic hydrocarbons in seafood and health risk in Niger Delta, Nigeria
	Investigating the origin and tissue concentration of polycyclic aromatic hydrocarbons in seafood and health risk in Niger Delta, Nigeria
	Investigating the origin and tissue concentration of polycyclic aromatic hydrocarbons in seafood and health risk in Niger Delta, Nigeria
	Investigating the origin and tissue concentration of polycyclic aromatic hydrocarbons in seafood and health risk in Niger Delta, Nigeria
	Investigating the origin and tissue concentration of polycyclic aromatic hydrocarbons in seafood and health risk in Niger Delta, Nigeria
	Investigating the origin and tissue concentration of polycyclic aromatic hydrocarbons in seafood and health risk in Niger Delta, Nigeria

	Investigating the origin and tissue concentration of polycyclic aromatic hydrocarbons in seafood and health risk in Niger Delta, Nigeria
	Investigating the origin and tissue concentration of polycyclic aromatic hydrocarbons in seafood and health risk in Niger Delta, Nigeria
	Investigating the origin and tissue concentration of polycyclic aromatic hydrocarbons in seafood and health risk in Niger Delta, Nigeria
	Investigating the origin and tissue concentration of polycyclic aromatic hydrocarbons in seafood and health risk in Niger Delta, Nigeria
	Investigating the origin and tissue concentration of polycyclic aromatic hydrocarbons in seafood and health risk in Niger Delta, Nigeria
	Investigating the origin and tissue concentration of polycyclic aromatic hydrocarbons in seafood and health risk in Niger Delta, Nigeria
	Investigating the origin and tissue concentration of polycyclic aromatic hydrocarbons in seafood and health risk in Niger Delta, Nigeria

	Investigating the origin and tissue concentration of polycyclic aromatic hydrocarbons in seafood and health risk in Niger Delta, Nigeria
	Investigating the origin and tissue concentration of polycyclic aromatic hydrocarbons in seafood and health risk in Niger Delta, Nigeria
	Investigating the origin and tissue concentration of polycyclic aromatic hydrocarbons in seafood and health risk in Niger Delta, Nigeria
	Investigating the origin and tissue concentration of polycyclic aromatic hydrocarbons in seafood and health risk in Niger Delta, Nigeria


