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Dynamic baselines for the detection of water
quality impacts — the case of shale gas
developmentt

Fred Worrall, © *2 Richard J. Davies® and Alwyn Hart®

There is a need for the development of effective baselines against which the water quality impacts of new
developments can be assessed. The specific conductance of flowback water from shale gas operations is
typically many times the specific conductance of surface water and near-surface groundwater. This
contrast in specific conductance means that specific conductance could be the ideal determinand for
detecting water quality impacts from shale gas extraction. If specific conductance is to be used for
detecting the impacts of shale gas operations, then a baseline of specific conductance in water bodies is
required. Here, Bayesian hierarchical modelling of specific conductance was applied across English
groundwater. The modelling used existing, spot-sampled data from the years 2000 to 2018 from 537
unique borehole locations. When the differences between boreholes was considered, then the approach
was sufficiently sensitive to detect 1% mixing of fracking fluid in groundwater at a 95% confidence
interval. The Bayesian hierarchical modelling maximises the return on public investment and provides
a means by which future observations can be judged.

“Dynamic baselines for the detection of water quality impacts - the case of shale gas development”. This paper describes a new approach to defining envi-
ronmental baselines. Environmental baselines are needed so as to be able to define whether an impact has, or has not, occurred with acceptable confidence.
What is required is a probabilistic baseline which can predict the expected distribution at a monitoring location and so it is possible to judge whether a new
observation is “unusual” at a given probability. In this study we use a Bayesian hierarchical analysis of the specific conductance of English groundwater to
develop a baseline against which the impact of shale gas exploitation could be judged. The approach could detect 1% fracking fluid in groundwater at a 95%

confidence.

1. Introduction

Many developed countries have extensive water quality moni-
toring networks that have been active for many years and so
generating a large resource of water quality monitoring data,
earliest river water quality monitoring starts in the nineteenth
century;* and in the developed world this monitoring is now
spatially extensive. However, monitoring data has often been
acquired for very specific, sometimes local, purposes, and in the
European Union this has often been focused upon the “good
ecological status” dictated by the Water Framework Directive.>*
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The use of these data in ways beyond those originally intended
is attractive but can be problematic.* Our aim was to determine
whether this considerable quantity of data can be used not only
to meet its original purpose but also aid in the protection and
improvement of water resources from new challenges such as
the development of a new onshore shale gas industry. One of
the purposes of water quality monitoring is to assess whether
activities have an adverse impact on a water body. To assess
whether a human activity has an adverse impact or conversely
demonstrate that no adverse impact has occurred, within an
acceptable level of uncertainty, it is necessary to demonstrate
that the activity (in this case shale gas exploitation) has changed
the water quality above an acceptable limit or above a value that
would have been expected without the activity present. In many
cases, when the presence of pollutants is not overwhelming,
then to demonstrate the presence or absence of an impact an
effective baseline must exist, but such a baseline is not
commonly available.

For a baseline, or indicator or change, to be of use in
detecting and apportioning change or adverse impact there are
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a number of properties that a robust baseline should have. First,
the monitored parameter should be related to the activities of
concern, or provide an unrelated comparison for assurance
purposes (e.g. a conservative marker), and the monitored
parameter should be not related to other pollution sources.
Second, the monitored parameter should be sensitive to the
change with a large change in the magnitude for a small change
in the activity. Third, any chosen water quality parameter
should be a lead indicator of change, and in the case of water
quality this may mean a determinand with little attenuation in
its environment. It would be preferable that monitoring could
provide early warning of any impact so that measures could be
deployed in time to mitigate or avoid a problem. Finally, a larger
sample size is preferable and that is more easily achieved if the
measurement cost is low and readily deployable.

Shale gas exploitation is in its infancy in England and the
potential impact on ground and surface water quality is a public
concern.>® Extensive monitoring campaigns have been under-
taken around a shale gas exploration site in Lancashire
including the determination of baseline conditions for a wide
variety of determinands.” A number of technologies have been
proposed directed at indicator substances for the monitoring of
shale gas impacts on water resources, for example, measure-
ment of dissolved CH,;® radium;® barium and sulphate;*
strontium isotopes''). However, by far the greatest contrast
between flowback or produced water (i.e. water returning from
shale gas operations) and shallow ground or surface water is
their salinity, where salinity could be measured as total dis-
solved solids (TDS) or electrical conductivity. A review of the
total dissolved solids (TDS) of shale gas flowback water from US
shale gas operations showed that its salinity was between 0.67
and 10 times the TDS of seawater TDS (log TDS seawater < 4.6)
and far larger than the TDS of freshwater (log TDS of freshwater
~ 2.6)." So far only one fracking operation has been conducted
in the UK, for which flowback fluid composition has been
measured (Preese Hall, Lancashire). The conductivity of the
flowback fluid from the Preese Hall well was between 133 730
and 150 614 pS cm™ '.** Measuring salinity, as electrical
conductivity, requires no special equipment and is commonly
and frequently measured in freshwater. Furthermore, the UK
has been monitoring specific conductance (electrical conduc-
tivity of water corrected to a known temperature) across its
range of fresh water bodies for decades. The availability and
ease of collecting conductivity data are in contrast with some of
the other indicators proposed for assessing shale gas, for
example, the availability of strontium isotope data' and the
expense and facility required to collect further data.

These idealised characteristics for a good baseline indicator
parameter mean that salinity, and its allied measures, specific
conductance and TDS, are excellent prospects for detecting
change in water quality from any developing shale gas industry.
Measures of salinity show a high contrast between flowback
fluids and freshwater environments and that this contrast is
highly specific to shale gas. The high specificity and contrast
between the salinity of the flowback fluids and the salinity of
freshwater means that salinity could be a lead indicator of
pollution incidents. What is more, high salinity water from
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hydrocarbon exploitation has been shown to be toxic to exposed
organisms.*>'® Shale gas sites would be expected to have a range
of mitigation measures in place; however, Davies et al."” showed
that 6% of active, onshore oil wells in the UK have reported
a pollution incident in the last decade. Clancy et al.*® showed,
for Colorado, that for conventional oil exploitation sites, 0.02%
of the produced water was spilt. Meanwhile in Alberta, Canada,
in 2015 there were 113 incidents of spills of flowback and
produced water documented.” Boothroyd et al.** showed that
30% of decommissioned oil and gas wells showed significant
CH,4 leaks even within 10 years of their decommissioning.

Although there are considerable numbers of specific
conductance measurements available, these measurements
were not collected with the purpose of creating a baseline for
judging the impacts of a new industry. The government bodies
responsible for water quality monitoring in England (The
Environment Agency) are testing a range of statistical tools to
use with monitoring data from shale sites but as yet they make
no recommendations for indicator substances. Moreover,
a simple, coherent method is required for the objective and
transparent assessment of water quality monitoring. Worrall
et al.** proposed to use existing riverwater specific conductance
data to develop a baseline against which the impacts of shale
gas exploitation could be assessed using Bayesian generalised
linear modelling. The proposed method had several innate
advantages; the method was data-driven; flexible with respect to
how the specific conductance data are represented; can use
factorial (e.g. month of sampling) and include covariate infor-
mation (e.g. land-use). Creating the statistical modelling within
a Bayesian approach means that the approach creates a frame-
work whereby all information has value. Equally, within this
framework, new information can be added to update estimates
and model outputs are a probability distribution which means
that risk can be considered at all stages. The approach devel-
oped by Worrall et al.,** creates a baseline which is dynamic in
time and space as it predicts values for sites but updates with
each new observation. However, the analysis of Worrall et al.**
showed that for river water the sampling frequency and the in-
stream residence time compared to the likely volume spilt in
acute incidents would mean that monitoring would be unlikely
to detect all but the most catastrophic spills. Bayesian model-
ling approaches have been successfully developed and applied
elsewhere for environmental management: for detecting dis-
solved CH,;** ecological risk assessment;*® stream water
quality;>* impacts of climate change.*

Therefore, the objective of this study was to develop
a dynamic baseline for groundwater which is dynamic as it
adapts in time and space as new data become available.
Furthermore, the baseline, obtained by means of calculating the
expected distribution of specific conductance in groundwater,
will provide a probabilistic risk assessment of a pollution event.
The approach of this study was to consider specific conductance
in groundwater and use hierarchical Bayesian generalised
linear modelling to predict the expected distribution at the time
of sampling. Any sampled value can be compared to its pre-
dicted distribution to estimate the probability that an unusual
event has occurred, i.e. there has been a pollution incident.
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2. Methodology

2.1. Study sites

The study considered all the specific conductance at 25 °C
measured in English groundwater wells and boreholes between
the years 2000 and 2018 - no springs were included in this
analysis. Only measurements that were from routine moni-
toring were included and data listed as being from pollution
incidents were excluded as they will represent additional
sampling at a higher frequency of times when higher specific
conductance might be expected. Any boreholes that were listed
as being part of or adjacent to landfill sites were removed. The
data distribution of specific conductance was examined and
values reported as having specific conductance lower than 40
uS cm™ " were removed as these had specific conductance lower
than that of rainfall*® and such entries therefore were removed
as being mis-entered data. Similarly, a QQ' plot was used to
assess the distribution of the data and values above 6000
uS em™ " were excluded as being outliers - this represented the
data from one site. The analytical methodology for specific
conductance is outlined and controlled by the UK government's
Standing Committee of Analysts (http://
standingcommitteeofanalysts.co.uk/). Sites were retained
within the study if they were sampled in at least two years
during the period 2000 to 2018. This condition was used in part
to restrict the number of sample sites that had to be considered
and also to facilitate the estimation of interaction terms. Given
the criteria for selection, there were 3370 observations from 537
unique locations that could be included in this analysis (Fig. 1).

2.2. Bayesian hierarchical generalised linear modelling

The estimation was based upon Bayesian hierarchical general-
ised linear modelling. Each data point (i.e., specific conduc-
tance measurement - ) within a generalised linear modelling

Fig.1 The location of all the boreholes included in this study.
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approach is assumed to be generated from a specific distribu-
tion within the exponential family of distribution. For the
prediction of groundwater specific conductance (k - pS em™ %),
the generalised linear model for the prediction of « for site x at
time t given a gamma distribution would be:

2
E(e) = I((2)", &) (i)
ity = (a(site, month) + B,(site, month)A[year]y,) (ii)

(iif)

where E(k,), the expected value of the groundwater specific
conductance for site x at time ¢ (uS cm™"); site, the factor rep-
resenting the different monitoring sites for which data were
available; year, the different years of sampling; month, the
different months of sampling. In this way 8, is calculated for
each monitoring site, for each month, across the record and
represents the trend in the ground water specific conductance
across the period for a particular site and month. Note that year
was given as the difference from the mean of all the data (AYear)
and in this way . is not the y-intercept, i.e. the value of x at year
0, rather oy is the expected value of « at site x for the middle of
the period of record. The approach of expressing year as the
difference from the global mean value is so as to make esti-
mation of more precise as « now sits in the middle of the
observations rather than at one extreme as would be the case if
was the y-intercept. Eqn (i) is a gamma regression; the gamma
distribution rather than a normal distribution is used because it
is not defined for values less than zero and so a negative « is
never predicted. However, to test the fit of the model proposed
above, models were also fitted using both normal and log
normal distributions nd in the latter case the equations used
are:

AlYear],, = [Year],, — [m}

. . 1
E(ky)=N (axt(sne, month) + B, (site, month)Alyear],,, ﬁ)

(iv)
E(ky) = N(axt(site, month)

+ B (site, month)(log, Alyear],), %) v)

The approach given in eqn (i) through (v) is hierarchical
because the model is established with a prior distribution on
a prior distribution. In this case, the prior distribution on the
terms « and 8 depends on the factors and each of these factors
has its own prior distribution. The conceptual structure of the
model is illustrated in Fig. 2.

Eqn (i) to (v) are expressed in terms of site and month as
factors and year as a covariate. Year was considered as a co-
variate, which meant that for each of the factors (e.g. the
difference between the months of sampling), the value of
« and B could be estimated for each factor level included in
a particular model. Furthermore, the inclusion of year as

This journal is © The Royal Society of Chemistry 2021
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Fig. 2 Conceptual structure of the hierarchical model, where distri-
bution is given as either N() = normal or T() = half T distribution. Each
distribution is expressed as its expected value and a measure of spread.
Factors are distinguished from covariates.

a covariate meant that predictions for future years could also
be made for each of the factor level combinations. The site
factor considers the difference between the monitoring sites
and sites were included in the analysis if they were sampled in
two or more years. Only sites with two or more years of
sampling were retained as this facilitated the estimation of
interaction terms, i.e. those terms that are the combination of
factors. The month factor had 12 levels which is one for each
calendar month.

As an alternative to the site factor, the aquifer class and
aquifer type were considered. The aquifer class had seven
classes defined by the British Geological Survey (BGS) and the
classes are: 1A, 1B, 1C, 2A, 2B, 2C, and 3, where: 1 = inter-
granular aquifer; 2 = fractured aquifer; 3 - rocks with essen-
tially no groundwater; furthermore, with A = highly productive
aquifer; B = moderately productive; C = low productive
aquifer.”” The aquifer type is based on the geology that the
borehole penetrates. The aquifer type was established from the
British Geological Survey (BGS) aquifer designation map and
the aquifer type was included if two of more sites sampled that
particular aquifer geology; in all it was possible to include 27
different aquifer types (https://www.bgs.ac.uk/products/
hydrogeology/aquiferDesignation.html - the dataset summar-
ised by the aquifer class and type is given in Table S1}). The
approach is hierarchical because the model is established with
a prior distribution on a prior distribution. In this case the prior
distribution on the trend over time, e.g. the terms « and 8 (eqn
(1)), depends on the factors site, month, etc., and each of these
terms has its own prior distribution.

Markov Chain Monte Carlo (MCMC) simulation was used for
the Bayesian analysis. The posterior distribution of the specific
conductance was calculated using the Jags code called from R
(version 4.0) using the R2Jags (version 0.6-1) library (R and JAGS
code for the most complex model is included in the ESIt). An
MCMC chain of length 10 000 iterations after a 2000 burn was
used with samples saved every 10 cycles and with 3 chains.

This journal is © The Royal Society of Chemistry 2021
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The prior distribution for the values of 8 were set as normal
distributions with a mean of zero so that both positive and
negative trends in time were equally favoured at the outset, and
standard deviation of the priors was set to be an uninformative
prior and the likely small value of values of 8, e.g. N(0, 1000).
The prior distributions for the values of « were also set as
a normal distribution but with the mean set to be the mean of
all the dataset and a standard deviation chosen to make nega-
tive values unlikely, e.g. N(6, 0.25). The choice of such a distri-
bution is justified because if values of § are small (e.g. influence
of factors is weak), then « is the prediction of the specific
conductance and thus should approximate the expected value
of the distribution of the data as a whole. A half-t distribution
was used for the prior distributions of the standard deviations
for all terms as half-t distributions mean that a negative value of
the standard deviation cannot occur, e.g. halft(0, 5, 1)T(0).

The fit of model was tested by a number of approaches. Firstly,
the adequacy of the MCMC process was assessed using R, the
convergence statistic, and values of R < 1.1 were considered
acceptable. If R > 1.1, then the burn in process and number of
iterations were increased. Second, for any factor, the 95% cred-
ible interval does not include zero, and going forward this is
referred to as being a 95% probability of being significantly
different from zero. Third, when a factor, interaction, or covariate
is included, this caused total model deviance to decrease -
deviance is a goodness of fit measure and is a generalization of
the idea of using the sum of squares of residuals in ordinary least
squares. Fourth, when an additional factor, interaction or co-
variate is included, there is a resulting decrease in the deviance
information criterion (DIC). Because the inclusion of additional
factors, covariates or interactions will increase the degrees of
freedom of a model such inclusion would lead to a decrease in
the total deviance of a model, and hence the need for another
measure rather than just total deviance. The DIC accounts for the
trade-off between the inclusion of more fitting parameters
against the additional fit of the model and penalises for addi-
tional parameters relative to the fit of the model - DIC is the
general case of the Akaike Information Criterion. Finally, the
effective number of parameters (pD) was monitored, and it would
be expected that as a factor or covariate was added to the model,
then the number of effective parameters would likewise increase,
and if pD did not increase with the inclusion of a factor or co-
variate then that parameter has no effect on the model and could
be removed. Furthermore, that pD should be close to the ideal
case if all parameters are contributing, and so therefore the
calculated pD can be expressed as a percentage of that maximum
possible - this value can never be greater than 100%. Finally, the
fit of any model was judged using a posterior prediction check,
i.e. the output of the model was plotted against the observed
values and the fitted line between these two examined - it would
be expected that a good fit model would give a 1 : 1 line between
observed and posterior predicted values. Given the purpose of the
model the balance of these criteria would be for a model that
includes significant factors and gives the best possible fit as
described by the lowest deviance given a reasonable fit across the
range of observations shown in the posterior probability plots.

Environ. Sci.. Processes Impacts, 2021, 23, 1116-1129 | 1119
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2.3. Model types

Three models were fitted

(i) Year, month and site factors - this model was used to give
prediction at individual sites and was designed to understand
the temporal trend at each site and assess the capacity for
prediction and baseline development.

(ii) Year, month and aquifer class factors - the primary
purpose of this model was to predict specific conductance for
a previously unknown site. The aquifer into which any borehole
will penetrate could be known before drilling, and so even if any
previous sampling has not been included in the model devel-
opment the question is whether it would be possible to predict
specific conductance at sites not included in the analysis.

(iii) Year, month and aquifer type factors - as with the
aquifer class we can consider a model based on the aquifer type
as a means of predicting a specific conductance baseline for
a site not previously sampled or not included in the model
development.

2.4. Model verification and application

The data used for this study were groundwater data collected
from the year 2000 to 2019. The models were developed on the
groundwater data collected between 2000 and 2018, and to
verify and further test the models, the models were used to
predict the specific conductance for 2019. Given the factors
included in the model, this prediction could be done for each
borehole, aquifer class and aquifer type and for every month.
These predictions were compared to the results of specific
conductance in groundwater available for 2019.

As an example, the models were applied to the most and the
least sampled sites and results shown over the study period.

2.5. The problem of the depth of sampling

The specific conductance of groundwater is expected to increase
with the depth below the surface and therefore, any variation
modelled could be due to variation in the depth that the sample
came from. The depth of sampling is not recorded as part of the
Environment Agency's monitoring; however, as part of separate
investigations into the potential for geothermal energy in the
UK a catalogue of depth constrained monitoring is available
from Burley et al.>® These data were used to test how much of the
observed variation in specific conductance could be explained
by the change in the depth of sampling. It should be noted that
no groundwater body is delimited for water supply below 400 m
in the UK.* No specific conductivity was reported within the
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available geothermal database but a standard relationship
between salinity and specific conductance was used for the
conversion.*

The relationship between the specific conductance and
depth for English groundwater was used to examine whether
variation in specific conductance observed between sites within
this study could simply be ascribed to variation in the depth of
sampling.

2.6. Comparative data

To give context to the specific conductance of English ground-
water, the Environment Agency database was examined for the
same time period to give the distribution of specific conduc-
tance for English river water, lake water and sewage treatment
discharge. For English rainfall records from UK Precip-NET
were used (https://uk-air.defra.gov.uk/networks/network-info?
view=precipnet).

3. Results

Because the aquifer type was not defined for every borehole, the
dataset when considering the aquifer type was slightly smaller
with 3315 observations at 535 unique locations with 27 different
aquifer types. The data have a median of 772.5 uS cm™ ' and
a95% percentile range of 221 to 2350 uS cm ™ *. The comparative
data for English river water, lake water, rain water and final
sewage effluent (Table 1) show that groundwater does have
a higher specific conductance

The distribution of the data by covariates and factors shows
that there is a decline in the specific conductance of ground-
water over time since 2000 (Fig. 3). Patterns of difference are less
clear for the month and aquifer class factors (Fig. 4). For the
geology, there are some clear distinctions with the lowest values
in the Upper Greensand and highest in the Upper Devonian
formations, although both of these aquifers had sample size of
less than 6 samples (Table S1} - Fig. 5).

3.1. Statistical modelling

For all models the R < 1.01 and so the fitting process for all
models was deemed adequate. In all cases the best fit model was
log normal for each model and the results of model fit relative to
covariates and factors are detailed in Table 2. The pD will
increase with the number of parameters included in the model,
but the percentage of the expected pD may decrease as more
parameters are included. The model with the most possible

Table 1 Summary of the specific conductance for comparative freshwater compartments

Expected
Type value 95% interval N Source
Groundwater 772.5 221-2350 3370 This study
Riverwater 633.5 95-1117 14 495 Worrall et al. (2019)
Lakewater 1243 45-7465 6967 EA WIMS
Rainwater 33 6-82 1484 UK PRECIP-NET
Final sewage effluent 1103.5 360-3739 12 245 EA WIMS
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Fig. 3 The specific conductance relative to the year of sampling. The
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respective IQR. The diamond represents the arithmetic mean of the
data.

parameters (year + month + site) was the one with the lowest
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of the expected pD can be interpreted as that there being strong
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inter- and intra-annual relationships at some sites but by no
means at all sites. The DIC value is at a minimum for the year +
site model but increases for the model with the most parame-
ters, i.e. year + month + site, implying that the most efficient
model was year + site. However, model efficiency, as defined by
DIC, may not be the most important criterion in terms of pre-
dicting specific conductance and the ability to fit the data
accurately would be more important. With respect to deviance
the best-fit model was the year + month + site model. The final
test to be considered is the posterior prediction comparison
(Fig. 6) and this suggests that the model year + month + site was
the best predictor.

The slopes (8) estimated for each site shows that the mean
slope estimates were negative for 497 out of the 535 sites with
the remainder having positive estimates of the slope (Fig. 7).
When the uncertainty in those estimates is considered, then it is
possible to consider the chance that each of the slope estimates
is zero, in which case at the 95% probability no site showed
a positive slope and 7 showed a negative slope. The spatial
distribution of the sites with significant slope, and indeed
negative, slopes are all relatively coastal when compared to the
distribution of all the boreholes in the study (Fig. 7). The site
with the greatest significant slope would have a specific
conductance decrease from 1685 pS cm™' in the year 2000 to
572 puS em™ ' in 2018.

The slopes (8) estimated for each aquifer type shows that the
mean slope estimates were negative for 20 out of the 27 aquifer
types with the remainder having positive estimates of the slope.
When the uncertainty in those estimates was considered. then
11 out of the 27 aquifer types had a 95% probability, while four
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Fig.4 The specific conductance relative to: (a) month of sampling and (b) the aquifer class. The box represents the inter-quartile range (IQR), the
line is the median value and the whiskers represent the values up to 1.5 times the respective IQR. The diamond represents the arithmetic mean of

the data.

This journal is © The Royal Society of Chemistry 2021

Environ. Sci.. Processes Impacts, 2021, 23, 1116-1129 | 1121


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0em00440e

Open Access Article. Published on 18 June 2021. Downloaded on 1/20/2026 10:19:33 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Environmental Science: Processes & Impacts

View Article Online

Paper

30001

10004

Specific conductance (microSfcm)

100

(0]

el

1
[

1E
3]
-

2 12 26 14 9 3 17 1 2

23 25 18 7

6 4 13 27 20 10 15 8 11 19 5 16 24 21

Geology

Fig. 5 The specific conductance relative to the aquifer type (geology). The box represents the inter-quartile range (IQR), the line is the median
value and the whiskers represent the values up to 1.5 times the respective IQR. For clarity no marker of arithmetic mean was included. (1) Bowland
High and Craven Group; (2) Corallian Group; (3) Dinantian rocks; (4) Fell Sandstone Group; (5) Gault Formation; (6) Great Oolite Group; (7) Grey
Chalk Subgroup; (8) Inferior Oolite Group; (9) Inverclyde Group; (10) Kellaways and Oxford Clay Formation; (11) Lambeth Group; (12) Lias Group;
(13) Lower Greensand; (14) Millstone Grit Group; (15) Neogene rocks; (16) Pennine Coal Measures; (17) Permina rocks; (18) Pridoli rocks; (19)
Thames Group; (20) Triassic rocks; (21) Upper Devonian rocks; (22) Upper Greensand; (23) Wealden Group; (24) West Walton, Ampthill &
Kimmeridge Clays; (25) White Chalk Subgroup; (26) Yoredale Group; (27) Zechstein Group.

Table 2 Fitting properties of the model combinations applied. The pD
is expressed as both its absolute value and % of that, which could be
expected if all new parameters included in the model were effective

Factors and covariates pD (% expected)  DIC Deviance
Year + month 21.5 (90) 4767 4745
Year + aquifer class 15.3 (95) 4318 4303
Year + month + aquifer class  201.9 (70) 4328 4126
Year + geology 60.2 (54) 3690 3630
Year + month + geology 545 (56) 4145 3600
Year + site 948 (59) 487 457

Year + month + site 4980 (38) 5344 364

aquifer types showed a significantly positive slope. The largest
decline was for the Lias clay group and the greatest increase was
for the Millstone Grit group.

The slopes estimated () for the aquifer classes showed that
all seven aquifer classes had slopes significantly different from
zero with five out seven aquifer classes showing a negative slope
(aquifer classes: 1A, 1B, 1C, 2A and 2C), while two aquifer
classes showed positive trends (aquifer classes: 2B and 3). The
greatest increase was observed in aquifer class 3 and the largest
decrease was estimated for aquifer class 2C.

The prediction of the model can be plotted both in terms of the
expected value (the arithmetic mean as the fitted distribution was
normal) and measures of the distribution across the UK (Fig. 8).

122 | Environ. Sci.: Processes Impacts, 2021, 23, 1116-1129

The distribution of expected values across the UK shows no
distinctive patterns with no apparent pattern contrasting coastal
with inland sites; no geographical trend (e.g. west vs. east); or
upland vs. lowland sites. The pattern does indeed reflect the result
in Fig. 6, i.e. the aquifer class and type are not as good predictors
of groundwater specific conductance as site specific prediction.

3.2. Model verification application

The results for the most and the least sampled sites (Fig. 9)
shows that in both cases the observed data are well within the
envelope of the 95th percentile confidence interval predicted
from the statistical modelling. Further, verification of the model
comes from the comparison between the predicted and
observed values for 2019, and this shows that all but 4 out of 29
possible observations were as predicted (Fig. 10). It is of course
possible that the predicted distribution does not fit the
observed because an unusual event has occurred at one of the
sites. In each of the cases that could be considered in this study
where the observed was outside the predicted distribution the
observed was lower than the predicted distribution - therefore
the modelling may be over-predicting values.

3.3. Problem of depth

From the Geothermal catalogue, the specific conductance is
often greater at depth than at the surface (Fig. 10). At the

This journal is © The Royal Society of Chemistry 2021
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Fig. 6 Posterior prediction comparison for: (a) year + month + aquifer class; (b) year + month + aquifer type; (c) year + month + site.

Fig. 7 The distribution of sites with significant mean slopes in
comparison to the location of every monitored site in the study.

greatest depth sampled (2059 m) the specific conductance was
125108 pS cm ' which is a TDS = 128 714 mg L' (Weyl
equation®). However, the sites in this study only show specific
conductance in the box illustrated within Fig. 10 and in this box
it would be difficult to suggest any relationship between the
depth and specific conductance. Within the box drawn (as
defined by the specific conductance within the dataset of this
study), the depths of the samples from the UK Geothermal
catalogue were up to 451 m below the surface. The lower extent
of groundwater for water supply in the UK is often considered as
400 mbgl.>®

This journal is © The Royal Society of Chemistry 2021

Over the entire range of depths sampled the best-fit equation
was:

log. k = 1.64 log.(depth) n = 131, r* = 0.51 (0.14) (vi)
where depth = depth below ground surface (m). The value in the
bracket is the standard error in the coefficient. Note that the
constant term was not significant at 95% probability. However,
another interpretation of Fig. 11 is that specific conductance
has saturated at depth and that no value of specific conductance
greater than 181 895 pS cm ™' (TDS = 228 728 mg L™ ') was ever
observed.

For the range of specific conductance observed in this study
(up to 2350 puS ecm™ 1Y), the relationship with the depth was not
significant at a 95% probability of being different from zero, i.e.
the inability to include the depth of sampling in this analysis
was not critical to the result.

4. Discussion

Fig. 11 illustrates why analysing the specific conductance of
groundwater will be useful for detecting water from depth.
There have only been two fracking operations conducted in the
UK at Preese Hall and Preston New Road, both in Lancashire,
for which the conductivity of flowback fluid is known. The
conductivity (not specific conductance) from the Preese Hall
well varied from 133 730 and 150 614 puS cm™'.'*3! At the depth
of fracking at Preese Hall, it would be expected that the specific
conductance of the groundwater would be 450 000 uS cm™* or
even if Fig. 11 is viewed in linear as opposed to log-log space the
predicted specific conductance would be 285 000 pS cm™ 7, i.e.
this would suggest that there is mixing of the deep groundwater
with either the fracking fluid itself or less saline water as the
water raised back to the surface. The fracking fluid used at
Preese Hall was a “slick water” fluid,** a fluid that is predomi-
nantly composed of water and 1-2 additives (Table 3), usually
a friction reducer and a chemical tracer.*® At Preese Hall, 425 g
of a “sodium salt” were used in 8399 m® of tap water, which
would suggest that the TDS of the fracking fluid would be of the
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order of 400 mg L™" or 1122 uS em™'. Therefore, given the

measured conductivity of the Preese Hall flowback fluid; the
predicted specific conductance of the groundwater at the depth
of fracking; and the specific conductance of the fracking fluids;
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this would suggest that fracking fluid mixes with the ground-
water at depth in 1:1 to 1 : 3 volume ratio.

Given the likely conductance of flowback fluid (for Preese
Hall: 133 730 and 150 614 uS cm ™ ') and the predicted specific
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Fig. 9 The application of the modelling to: (a) Cold Bath Springs (British National Grid — ST531679 and (b) Airton Mills borehole (British National
Grid — SD903592). The graphs show the 2.5th, expected value (mean) and 97.5th percentile predictions.
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derived from Burley et al. (1984). The shaded box represents the values
observed for surface water in England.

conductance of each monitored site (median = 696 uS cm™*,

95th percentile range of 404 to 1158 uS cm™ %), it is possible to
assess what amount of mixing of the flowback fluid would be
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sufficient to increase the specific conductance of the local
shallow groundwater to a value greater than would be expected
at a given probability, for example:

Kg7.5 < ¢Kﬂowback + (1 - ¢)K2_5 (Vll)

where ¢ = the proportion of flowback fluid mixing into the
surface groundwater at the site of concern; k, = specific
conductance (uS ecm™') with x as flowback (the « of flowback
fluid); 97.5 (the « of the site at 97.5% probability); and 2.5 (the «
of the site at 2.5% probability). This test is conservative as it
assumes that the mixing with the flowback fluid must be
sufficient to cause the specific conductance of the shallow
groundwater to rise from the 2.5th percentile of its predicted
distribution to the 97.5th percentile of its predicted specific
conductance distribution. Furthermore, if it is assumed that the
k of the flowback fluid is the lowest value recorded for Preese
Hall, then the values of ¢ will be at the high end of the range.
For the distribution predicted for each borehole for 2018, the
values of ¢ range from 0.2 to 1.7% with a median of 0.9%.
Clancy et al.*® has summarised the US literature on the volume
of water required per fracking well and found that the volume
ranged from 1500 to 45 000 m®, whilst Jiang et al.** noted that
an average Marcellus well consumed 20 000 m® (with a range
from 6700 to 33 000 m?®) of freshwater per well over its lifetime.
The single well drilled in the UK at Preese Hall (Lancashire)
required 8400 m* of water.* Therefore, for 8400 m® of flowback
fluid and the median ¢ value predicted from eqn (vii), this
volume would be sufficient to bring 906 000 m* of groundwater
above the 97.5th percentile. Of course, it unlikely that all 8400
m? of flowback would be released. Clancy et al.*® considered the
water spill records kept by the Texas Railroad commission and
the Colorado Oil and Gas Commission that the spill rate from
produced waters was 0.1% per well per year meaning that nearer
906 m® of groundwater would be under threat, but this would be
the volume under threat each year. In 2017 there were 18 655
licensed groundwater abstractions and the total groundwater
abstracted was 2 x 10° m? ie the average volume per
abstraction is of the order of 1 x 10° m® per year.

There is still little evidence that shale gas exploitation has
actual significant impacts on groundwater resources. Fontenot
et al.*® did not find any significant increase in TDS in well water
within 3 km of shale gas operations in the Barnett shale basin,
Texas. Similarly, Warner et al® found that the shallow
groundwater composition in 127 boreholes of the Fayetteville
shale gas basin, Arkansas, did not reflect the composition of the
flowback and produced water from the shale gas operations.
Harkness et al.*® and Warner et al.*” did suggest that there was

Table 3 Composition of hydraulic fracturing fluid for the Preese Hall 1A well in Lancashire, UK. Table was adapted from (Broderick et al., 2011)

Additive Type Quantity % by volume

Water Local mains tap water 8399 m? 97.93

Proppant Glacial outwash sand 462.7 tonnes 2.02

Friction reducer Polyacrylamide 3.7m’ 0.043
emulsion

Chemical tracer Sodium salt 425 ¢ 0.00043

This journal is © The Royal Society of Chemistry 2021
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evidence of contamination from leaks and spills originating on
shale gas well pads. Wen et al.,* considered samples from 1384
boreholes and found that the higher dissolved CH, in 7 out of
the 1384 boreholes could be associated with shale gas. There-
fore, there is little published evidence that fluids injected at
depth are actually causing a threat to shallow groundwater
aquifers.

A simple approach to analyzing these data would have been
to observe the distribution at one site and simply compare the
newest observation with that distribution. Such a comparison
would be limited by the size of the sample set at each site and
for the sites used in this study the average sample size was only
6 samples. But such a comparison would not be fair as all the
samples at the site might have been taken in summer months or
perhaps at the beginning of the sampling period rather than in
the most recent years. It would be better to compare the most
recent observations with observations for the current year, even
better with the most recent time step, i.e. for the same year,
month, day of the month or hour of the day. Of course it is
unlikely that there will be sufficient observations to give such
a reasonable distribution for any month for any year at any site.
So it would be useful if information from other sites could be
drawn upon to make the most appropriate comparison
possible; this then is what the approach of this study has ach-
ieved. By using all available information, the approach of this
study could estimate a distribution of observations for every
month and for every year at each site. An analogous, non-
Bayesian approach might be weighted regression analysis.****
The Bayesian approach uses all available data to predict distri-
butions at the sites of interest. The approach is a systematic and
transparent approach to analysing data and provides a proba-
bility, with uncertainty, as to the nature of any observed data.
Thus in turn the probability that any pollution has, or has not,
occurred can be assessed. All risk assessment is actual a prob-
ability statement and the tools here use Bayesian approaches so
all results will be a probability with an uncertainty. The
Bayesian framework means that not only does the tool use all
available data it also automatically updates as new information
becomes available. A physical modelling approach would
require more extensive data and observations to parameterise,
calibrate and validate the physical model and so is not well
suited to the type of dispersed data set that commonly arises
from water quality monitoring. Conversely, the Bayesian
approach developed here uses all the information and can
return a result with clear uncertainty estimation.

For determinands such as specific conductance no specific
legal standard exists within the UK or EU. For operators of
works such as shale gas sites the review period for water quality
monitoring is dictated in their license to operate, but, are data
reviewed each time new data are produced and is the regulator
informed if there is an issue? The regulator in the UK may be
asked to report at any time to the secretary of state at the highest
government level, although it is not clear how often this might
occur. The approach presented here could be used for each new
datapoint, i.e. the calculation and method presented would give
the probability that a new observation is exceptional and not
what should be expected.
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Could it be possible to improve on the current approach? It
is possible to include covariates and other factors within the
analysis. This study has already included the aquifer class and
type, but there could be a spatial correlation within the
monitoring that could relate boreholes between aquifers. Such
a spatial correlation in the observations is not included in this
modelling approach. Qian et al.** have developed a Bayesian
hierarchical model for the calculation of nutrient loads in
rivers that incorporated spatial correlation, but the spatial
correlation was based on the flow through the river network
which provides for one dimensional and directional correla-
tion not appropriate for the three dimensions of the aquifers
considered here.

Specific conductance could be expected to co-vary with
some cations and anions and indeed different sources of water
may have a similar range of specific conductance but a very
diffident set of cations and anions that constitute that ionic
strength. Other studies have considered other chemical indi-
cators of pollution from unconventional hydrocarbons: Cl/
Br;** Sr isotopes;™* or the ratio (Ba + Sr)/Mg. Indeed, Wilson
and Van Briesen** used Cl/Br ratios to detect shale gas fluids in
surface water of the Monongahela river in Pennsylvania.
However, a particular advantage of specific conductance is
that it is regularly monitored whereas other determinands
proposed in the literature have been far less frequently
monitored.

This study has shown that between 2000 and 2018, specific
conductance in English groundwater declined. Although only
seven sites showed a significant decline the distribution of the
slopes showed that 93% of sties had a negative slope and no
sites had a significant increase. The salinisation of aquifers has
been commonly reported across the globe, typically in coastal
aquifers* and this can be due to overexploitation®® or rising sea
levels.” Not all salinification has occurred in coastal aquifers
and Rivett et al.*® have noted that in the UK we use between 1
and 3 Mtonnes of salt every year for road deicing and that this
can be traced into aquifers. Indeed, many countries have noted
deicing salt accumulating in aquifers (e.g. Canada*’) and Perera
et al.>® estimated that 19% of the applied road salt accumulated
in the aquifer. These studies would suggest to expect salinisa-
tion in a country such as the UK where coastal aquifers are
common and where there is an increasing demand for water
with an expanding population. However, desalinisation was
observed and never salinization. Han et al.*® ascribed desalini-
sation in coastal karst aquifers to return flows from irrigation.
Cloutier et al.>* gave an example of desalinisation as a recovery
from a period of a high sea level during a glacial period as
modern recharge flushes the seawater out. We would propose
that the decline in groundwater specific conductance observed
in this study could be due to changes in recharge patterns
driven by climate change. If wetter winters caused an increase in
the recharge of meteoritic water, then the specific conductance
of the groundwater would decrease. Wen et al.** found signifi-
cant declines in TDS since 1990 across 1384 in Pennsylvania
and they ascribed these declines to declining atmospheric
deposition and decreased inputs from the coal and steel
industry.

This journal is © The Royal Society of Chemistry 2021
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5. Conclusions

This study has developed a Bayesian hierarchical model for
determining the specific conductance of English groundwater.
The model is able to estimate the distribution of specific
conductance for any aquifer type, aquifer class or borehole that
was included in the monitoring dataset. This estimation could
be projected forward to predict distributions in the future, and
furthermore, the Bayesian framework means that the proba-
bility estimation will continue to improve with all ongoing
monitoring. The method was sensitive enough such that it
could detect mixing of 1% of shale gas produced water into
shallow groundwater.
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