Energy & Environmental Science

CORRECTION

Cite this: *Energy Environ. Sci.*, 2021, **14**, 6055

Correction: Ni, Co hydroxide triggers electrocatalytic production of high-purity benzoic acid over 400 mA cm⁻²

Hongling Huang,^a Chang Yu,^{*a} Xiaotong Han,^a Huawei Huang,^a Qianbing Wei,^a Wei Guo,^a Zhao Wang^a and Jieshan Qiu^{*ab}

DOI: 10.1039/d1ee90060a

rsc.li/ees

Correction for 'Ni, Co hydroxide triggers electrocatalytic production of high-purity benzoic acid over 400 mA cm⁻²' by Hongling Huang *et al.*, *Energy Environ. Sci.*, 2020, **13**, 4990–4999, DOI: 10/1039/ D0EE02607G.

There were errors in the molecular structural formula in Scheme 1 in the manuscript. Scheme 1 should appear as follows:

Scheme 1 (a) The related reactions of traditional water electrolysis and hybrid water electrolysis. (b) Electrocatalytic H_2 generation combined with the production of high-purity Ph-COOH. More importantly, the system with the as-developed A-Ni-Co-H/NF can be operated at a large current density up to 400 mA cm⁻² without the occurrence of the OER.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^a State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, China. E-mail: chang.yu@dlut.edu.cn, jqiu@dlut.edu.cn

^b College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

ROYAL SOCIETY OF **CHEMISTRY**

View Article Online