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Charting lattice thermal conductivity for inorganic
crystals and discovering rare earth chalcogenides
for thermoelectrics†

Taishan Zhu,‡a Ran He,‡b Sheng Gong, ‡a Tian Xie,a Prashun Gorai, c

Kornelius Nielschb and Jeffrey C. Grossman *a

Thermoelectric power generation represents a promising approach to utilize waste heat. The most

effective thermoelectric materials exhibit low thermal conductivity k. However, less than 5% out of

about 105 synthesized inorganic materials are documented with their k values, while for the remaining

95% k values are missing and challenging to predict. In this work, by combining graph neural networks

and random forest approaches, we predict the thermal conductivity of all known inorganic materials in

the Inorganic Crystal Structure Database, and chart the structural chemistry of k into extended van-Arkel

triangles. Together with the newly developed k map and our theoretical tool, we identify rare-earth

chalcogenides as promising candidates, of which we measured ZT exceeding 1.0. We note that the k

chart can be further explored, and our computational and analytical tools are applicable generally for

materials informatics.

Broader context
Made possible by high-throughput calculations and recent machine-learning techniques, this work frames the structural chemistry of lattice thermal
conductivity into generalized von-Arkel triangles, and charts the lattice thermal conductivity of 105 inorganic materials for fast materials screening. Immediate
applications include thermal management and thermoelectrics. For instance, the rare-earth chalcogenides (REX) family stands out as promising thermoelectric
materials, exhibiting zT higher than 1.0 and stable at temperatures higher than 1000 K. The REX family can still be explored further. While more material
systems could be identified for thermal-related applications using this conductivity map, the developed computational framework can be extended for
materials informatics generally, including electronic and optical predictions.

Introduction

Entropic consideration favors low thermal conductivity for
thermoelectric efficiency to approach the Carnot limit.1,2 The
discovery of the Seebeck and Peltier effects has enabled driving
charge flows by heat and vice versa,3,4 which has been employed
in a range of applications, from powering the Explorer in the
deep space to cooling medicine at pharmaceutical sites.5,6 Such
thermoelectric mechanisms have attracted considerable inter-
est and research efforts for more than a century, with recent
excitement and attention given their potential use in green

energy generation.1 However, the barrier for large-scale technical
translation of thermoelectrics remains their low efficiencies (e.g.,
o5% for most thermoelectric materials on the market3,7). A
critical factor that leads to low efficiency is unstoppable heat flow,
which gives rises to irreversibility and is governed by thermal
conductivity, which must be low for high efficiency.8

In fact, solids with both low and high extreme thermal
conductivity have been pursued fundamentally and practically
for decades.9–16 Currently the records are held by diamond
(B2000 W m�1 K�1)17 in the upper limit and aerogels
(B0.01 W m�1 K�1) on the lower end,18 although it remains
unclear whether these are hard limits. Regardless, the search
for alternative materials that lie at or beyond these extremes is
also of practical importance, particularly when multiple constraints
are imposed, such as specific mechanical properties for thermal
coatings19 and (opto-) electronic properties for applications in
energy conversion.3,20 Beyond thermoelectrics, diverse applications
range from thermal management in electronics and avionics,21

a Department of Materials Science and Engineering, Massachusetts Institute of

Technology, Cambridge, MA 02139, USA. E-mail: jcg@mit.edu
b Leibniz Institute for Solid State and Materials Research, Dresden, 01069, Germany
c Department of Metallurgical and Materials Engineering, Colorado School of Mines,

Golden, CO 80401, USA

† Electronic supplementary information (ESI) available. See DOI: 10.1039/d1ee00442e
‡ These authors contributed equally.

Received 10th February 2021,
Accepted 15th April 2021

DOI: 10.1039/d1ee00442e

rsc.li/ees

Energy &
Environmental
Science

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
A

pr
il 

20
21

. D
ow

nl
oa

de
d 

on
 2

/6
/2

02
5 

1:
01

:4
0 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue

http://orcid.org/0000-0002-7457-7959
http://orcid.org/0000-0001-7866-0672
http://orcid.org/0000-0003-1281-2359
http://crossmark.crossref.org/dialog/?doi=10.1039/d1ee00442e&domain=pdf&date_stamp=2021-05-07
http://rsc.li/ees
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1ee00442e
https://pubs.rsc.org/en/journals/journal/EE
https://pubs.rsc.org/en/journals/journal/EE?issueid=EE014006


3560 |  Energy Environ. Sci., 2021, 14, 3559–3566 This journal is © The Royal Society of Chemistry 2021

to high-temperature coatings in turbines19 and human healthcare,22

to name only a few examples.
However, knowledge of the governing physics of lattice thermal

conductivity (k) remains incomplete at the atomic scale.23,24

Current understanding derives largely from kinetic theory and
relates to unit cell properties (e.g., average atomic mass, density,
symmetry).15 This understanding has been historically encapsu-
lated into analytical models, such as the Debye–Callaway (D–C)
model25 and its variants.23 Similarly, analytical models for k of
solid-solution alloys, such as the Klemens model,26 are based on
unit cell properties and scattering parameters. These models are
explicit, but have parameters either numerically fitted or computed
from first principles. For instance, Miller et al. developed a
modified D–C model with speed of sound and Grüneisen
parameter, which are derived from bulk modulus and average
coordination number.27

An emerging approach has been driven by learning from the
existing data of k, benefited from the developments in high-
throughput screening and machine learning methods.4,28–31

Through high-throughput calculations, databases are growing
in size via approaches for computing k based on the Green–
Kubo formalism32,33 and Boltzmann theory.15,34 However, relying
on dynamical and/or large-scale first-principles calculations, these
methods are often computationally expensive, and most high-
throughput studies are limited within certain material families.30

Alternatively, the above semi-empirical models have also been
successfully implemented for high-throughput predictions.35

Experimental data is even less available. To date, only some
hundreds of the total B105 synthesized materials documented
in the Inorganic Crystal Structure Database (ICSD) have k values
measured.36 Thus, while machine learning techniques have shown
initial success,24,37–41 both more data and novel approaches are
needed in order to explore the vast materials space.

Towards this end, general guidelines for navigating and
sampling the materials space for k will be valuable. Predicting/
understanding k has posed a catch-22 situation. On the one
hand, descriptor-based methods assume a priori knowledge of
the physics of k, so that appropriate features can be populated for
materials.37 However, since the structural chemistry of k is largely
unknown, the choice of atomic features is currently somewhat
arbitrary.37 On the other hand, techniques based on graph neural
networks assume little pre-knowledge of k, and can predict
material properties directly from structure.43 However, these
methods are ‘‘black-boxes’’,44 and the challenge of interpreting
the structure-k relation remains.

In this work, we predict k for all ordered and stoichiometric
materials in ICSD (92919 entries), and then reveal the structural
chemistry of k. Two complementary approaches, neural net-
works and random forest, are thus combined. While the former
predicts k directly from structures with little need for featurization,
the latter extracts the hidden chemistry in the dataset. With
resolved important atomic and structural features that govern k,
we are able to chart the structural chemistry of k using generalized
van-Arkel triangles. Aiming at learning and predicting k measured
by experiments, we build an experimental dataset (kexp) collected
from the literature, and extend our earlier graph neural networks

model43 with transfer learning (TL-CGCNN, details in ESI†).
Based on the charts, we identify a set of rare-earth chalcogenides,
as a new class of promising thermoelectric materials, of which
the figure of merit shows 1.1 at 800 K.

Predicting j for all known inorganic
crystals

We start by learning from our recently prepared high-throughput
kC dataset,35 before moving to the broader ICSD and the under-
lying structural chemistry. The kC dataset contains computed k of
2668 ordered and stoichiometric inorganic structures from the
ICSD. The predicted k is fairly accurate, with an average factor
difference of 1.5 from experimentally measured values, over a
range of k values that span 4 orders of magnitude.27 In this
section, we will show both the transferability and limitation of
this dataset, and in the next section we will show its implicit
physics. Note that these two purposes suit two separate but
complementary machine learning models: crystal graph convolu-
tional neural network (CGCNN),43 and interpretable random
forest. These models are illustrated in Fig. 1(a), with further
details available in the ESI.† For our high-throughput dataset, we
randomly reserve 20% of the entries as the test set, as plotted in
Fig. 1(b). Both CGCNN and random forest models could predict

log k
0
C with MAE o 0.15 and R2 4 0.85.

Moreover, different from CGCNN, random forest requires
featurization for crystal structures before running through
decision trees, which is largely physics-based and in many
cases ad hoc. Guided by lattice dynamical theory, we choose
configurational features from elemental to atomic packing and
bonding nature, which are constructed through Matminer,45

Magpie,46 and in-house codes. Since k is sensitive to both
absolute values and variations of atomic properties, our feature
engineering leads to a 154-dimensional descriptor, including
the statistics (mean %:, standard deviation s, range {.} and mode)
of atomic number, covalent radius (ra), atomic mass (m),
periodic table group and row number, Mendeleev number, volume
per atom from ground state (VGS), Pauling electronegativity (wa),
melting point (Tm), number (NV) and unfilled (NU) valence
electrons in the s, p, d, and f shells of constituting elements,
as well as structural features at the cell scale (space group,
volume per atom Va, packing fraction f, density r, bond length
LB, bond angle yB, and coordination number CN).

To visualize the feature space, we project it onto two dimensions,
as shown in Fig. 1(c) (see also methods in ESI†). Materials from our
high-throughput dataset and the ICSD dataset are considered
together, denoted by the scattered points and contour respectively.
Note that the x and y axes are abstract linear combinations of all
structural features. On this projected materials-feature space, the
contour lines show the distribution of all inorganic materials.
Deeper color indicates more materials existing in ICSD (we have
removed the contour levels though to stress that the magnitude is
relative). The contour shows that most materials are populated in
the central area, and the distribution varies smoothly, thus amen-
able to machine learning algorithms. Our high-throughput entries
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(scattered points) with the highest and lowest k values highlighted,
sample the reduced feature space quite satisfactorily in terms of
uniformity, suggesting the potential transferability of our high-
throughput dataset to ICSD. We did so using both CGCNN and

random forest models, and we have made the data of k
0
C available

online.42 From the histogram in 1(c), the distribution of predicted

k
0
C follows approximately a normal distribution, with mean

logkB 0.8 (�kB 6 W m�1 K�1) and standard deviation slogkB 0.5.
As a first validation, we compare our predictions with

experimental values. As shown in Fig. S3 (ESI†), 63(88) and
66(86) of 132 measured values align with our predictions within
a factor of 2(3), for random forest and CGCNN, respectively. More
detailed accuracy analysis, compared to different approaches, is
presented in Table S1 (ESI†). We note that the accuracy is lower
than the existing models (e.g. high-throughput27), but our models
predict k directly from atomic structures, without the need of
expensive calculations for bulk modulus and Grüneisen para-
meter. Instead, if we introduce bulk modulus into our random-
forest model, the MAE reduces to 0.04, which suggests the
accuracy of our machine learning models could be at par with
density functional theory (DFT) predictions.

To further validate our machine-learning predictions, we
compare them to experimental measurements, and/or to first-
principles calculations49 (see details of experimental and com-
putational methods in ESI†). In addition to the measurements in
the literature, we also chose 12 materials from different structures/
compositions/families, and measured their k. The comparisons
are presented in Table 1 for several low- and high-k materials.
Overall, our machine learning models can unanimously screen the
lowest from the highest, which might be already sufficient for

many materials selection/design scenarios, such as for thermo-
electrics and thermal management, where either the lowest or the
highest k values are sought. For instance, in Table 1, we have
identified rare-earth chalcogenides (REX) as promising thermo-
electric materials, which are interesting for future exploration (see
below). The other reason that we test our machine-learning models
with these extremes is to show their reliability for extrapolation
(transferability), which is often more challenging numerically than
interpolation.

More quantitatively, the error of our machine learning
models is comparable to first-principles calculations based on
DFT (kDFT). For instance, in the case of diamond, the extra-
polated values, log k = 3.1 and 3.4, are close to the experimental
value 3.36, comparing to 3.54 from DFT calculations. Such level
of error applies to nearly all examined entries, except several
outlying cases, such as BAs, for which the accuracy is less
satisfactory. Other possible outliers are also observed when
experimental values are missing and a substantial difference
can be seen between DFT and machine learning, such as CsTlF3

in Table 1. However, such possible outliers should be further
examined due to the possible underestimation from DFT
calculations. In some cases, a difference of 50–100% between
DFT and experimental values can arise from the relaxation-time
approximation up to 3-phonon interactions, which might be
resolved by more sophisticated calculations, such as four-
phonon and temperature-dependent dispersion.9,50,51 In many
other cases, our machine learning prediction can be even more
accurate than DFT, such as the iodide perovskite CsPbI3 and
the recently studied Tl3VSe4 (see Table 1). Moreover, note that
our above error analyses is based on extrapolation. Even for the

Fig. 1 (a) Schematic of two complementary models: CGCNN and random forest. (b) Predicted k0C from these two models. The dashed band denotes a
factor of 2. (c) High-throughput k0C for all ordered ICSD structures, full data available online.42 The contour denotes the distribution of ICSD materials in

the feature space reduced to 2D via PCA/t-SNE, along with the training set denoted by the dots. The histograms are the distribution of predicted k0C and

k0exp. See text for the prediction of k0exp.
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highest and lowest values, the machine learning models show
satisfactory stability and prediction accuracy.

Nevertheless, our machine learning model is still limited by
the quality and finiteness of our dataset. Since the training set
used is the largest reliable dataset available, this limitation will be
translated to guidelines for future high-throughput calculations.
This is discussed further as we extend CGCNN with transfer

learning (TL-CGCNN) to predicting experimental values k
0
exp

(Section S1 in ESI†). The top 50 lowest-k and highest-k values
are uniformly scattered, suggesting little knowledge content.
However, as we present in Fig. 2(a), these top 100 points are
clustered when we plot without ICSD. This is another indication
of the limited transferability to ICSD, but also demonstrates the
knowledge content in our known dataset.

Structural chemistry of j

Such knowledge content can be extracted in the form of ranked
features (details in ESI†). In Fig. 2(b), the top 20 features are
ranked in decreasing order. These features include the elemental
type (VGS, NV, NU, m) and structural type, the latter consisting of
bonding properties (LB, yB, CN), and packing properties (Va, Dim,
f, SG, r). The learning of important features is different from a
simple correlation relation (see Fig. S4, ESI†). Fig. 2(c) shows the
MAE as a function of increasing number of features, picking from
the most important features, from PCA and random forest
respectively. As the number of features increases, MAE reduces
quickly and reaches our CGCNN accuracy with less than
10 features, and both are lower than PCA. The latter is usually
chosen when little pre-knowledge is assumed, and our case

shows that the accuracy of such purely data-driven techniques
(e.g. PCA for dimensional reduction) could be surpassed by
physics-informed approaches. Another interesting application
of these important features is to physically categorize/cluster all
the training materials. An example is shown in Fig. 2(d), where
high-k and low-k values could be separated by the dashed line.

Further, phonon transport is sensitive to chemical variations,
more than corresponding mean fields. Examples are mass and
bond strength: the mean values define mean-field harmonic
properties (e.g., group velocity), while the differences determine
both harmonic (e.g., phononic bandgap) and anharmonic properties
(e.g., higher-order force constants). This is also suggested in Fig. 2(b),
where both mean values and variances are ranked most important,
such as LB, yB, CN, and NV. Note that our machine learning models
start from a different feature list from that of our D–C model. For
instance, none of the crucial variances enters the D–C model. This is
also true for the past predictions of harmonic properties, such as
Debye temperature and vibrational entropy.36,52,53 Despite the partial
overlap between our important feature list and those for harmonic-
property predictions, which is expected because k is determined
by both harmonic and more challenging anharmonic properties,
the newly revealed variance and how the mean-variance infor-
mation together impacts k is unknown. More importantly, other
than widely-applied correlograms, an anaytlical tool to study
this is still missing.

Inspired by various forms of van-Arkel-type triangles, we use
mean and standard deviation to construct extended triangles
and generalize extensively to other atomic features (see ESI†).
Invented originally for binary inorganic compounds, van-Arkel-
type triangles were constructed to characterize bonding nature,
using the average and difference of the two elements’ electro-
negativity wa. In our case, we have multi-component com-
pounds and more dominant quantities than wa. Therefore, we
extend the original van-Arkel triangle to include more compo-
nents with mean and standard deviation, and to more physical
descriptors important for k. For instance, the VGS- and wa-triangles
shown in Fig. 2(e–f) characterize packing and bonding information,
respectively. More such charts are shown in Fig. S5 (ESI†). Although
the extension is straightforward, it helps to chart the structural
chemistry of k. For instance, each of these triangles illustrates a
projected materials space, within which all materials should be
confined. While the coverage is essential for validating our dataset,
it is also interesting to note that many of the chosen features are
effective divisors (e.g. VGS, wa, LB, yB, ra, NV, m). In other words, given
the mean and deviation of any of these features for a unit cell, the
relative magnitude of k can already be estimated.

Note that our work confirms and also enhances our existing
understanding of trends in k. For instance, it is commonly
established that low-k materials often have (i) high average
atomic mass %m (Fig. S5(g), ESI†), and (ii) weak interatomic
bonding, so that group velocity can be low, and (iii) high
anharmonicity in order to have short relaxation time (e.g. more
scattering channels resulting from complex crystal structures).
However, bonding strength and anharmonicity are computa-
tionally expensive quantities. Meanwhile, predicting k directly
from atomic structures was at best qualitative in the literature.

Table 1 The predicted candidates in the lower and upper limits. Note
that k0exp is from a random forest model for the low regime of k, and
TL-CGCNN for high values. The entries without references are measured/
calculated in this work

logkexp log kDFT logk0C logk0exp

Cu2HfTe3 �0.016 0.016 0.022
Cu3VTe4 0.19 0.26 0.28
TaCoTe2 �0.21 �0.32 0.052
AgAlTe2 �0.21 �0.36 0.042
FeIn2S4 0.16 0.58 0.46
NbTe4 0.28 0.30 0.36
TiFeCoGa 0.69 0.86 1.09
Er2Se3 0.15 0.21 0.071
Er2Te3 0.19 0.18 0.32
Tb2Te3 �0.027 0.15 0.21
Dy2Te3 0.0056 0.18 0.22
Ho2Te3 0.16 0.20 0.32
Cs2BiAgCl6 �1.2 �0.1 �0.3
CsTlF3 �1.0 0.2 �0.1
CsTlI3 �1.3 �0.1 �0.3
CsPbI3 �0.447 �1.020 �0.2 �0.2
Tl3VSe4 �0.59 �0.89 a �0.2 �0.3
Be2C 2.06 2.9 2.6
C3N4 2.4 2.5 2.6
BP 2.6048 2.8215 2.4 2.6
BAs 3.0812–14 3.5015 2.0 2.2
BN 3.2011 3.3315 2.6 2.9
Diamond 3.3617 3.5415 3.1 3.4

a New four-phonon plus SCPH calculations give �0.5.
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With our analysis based on Fig. 2 and Fig. S5 (ESI†), we now have
proxies for bond strength and even k, such as VGS, LB, and ra. On the
other hand, our analysis also shows that wa and CN are more
complicated than their reported influences. For instance, a strong
correlation has been identified between CN and k.54 However,
Fig. S5(c) (ESI†) exhibits a rather mixed trend. This mixed trend
for CN can be understood by its competing impacts between
bond strength and anharmonicity due to bonding-environment
complexity: (i) higher CN suggests larger anharmonicity due to
more complexity in the bonding environment, (ii) higher CN
means weaker bond strength, as stated by Pauling’s second rule,
due to electrostatic repulsion; (iii) a large CN also suggests a stiff
lattice, thus large sound speed. Therefore, the classic wa and CN may
be sub-optimal features. Moreover, our identified structural features
have only partial overlap with previous works on learning vibrational
properties.36,52,53 In particular, comparing to the learning of
harmonic properties, these mean-variance pairs which inspired
the extension of van-Arkel triangles also suggest the importance
of structural variance and complexity in anharmoncity.

Exploring the non-existing and
experimental confirmation of REX for
thermoelectrics

The structural chemistry of k can be used to extend the
predictions from machine learning. For instance, in the upper limit,

machine learning predicts the k values for BN and diamond to
be 764 W m�1 K�1 and 2225 W m�1 K�1, which are close to
experimental values. As shown in Fig. 3(a), from the van-Arkel
triangle of wa, we notice two candidate materials between BN

and diamond: C3N4 and B4C3. The k
0
exp of C3N4 ranked in the top

1% in our machine learning predictions over ICSD. In contrast,
B4C3 is absent from ICSD, and is obtained by reading the van-Arkel
triangle. One can also use this approach to search for low-k
materials. Guided by the triangles, we adapt the corner of thalium,
and iodine, considering their atomic weight and electronegativity.
As shown in Fig. 3(b), binary and ternary compounds (e.g. TlI,
CsTlF3, CsPbI3) are predicted from machine learning. Based on
these, we could hypothesize that CsTlI3 would have a low k, which
is also absent from the ICSD and confirmed by our DFT calcula-
tions (Table 1).

Another group of the least thermally conducting materials
are the REX family. As mentioned above, the REX materials
rank the lowest 5% in the k chart. To further confirm their
transport properties, we show in Fig. 3(c) the temperature-
dependent thermal conductivity of six compounds (Er2Se3,
Er2Te3, Tb2Te3, Dy2Te3, Ho2Te3, and Y2Te3) that belong to the
REX family. Note that the electronic contribution to the thermal
conductivity is negligible since these materials are insulators.
We obtain fairly low k for these compounds with minimum
values of 0.5 to 0.6 W m�1 K�1 at 973 K for several compounds
such as Er2Te3, Tb2Te3, and Dy2Te3. The k values of REX are
comparable with Zintl phase Yb14MnSb11,55 and lower than

Fig. 2 (a) Clustering of the high-throughput database using PCA and tSNE, low-k and high-k entries are highlighted. (b) Top 20 important features and
their F scores. (c) Dimension reduction by random-forest-ranked feature selection lead to even lower than PCA, and MAE approaches to CGCNN around
10 atomic features. Low-k and high-k materials can be divided by important features, (d) is an example of using f � Va. (e and f) Chemical space
illustrated by van-Arkel triangles, examples of structural (VGS) and bonding (wa) information. Similar triangles are available in Fig. S5 (ESI†).
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SiGe bulk alloy57 and half-Heusler ZrNiSn.56 The low k suggests
the potential of these materials for thermoelectric applications.
Advanced thermoelectric materials require decent electronic
transport performance, which can be enabled by aliovalent
doping to modify the Fermi level.

Among the REX compounds with charted thermal conductivity,
we select Er2Te3 and Y2Te3 for case studies to investigate their
full-thermoelectric properties through partial substitution of Bi
at the Te sites. Fig. 3(d) shows the temperature-dependent
thermal conductivity, which increases with the content of Bi,
especially at elevated temperature. Such a thermal-conductivity
increase has an electronic origin due to reduced electrical
resistivity, which is also shown in Fig. 3(d) for compound series
Er2Te3�xBix and Y2Te3�yBiy with x = 0.2, 0.3, 0.4, 0.5 and 0.6, and
y = 0.3 and 0.4, whereas the resistivities of the compounds with
x = 0, 0.1, and y = 0, 0.2 are not shown since they are too high
to measure. Generally, the substitution of Bi yields reduced
electrical resistivity for both series, which is accompanied by the
reduced Seebeck coefficient (S). The combination of S2r, termed
as the power factor, exhibits a maximum of 1.15 mW m�1 K�2

for compounds with x = 0.3 at 973 K, which is comparable to
some advanced TE materials such as Cu2Se59 and SnSe.60 The
combination of power factor and thermal conductivity yields the
thermoelectric figure-of-merit, zT, which shows a peak exceeding
1.0 at 973 K for Er2Te2.7Bi0.3 with an increasing trend, thus
suggesting even higher zT is possible at higher temperature.
The obtained zT for Er2Te2.7Bi0.3 is comparable to other high-zT
TE materials, such as Zintl phase (Yb14MnSb11

55), Half-Heusler
(ZrNiSn56), bulk alloy (SiGe57), and another REX (La3Te4

58).

Our reported zT has higher value at either high temperature
or the whole temperature range. Er2Te3 and Y2Te3 are two
examples of the REX system, which merits further exploration
for high-temperature thermoelectrics.

Conclusion

In summary, we studied the structural chemistry of lattice
thermal conductivity k for inorganic crystals, and predicted k
for a large set of inorganic compounds, directly from their atomic
structures. We extended our graph neural network model to
include transfer learning, and using as input our recently pre-
pared database of k. Combining the neural networks model and
interpretable random forest, we extract atomic features that
dominate the physics of k, including elemental (wa, VGS, ra) and
packing (LB, Va). Other features, such as CN, are shown to be also
important but more complicated than conventionally assumed.
With these identified features, we extended van-Arkel triangles as
two-dimensional projected materials space. This analytical tool
allows the projection and visualization of materials spaces for k,
and could be applied to other materials informatics studies. We
also identified rare-earth chalcogenides (REX), which exhibit a ZT
exceeding 1.0 and could be a promising material system for
thermoelectrics. A limitation of the current models is to fully
predict the six tensor components of k (our current values are
polar averages of these tensor components), thus the possible
anisotropy. This will be technically possible with increasing
database for anisotropic k.

Fig. 3 Proposed searching directions of (a) high- and (b) low-k materials. While C3N4 exists in ICSD and is recommended by TL-CGCNN, van-Arkel
analysis suggests B4C3 (absent in ICSD) to have high k as well. (b) is part of periodic table that m and wa are both large, based on which binary/ternary
compounds are recommended (TlI, CsTlF3, CsPbI3) and hypothesized (CsTlI3). (c) The proposed REX system, and the temperature-dependent thermal
conductivity of 6 chosen REX materials. The materials marked empty are chosen for further thermoelectric measurements. (d) Temperature-dependent
thermal conductivity, electrical resistivity, and Seebeck coefficient of compound series Er2Te3�xBix and Y2Te3�yBiy with x = 0, 0.1, 0.2, 0.3, 0.4, 0.5 and
0.6, and y = 0, 0.2, 0.3 and 0.4. (e) Temperature-dependent zT of REX, compared to Yb14MnSb11 (Zintl phase55), ZrNiSn (Half-Heusler56), SiGe alloy (bulk
alloy57), and La3Te4 (REX58).
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