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Time series analysis and long short-term memory
(LSTM) network prediction of BPV current
density†

Tonny I. Okedi a and Adrian C. Fisher *ab

Biophotovoltaics (BPVs) have increasingly gained interest due to their potential to generate low-carbon

electricity and chemicals from just sunlight and water using photosynthetic microorganisms. A key hurdle in

developing commercial biophotovoltaic devices is understanding the electron path from within the

microorganism to the electrode. The complexities of competing cellular metabolic reactions and adaptive/

temporal physiological changes make it difficult to develop first-principle models to aid in the study of the

electron path. In this work, Seasonal and Trend Decomposition using locally estimated scatterplot smoothing

or LOESS (STL) is applied to decompose the current density profile of electricity-generating BPV devices into

their trend, seasonal and irregular components. A Long Short-Term Memory (LSTM) network is then used to

predict the one-step-ahead current density using lagged values of the output and light status (on/off). The

LSTM network fails to adequately predict the observed current density profile, but adequately predicts the

light-controlled seasonal component with mean absolute errors of 0.007, 0.0014 and 0.0013 mA m�2 on the

training, validation and test sets respectively. The improved performance in the latter is attributed to the

removal of irregular patterns. An additional predictor, biofilm fluorescence yield, is proposed to improve

predictions of both the observed current density and its seasonal component. This seminal work on the use

of LSTM networks to predict the current density of biophotovoltaics opens doors for faster and more cost

effective device optimisation, as well as the development of control software for these devices.

Broader context
Biophotovoltaic systems (BPVs) harness the photosynthetic process in algae and cyanobacteria to generate low carbon electrons for electricity generation and
electrosynthesis. Compared to traditional photovoltaic systems, BPVs offer the advantage of 24 hour power generation and self-repair of photo active components by the
living organisms. BPV power outputs are however too low for commercial feasibility. Developing robust computational models that could complement experimental
work to accelerate the realisation of the technology has proved difficult. Challenges in the online measurement of time-dependent predictive variables, and missing
information regarding the electron pathway abound. Recently, ‘‘deep learning’’ using neural networks has been applied to successfully model various complex, time-
varying systems. In this study, we apply deep learning using Long Short-Term Memory networks (LSTMs) to address some of the challenges of developing first-principle
models for BPVs. This work is the first time that an LSTM, and more generally deep learning, has been applied to predict BPV performance. We demonstrate that LSTM
networks are a suitable model for accurate prediction of BPV current density and photoresponse from performance and illumination history. In the future, these
models could be expanded for optimising BPV systems and to develop control software for regulating power output within design specifications.

1 Introduction

Biophotovoltaics (BPVs) have gained interest due to their potential
for on-demand low-carbon electricity or chemicals production

using only sunlight as an energy source and water as an electron
source. BPVs are photo-driven electrochemical systems in which
at least one of the electrode half-reactions is catalysed by a photo-
responsive biological catalyst. A range of biological catalysts may
be used at the electrodes, including whole cells, sub-cellular
photosynthetic proteins/membranes, chloroplasts or a combi-
nation of these. Use of sub-cellular photosynthetic subunits in
BPV devices is not preferred since by removing the subunits
from their biological environment, they become less stable and
cannot self-proliferate. Thus, BPVs using whole cells of algae and
cyanobacteria are favoured.
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Limited understanding of the extracellular electron pathway
from within the cells to the electrode is a major hurdle in the
progress towards commercially viable BPV systems. Current
output in cyanobacteria-based galvanic BPVs has been recorded
under illumination and in the dark (the dark current), with a
light-stimulated increase in electrical current output (the
photocurrent) typically observed.1,2 However, the full path of
electrons from photosystems, the photo-responsive sub-cellular
structures, to the anode is still unclear. This is illustrated by the
variety of putative pathways found in the literature.

Earlier studies hypothesised that the photocurrent is predo-
minantly due to electrons originating from photosystem II (PSII),
with photolysis of water the electron source.3–5 A later study
demonstrated that the light-stimulated response may be due to
the combined photo-activity of both PSII, with water the electron
source, and photosystem I (PSI), with oxidation of stored carbo-
hydrates the electron source.6 This is plausible in cyanobacteria
since the photosynthetic and respiratory electron transport
chains (PETC and RETC) are interlinked. Some redox active
molecules such as plastoquinone flow between the two systems.

Furthermore, the studies vary in agreement on the site of exit
of electrode bound electrons, as well as on the identity of the
intracellular shuttles that transfer the electrons from the PETC to
the terminal extracellular electron transporter(s). The majority of
studies suggest that electrons exit the PETC from PSI.4,6,7 However,
it has also been suggested that electrons exit from the plastoqui-
none pool, a shared supply of electron carriers used in both the
RETC and PETC.8 As to the identity of the intracellular electron
shuttles, Ferrodoxin, NADPH and an undefined endogenous small
molecule of less than 3 kDa mass (a soluble quinone, a flavonoid
or a small peptide) have been proposed.4,6

There are three putative terminal electron transporters in
cyanobacteria: (1) an outer membrane c-type cytochrome (Omc)
in direct contact with the anode; (2) an unknown endogenous
electron mediator that is released and then oxidised at the
anode – the mediator may or may not undergo redox cycling by
re-entering the cell; and (3) electrically conductive extracellular
appendages that extend beyond the cell outer membrane in
direct contact with the anode.1,2,9

Studying the complexities of the extracellular electron pathway
in whole-cell BPV systems is mainly done through experiments
that typically change one factor at a time. Experimental techniques
include chronoamperometric studies using inhibitors targeted
to specific sites along the PETC and RETC, mutant studies that
insert or delete proteins in putative pathways, cyclic voltammetry
of biofilms grown under stressing conditions, and more recently,
fluo-electrochemistry which combines chronoamperometry and
fluorescence measurements.3–7,10,11

These studies are however costly, slow, and may not elucidate
competitive processes occurring along the electron pathway(s).12

Thus, modelling work is required to augment experimental
results. Previous models of the photocurrent in BPVs have been
developed from first-principles using equations describing the
relevant physical, biological, and electrochemical phenomena
occurring within the devices. They have mainly focused on
systems using sub-cellular photosynthetic units such as reaction

centres, photosystem I and photosystem II extracted from plants,
algae and bacteria.12–16 Modelling work on photocurrents in
whole-cell BPVs is limited; only one study modelling the photo-
current in an electrochemical set-up using whole cells was found
in the literature.17 The seminal work modelled photocurrents in
an electrolytic BPV system using a suspension of the unicellular
algae Chlamydomonas reinhardtii as the biocatalyst and exogenous
quinones to mediate electron transfer between the PETC and the
electrode. While the model was able to predict the initial photo-
current of the device adequately, it failed to predict the successive
photocurrent. In particular, the model failed to capture pheno-
mena that resulted in the decay of the photocurrent between the
first and second light pulse.17,18

No published models of the photocurrent in BPV systems
without exogenous mediators were found in the literature. In
the modelling work highlighted above, the site of interaction
between the quinones used for harvesting electrons and the
PETC was known.17 The modelling task becomes substantially
more complex when the intracellular and/or extracellular path-
ways are partially or fully unidentified. Furthermore, many key
variables and properties that affect electron transport cannot be
measured online as illustrated in Fig. 1. Even for those that can,
extracting information on the state of the PETC, RETC, or other
physiological and metabolic sub-systems relevant to exoelectro-
genesis from the variables is not straightforward.

Therefore, the use of artificial neural networks (ANNs) is
suggested. ANNs are a class of machine learning models that,
given a set of input–output data, are adept at approximating
highly nonlinear phenomena without explicitly defining the under-
lying processes and interactions occurring in the system.19,20 For
input–output data with significant memory (autocorrelation) such
as time series i.e. an ordered sequence of the values of a variable
(here BPV current) measured in consistent, discrete time intervals
(here the frequency of recordings from a data logger), a subclass of
neural networks called recurrent neural networks (RNNs) are
particularly suited to approximating the behaviour. However, for
very long time series, RNNs suffer from the vanishing gradient
problem when fitting the network parameters (i.e. training).21

A variant of the RNN called a Long Short-Term Memory (LSTM)
network uses a gating approach to significantly reduce the
vanishing gradient problem and achieve good performance
irrespective of the length of the time series.21

There are, of course, some trade offs when using artificial
neural network models. First, it is difficult to assign physical
significance to neural network parameters.22 Second, since
neural networks are typically trained on a set of experimental
data, it is challenging to extrapolate beyond the conditions
used in the experiments.22 Therefore, robust neural networks
may require large amounts of experimental data to be collected.
None-the-less, neural network models that can predict the
output of BPVs within a constrained boundary using variables
measured in situ can be powerful tools in optimising BPV
performance and developing control systems for these devices.

In this work, seasonal and trend decomposition using locally
estimated scatterplot smoothing or LOESS (STL) is used to
decompose the observed current density profiles of 2 BPV devices
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operating in galvanic mode with whole cell biofilms of the
cyanobacteria Synechococcus elongatus sp. PCC7942 into their
underlying patterns, namely, a trend, seasonal and remainder
component. LSTM networks are then used to predict the observed
current density and seasonal component profiles using lagged
output and light status (1 – on/0 – off) values as predictors. The
results show that while the LSTM network does not adequately
forecast the observed current density profile, it can accurately
forecast the light-controlled seasonal pattern. It is proposed that
the LSTM network fails to adequately forecast the observed
current density profiles due to the non-negligible irregular com-
ponent seen from STL decomposition; an additional predictor is
recommended to adequately forecast the observed data.

2 Experimental
2.1 Cyanobacteria culturing conditions

A stock culture of the cyanobacterium Synechococcus elongatus
sp. PCC7942 (Pasteur Culture Collection), PCC7942 henceforth,
was grown in liquid Blue-green medium (BG11) and cell concen-
tration (cells ml�1) determined as described in previous work.23

2.2 BPV architecture and operation

2.2.1 Device architecture. BPV devices were constructed as
a galvanic electrochemical cell with a membrane electrode assem-
bly (MEA). The MEA was a sandwich of a porous Toray carbon
paper anode, a nitrocellulose membrane (0.22 mm pores), and an
Alfa Aesar platinum coated carbon paper cathode with 3 mg m�2

Pt loading, in that order. The MEA geometric active area was a
circle of 18 mm diameter. The anode chamber was a 250 ml glass
bottle with a flange incorporated on the side and a vented cap
with a 1 mm diameter central hole covered with a nitrocellulose
membrane (0.22 mm pores) to maintain axenicity. The MEA was
placed at the end of the glass flange, sandwiched between
titanium strips to provide electrical contact to each electrode,
and two polydimethyl siloxane (PDMS) gaskets for sealing the
device. The cathode side was exposed to atmospheric air. The
components were held together with two transparent perspex
frames joined by three M5 screws to provide clamping pressure.
Devices were autoclaved after assembly. See Fig. S1 (ESI†) for
images of the BPV devices. Device architecture is based on the
design in ref. 24. However, perspex frames, rather than metal
clips, were used to hold components together. This was to ensure
equal clamping pressure on all devices by tightening the M5
screws to the same torque of 2 N m.

2.2.2 Inoculation and biofilm growth. Two BPVs (BPV 1 and
BPV 2) were sterilely inoculated with 5 ml of culture obtained by
re-suspending biomass pellets taken from the stock culture by
rapid centrifugation (4000 rcf for 10 min) in fresh BG11 to an
initial OD750 = 2 (cell concentration of 6.78� 108 cells ml�1). The
culture was added into the neck of the glass flange in contact
with the anode (see Fig. S1, ESI†). The growth medium, BG11,
also served as the electrolyte. Biofilms were allowed to grow on
and attach to the anodes for 4 days with the BPVs in open circuit
at 30 1C and under a 12 h : 12 h dark-light cycle with a light
intensity Iv of 21.0 � 0.3 mmol m�2 s�1.

2.2.3 Operation. BPVs were connected to a resistance of
33 MO and voltage allowed to stabilise until repeatable photo-
currents were observed. Voltage was recorded for 4 and 2 photo-
currents for BPV 1 and BPV 2 respectively, under the same
conditions as biofilm growth using a PicoLog ADC-24 data
logger. The multiplexed data logger was set to a conversion
time of 180 ms per channel (2 channels connected) and the
mean voltage recorded every 2 min. Each voltage reading is
therefore an average of 333 readings [(60 � 2)/(0.180 � 2)].
Voltage was converted to current density using Ohm’s law
(eqn (1)):

J ¼ V

R � A (1)

Fig. 1 A non-exhaustive selection of key variables affecting the current
density of a BPV with a biofilm anode. (1) Environmental variables affecting
the rate of electron production via RETC and PETC activity (a) ambient CO2

concentration; (b) light wavelength and intensity; (c) pH; (d) media cations
(e.g. ferric, magnesium) and anions (e.g. phosphate, nitrate) concentra-
tions. (2) Biofilm variables affecting the extracellular electron transport
(EET) rate: (a) biofilm thickness; (b) EET-active biomass density within biofilm.
(3) Cell and mediator properties/variables affecting EET rate by mechanism:
(a) indirect EET via endogenous mediator(s) – (i) concentration of reduced
mediator(s), (ii) effective diffusivity of mediator(s) through biofilm; (b) direct
EET via ‘nanowires’ – (i) conductivity of nanowires, (ii) density of nanowires
within biofilm; (c) direct EET via outer membrane cytochromes (Omc) – (i)
Omc per unit membrane area, (ii) total cell membrane-to-anode contact
area. In addition, cell fluorescence measurements, (4) provide valuable
information on the redox state of the PETC that may be used for modelling.
Variables in green can be measured online during BPV operation. Variables in
orange require offline measurement/assays which are often time-consuming.
The variables in group 1 influence exoelectrogenic activity via several physio-
logical and metabolic pathways, many of which interact in non-trivial, non-
linear ways. The cell and mediator variables (group 3) are based on putative
EET pathways in cyanobacteria. These are still subjects of on-going research
and debate, adding a layer of complexity in developing first-principle models,
particularly for BPVs operated without exogenous electron mediators.
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where J is current density in A m�2, V is voltage in V, R is resistance
in O and A is the anode geometric area in m2.

2.3 Theory and calculation

2.3.1 Time series decomposition. Time series such as cur-
rent density profiles can be decomposed to reveal underlying
patterns in the data, namely trend, seasonal and remainder
components. This is a useful first step in developing forecasting
models as the underlying patterns can inform the modelling
process.25

The trend component is the long term, low-frequency change
in the level of the current density profile. Conceptually, these
changes may be induced by: formation/degradation of the
biofilm’s extracellular matrix, in turn increasing/decreasing elec-
trical contact between cells and anode; depletion of key nutrients
such as iron in the growth medium over time, leading to gradual
adaptations in the PETC, RETC and cell morphology; and
gradual changes in the PSI : PSII ratio over several hours to days
in response to changing energy needs. These long-term pro-
cesses may slowly alter intracellular and extracellular electron
flows and therefore the measured current density.

The seasonal component is the pattern in a time series due
to a factor of unchanging frequency that acts for a fixed time
interval.25 In this study, the 24 h dark-light period, consisting of
12 h of darkness followed by 12 h of illumination is one such
factor. The dark-light periodicity dictates a repetition of a 12 h
interval when only the RETC is active in the cyanobacteria,
followed by a 12 h interval where both the RETC and the light-
activated PETC are both active. The effect of this recurring light
pattern on the current density profile is the seasonal compo-
nent. See Fig. S2 (ESI†) for more on the seasonal component
concept. Since current density was polled in two-minute time
intervals, a 24 h season or period consists of 720 data points
(time steps).

Lastly, the remainder component is what is left after subtracting
the trend and seasonal components from the observed time series
(Fig. S4, ESI†).

The current density profiles were decomposed by the seasonal
and trend decomposition using locally estimated scatterplot
smoothing or LOESS (STL) method.25,26 Python’s statsmodel
module was used to implement STL. The three components
are related in an additive manner as shown in eqn (2) or
multiplicative manner as shown in eqn (3):

y(t) = T(t) + S(t) + R(t) (2)

y(t) = T(t) � S(t) � R(t) � log[y(t)] = log[T(t)] + log[S(t)] + log[R(t)]
(3)

where y(t) is the photocurrent profile, T(t) is the trend component,
S(t) is the seasonal component, and R(t) is the remainder compo-
nent at time step t. The multiplicative model is more appropriate
when the variation in the seasonal component is seen to be
proportional with the level of the time series.25

The two main parameters to define for STL decomposition are
the length of the trend and seasonal smoothers. The length of the
seasonal smoother (odd integer) is the number of consecutive

periods used in estimating each value of the seasonal component
(Fig. S2, ESI†).25 As its value increases, the seasonal component
becomes smoother. The trend smoother (odd integer) is the
number of consecutive observations used in estimating the trend
component. The formula 1.5 � period length/(1 � 1.5/seasonal
smoother) was used to automatically set the trend smoother as
suggested in the original implementation of STL.26

Goodness of decomposition was evaluated by the amount of
autocorrelation in the remainder component. High autocorre-
lation in the remainder is an indication that information that
could be attributed to the trend and seasonal components has
leaked through. The sum of squares of the autocorrelation
(SSACF) for the first 60 lags was used for this purpose (sum
of squares since some autocorrelation values may be negative).
Seasonal smoothers of size 3, 5, 7, 9, 11 and 13 were tried.
A smoother of size 9 resulted in the best performance (lowest
SSACF).

2.3.2 Data processing. The LSTM network was trained to
predict the one-step-ahead current density (output) using lagged
values of the output and light status as predictors (inputs). The
current density profile for BPV 1 comprised of 5992 min (E100 h)
of operational data polled every two minutes (2996 data points).
The first 70 hours of data are used for training, and the remaining
30 hours for validation. Validation in this context refers to tuning
the hyperparameters of the LSTM network rather than global
model validation which is discussed later in the Model validation
section. The current density profile for BPV 2 comprised of
3112 min (E52 h) of operational data (1556 data points). This
full time series was set aside as the testing data set.

The 70 : 30 training : validation data split was chosen to have
sufficient examples of the characteristic features of the current
density observed after successive illumination intervals and
after the light is switched on. These are discussed later in the
results section of the paper. Critically, the data split was
selected so that the validation data set included sufficient
examples of dark-to-light changes where the most complex
features were observed. This ensured that the validation section
was not ‘simpler’ than the training section (i.e., lacking in a
sufficient number of the most complex features) such that the
LSTM network falsely appears to have achieved a high predic-
tive accuracy by performing well on the validation data set.

In order to prepare the data for input into the LSTM network, a
sliding window was used to convert the current density and light
status (1 – on/0 – off) profiles into windowed data sets of 14 past
time steps (or 28 min) long.27 Thus, ŷ(t) = fLSTM(y(t � 1),
y(t � 2),. . .,y(t � 14),u(t � 1),. . .,u(t � 14)) where ŷ(t) is the one-
step-ahead current density prediction, fLSTM(�) is the LSTM net-
work, y(t � n) are lagged output values and u(t � n) are lagged
light status values. The window size was selected from the partial
autocorrelation function (PACF) plot (all partial autocorrelations
above t = 14 were below the 95% large-lag confidence interval,
Fig. S5, ESI†). This is a commonly used heuristic for selecting the
window size for linear autoregressive models such as ARIMA and
is applied here.28

2.3.3 Long short-term memory (LSTM) network. Fig. 2a
shows the architecture of a LSTM network. The LSTM network
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is made up of a repeating unit called a memory cell, with a
predefined number of neurones. The LSTM memory cell uses a
variable called the cell state that is updated at each time-step
using a series of gates, to capture long range dependencies
while avoiding the vanishing gradient problem of traditional
RNNs.21 The number of times the memory cell is repeated is equal
to the number of past time steps used to predict the one-step-
ahead value (i.e. the window size). At each time step, the memory
cell takes as input a vector of the cell states from the previous time
step, cht�1i, a vector of the activations from the previous time step
aht�1i, and a matrix of the inputs, xhti. The lengths of the vectors
chti and ahti are equal to the number of neurones in the memory
cell, and the shape of xhti is equal to the number of predictors
(here 2)� number of windows across the time series (or batch size
if batched implementation is used). In the context of the current
density profiles, the information captured by the cell state may be,
for example, when the light was switched on or off.

The forward pass through the network consists of the following
calculations at each time step, summarised in Fig. 2b. First, a
candidate cell state value, c̃hti, for replacing the cell state brought
forward from the previous time step, cht�1i, is calculated using
eqn (4):

c̃hti = tan h(Wcaaht�1i + Wcxxhti + bc), (4)

where Wca and Wcx are matrices of weights for mapping aht�1i

and xhti respectively to c̃hti and bc is a bias value. At the first time
step, the value of aht�1i and cht�1i are initialised to zero vectors
(ch0i and ah0i).

Once the candidate cell state is determined, the update gate
Gu and forget gate Gf are calculated to decide which elements of
the cell state vector should be updated from their previous
value in cht�1i, to their corresponding candidate value in c̃hti.
The update and forget gates are vectors of the same length as
chti. Each element of Gu and Gf can be thought of as being

predominantly either 0 or 1; the two gates work together to
either (1) updated an element in cht�1i to its candidate value in
c̃hti, (2) maintain an element’s value as-is in cht�1i, or (3) add an
element’s candidate value in c̃hti to its previous value in cht�1i.
The values of the two gates are calculated using eqn (5) and (6):

Gu = s(Wuaaht�1i + Wuxxhti + bu), (5)

Gf = s(Wfaaht�1i + Wfxxhti + bf), (6)

where Wua and Wux are matrices of weights for mapping aht�1i

and xhti respectively to Gu, Wfa and Wfx are matrices of weights
for mapping aht�1i and xhti respectively to Gf, bu and bf are bias
values and s is the sigmoid transfer function. In addition, an
output gate for calculating the activations of the memory cells
is calculated using eqn (7):

Go = s(Woaaht�1i + Woxxhti + bo) (7)

where Woa and Wox are matrices of weights for mapping aht�1i

and xhti respectively to Go. Then, the cell state and activation of
the memory cell at time step t are calculated using eqn (8) and
(9) respectively:

chti = Gu*c̃hti + Gf*cht�1i, (8)

ahti = Go*tanh(chti), (9)

where ‘*’ represents element-wise multiplication. Finally, the
predicted current output for the time step is calculated using
eqn (10):

ŷhti = g(Wyahti + by) (10)

where g is a transfer function, here the linear transfer function,
Wy is a matrix of weights mapping ahti to ŷhti, and by is a
bias value.

Training the LSTM network refers to fitting the network’s
weights and bias values and is done iteratively. Each iteration

Fig. 2 LSTM architecture. (a) LSTM network made up of connected memory cells. Long term dependencies are passed from one time step to the next
through the cell state c. The variables ahti are vectors of activation values for each neurone in the memory cell. While there is a predicted current density
returned at each time step (ŷh1i to ŷht�1i shown in grey above cells), only the final, one-step-ahead output ŷhti, is of interest. For clarity, the input xhti used to
calculate ŷhti at all time steps is actually the current and light status at the preceding time step i.e. J(t � 1) and Iv(t � 1). (b) Repeating memory cell.
The matrices Wi, where i = c, u, f, o are concatenations of Wia and Wix shown in eqn (4)–(7).
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involves (1) a forward pass (evaluating eqn (4)–(10) in turn), (2)
a loss (error between the LSTM output and the experimental
value) calculation, and (3) a backward pass which can be
thought of as the reverse of the forward pass to determine
the contribution of each network parameter to the error. The
initial forward pass of the network is done by randomly
initialising all network weights identified above. Several loss
functions may be used, including the root-mean-square-error
(RMSE), the mean absolute error (MAE), and the mean absolute
percentage error (MAPE). In this work, the MAE (eqn (11)) is
used because it does not penalise large errors as much as the
RMSE. It is important not to penalise the large errors severely
since large errors in the prediction are expected mainly after a
light change. Large penalties on the error may result in over-
fitting the training set during light changes.

MAE ¼ 1

N

XN
t¼1

yhti � ŷhti
�� ��� �

(11)

The back-propagation through time algorithm is used for
the backward pass to find the values of network weights that
minimise the MAE. Several optimisers may be used in the back-
propagation algorithm. In this work, the efficient Adam optimiser
is used.29 One full forward and back pass across all training
examples is known as an epoch. To tune the optimiser’s learning
rate, the LSTM network was first trained for 100 epochs,
increasing the learning rate in each epoch according to the
formula 1 � 10�6�10epoch/20. The largest learning rate with the
lowest loss was then selected as the starting value to train the
network (Fig. S6, ESI†) and was set to decay after each epoch.
Other hyperparameters, such as the number of neurones in the
memory cell, the learning rate decay, and batch size were set by
trail and error. The LSTM network was implemented in Python
using Keras with a Tensorflow backend. See Fig. S7 (ESI†) for
training learning curves.

Model validation

Adequacy of the LSTM network model was validated by cor-
relation-based tests for non-linear models using residuals,
inputs and outputs.30 Correlation-based model validity tests
are advantageous because they can directly diagnose the ade-
quacy of a model without testing all possible model sets.30 For a
non-linear model fn(�) making predictions ŷ of the form ŷ = fn(y
(t � 1),y(t � 2),. . .,y(t � n),u(t),u(t � 1),. . .,u(t � n)), an adequate
model produces random residuals e, where e = y � ŷ, that are
uncorrelated with all linear combinations of past inputs (u) and
outputs (y). That is e(t) E e(t), where e(t) denotes a randomly
distributed sequence of zero mean and finite variance. The
correlations with past inputs and outputs were tested using
eqn (12) and (13).30

fðyeÞe2ðtÞ ¼

PN�t
t¼1

yðtÞeðtÞ � �yeð Þ e2ðt� tÞ � �e2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
t¼1

yðtÞeðtÞ � �yeð Þ2
� 	 PN

t¼1
e2ðtÞ � �e2ð Þ2

� 	s ; (12)

fðyeÞu2ðtÞ ¼

PN�t
t¼1

yðtÞeðtÞ � �yeð Þ u2ðt� tÞ � �u2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
t¼1

yðtÞeðtÞ � �yeð Þ2
� 	 PN

t¼1
u2ðtÞ � �u2ð Þ2

� 	s ; (13)

where t is the lag, N is the total number of time steps, and �e, %ye
and %u; are mean values of the variable. In the ideal case:

fðyeÞe2ðtÞ ¼
k2; t ¼ 0
0; otherwise



(14)

f(ye)u2(t) = 0, 8t (15)

The constant k2 is defined as shown in eqn (16).30

k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
t¼1

e2ðtÞ � �e2ð Þ2
s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
t¼1

yðtÞeðtÞ � �yeð Þ2
s (16)

In practice, the correlations f(ye)e2 and f(ye)u2 are asymptoti-
cally normal for large values of N, with a zero mean and finite
variance.30 Therefore, in the ideal case, f(ye)e2(t) for t a 0 and
f(ye)u2(t) for all t should be within 2� the standard deviation or
the 95% confidence interval (CI). In this work, the large-lag
standard error is used to calculate the 95% confidence interval
instead of the standard deviation, eqn (17).31

CIðtÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
1þ 2

XK
t¼1

f2ðtÞ
 !vuut ; (17)

where K o t. Confidence intervals calculated using the large-lag
standard error take into account that a value of f(t) may be large
simple because f(t� 1) is large.31 Values of f(t) outside the 95%
confidence interval are deemed to be significant, denoting a
correlation between the residuals and delayed residuals and/or
input terms.30

3 Results and discussion
3.1 Characterisation of the devices

BPVs 1 and 2 had an open circuit voltage (OCV) of 283 � 7 and
241 � 6 mV, respectively. Polarisation curves for devices of the
same design (membrane electrode assembly, anode and cathode
active areas) have previously been measured within the research
group under operating conditions identical to those used in this
study. The maximum power density of the devices was estimated
to be 16.3 � 2.5 mW m�2.24

Direct comparisons of device performance with metrics
reported in the literature should be done with caution due to the
variety of device architectures, anode configurations (i.e., biofilm vs.
suspension vs. immobilisation), photosynthetic organisms, and
operating conditions used. Table S1 (ESI†) shows a comparison
with select studies deemed most similar (carbon anodes, Pt–carbon
cathodes, and no exogenous mediator) – nonetheless, the studies
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still had substantial differences, most notably the photosynthetic
organism used.

3.2 Analysis of decomposed current profile

3.2.1 Overview. Fig. 3 shows the observed current profiles
and their component patterns obtained using additive STL
decomposition. Multiplicative decomposition was also performed
on the current profile of BPV 1 to check for a better fit to the data –
no significant differences were seen (Fig. S3 and S4, ESI†). The
current profiles were split into five and three 24 h dark-light periods
for BPV 1 (Fig. 3a) and BPV 2 (Fig. 3b) respectively. Each period is
denoted with a different colour to help guide the eye. For both
BPVs, the trend component shows an increase in the performance
of the BPV between the first and second period, followed by a
steady decline in the level of the current in successive periods.

3.2.2 Seasonal component. The seasonal components show
the deviation of the current above (positive) and below (negative)
the trend in response to switching the light on and off. Several
interesting features are exhibited in the seasonal component.
First, upon illumination, the rise in current in not immediate. In
both BPVs, there is a 14–16 min span where the seasonal
component maintains its trajectory from the dark interval,
followed by a sudden dip to a local minimum 16–18 min after
illumination and a subsequent steady rise in current (see Fig. 7
for a closer view of this phenomenon). Second, the photocurrent
was defined as the difference between the maximal value of the
seasonal component reached during the illuminated interval of a
period and the last value of the seasonal component during
the dark interval of the same period. The magnitude of the

photocurrent in BPV 1 was observed to decay linearly at a
constant amount of approximately �2.62 mA m�2 period�1

(Fig. 4a) with each successive period. Oppositely, an ostensible
increase, rather than a decay, in photocurrent of 3.27 mA m�2

was observed between the first and second period of BPV 2. It is
important to qualify that since the seasonal component is still
rising by the end of the illuminated interval of period 1 (blue
curve, third panel in Fig. 3b), the true maximum of the photo-
current is unknown. Therefore no conclusions should be drawn
from this result. Third, the time taken for the photocurrent to
reach peak value after illumination in BPV 1 increased linearly by
approximately 34 min, i.e. the rise in current became less steep,
with each successive period (Fig. 4b). A similar analysis was not
possible for BPV 2 since this metric could only be calculated for
the second period where the photocurrent reached a clear
maximum. Future work should consider recording the test data
over a greater number of periods to avoid this.

To investigate the photocurrent lag, as well as the dip in
current density immediately preceding the photocurrent rise, a
third BPV was operated with a 3 h : 3 h dark-light period but
otherwise identical operating conditions. Fig. S8 (ESI†) shows
the current density profile and corresponding STL decomposi-
tion for this BPV. Interestingly, unlike in the two BPVs operated
under a 12 h : 12 h dark-light period, the rise in photocurrent
was immediate, and no dip in current density prior to the
photocurrent rise was observed (although the observations are
limited to the 2 minute temporal resolution of data logging).
The correlation between the duration of the dark interval and
the occurrence of a photocurrent lag suggests a link to the
levels of carbohydrate reserves which are depleted during
darkness. One study that can test this hypothesis is monitoring
the fluctuation in the carbohydrate content of cells cultured
under different dark-light periods using Fourier-transform
infrared spectroscopy (FT-IR).32 As highlighted in the introduc-
tion, there is reported evidence that PSI photo-activity, fed by
electrons from the RETC, contributes to the photocurrent.6 In
future studies under design, we plan to observe the changes in
the fluorescence signal of biofilms under load, particularly at

Fig. 3 Additive STL decomposition of BPV current density profiles. Y-Axis
units are mA m�2. (a) BPV 1. (b) BPV 2. Different colours represent
successive 24 h periods. For the seasonal and remainder subplots, current
density shown is deviation above (positive) or below (negative) the trend,
rather than the apparent value (i.e. negative values do not automatically
denote a cathodic current). The x-axis shows time since the connection of
the external 33 MO load.

Fig. 4 (a) Magnitude of successive photocurrents in BPV 1. The photo-
current of a dark-light period is determined from the seasonal component
of the decomposed current density profile shown in Fig. 3a by taking the
difference of the maximum current during the illuminated interval of the
period and the last value of current during the dark interval of the same
period. (b) Time taken to reach peak value of photocurrent from illumina-
tion in BPV 1. For both (a) and (b), the colour of the dot corresponds to the
period shown in Fig. 3a. Period 5 is not shown since the voltage measure-
ments were stopped before the end of the full illuminated interval.
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time points coinciding with the above phenomena, to gain insights
into the state of the PETC during these moments.

Decay of the photoresponse across successive light pulses is
commonly seen in BPV current and voltage profiles reported in
the literature. Examples include in BPVs using biofilms of the
cyanobacteria Lyngbya, Nostoc, S. elongatus sp. PCC7942, and
mixed photosynthetic consortia, as well as BPVs using suspen-
sions of the algae C. reinhardtii.3,18,24,33 Reasons that have been
proposed for the decay include depletion of the growth med-
ium, increase in pH over time reducing the supply of protons to
the cathodic oxygen reduction reaction, increase in dissolved
oxygen in the anode, and photoinactivation of PSII.18,33 The
range of possible reasons further showcases the complexities in
capturing the full suite of underlying biological phenomena
impacting exoelectrogenesis when developing first-principle
models. Indeed, the seminal whole-cell model presented in
the introduction failed to capture phenomena that account for
the photocurrent decay.17

Early BPV studies demonstrated that the time to peak
photocurrent increases with decreasing light intensity.4 Over
time, the biofilms in the BPVs thicken, thereby reducing light
penetration to the cells lower in the biofilm. The reduction in
light to cells in direct contact with the anode and cells within
the shortest distance of the anode for diffusion of endogenous
mediators (if any), may explain the increase in duration to peak
current in BPV 1.

3.2.3 Remainder component. The remainder components
of the current density profiles (Fig. 3) are the irregular devia-
tions from the trends that cannot be accounted for by the
seasonal components. There are no immediately obvious pat-
terns in the remainders from period-to-period, or when com-
paring across BPVs 1 and 2. Indeed, the criteria applied for
goodness of the STL decomposition was to have the lowest
autocorrelation in the remainder components (see Theory and
calculation section). It is therefore conceptually more difficult
to attribute the remainder component to physical or biological
processes occurring within the devices.

An alternative to STL decomposition that would provide a
different view of the constituent patterns making up the current
density profile is Empirical Mode Decomposition (EMD) used
when applying the Hilbert–Huang Transform (HHT) to non-
linear and non-stationary data. EMD combined with HHT is a
time–frequency analysis method that has been used to study
single molecule interaction within nanopores, among various
other applications.34,35 EMD is an iterative process that decom-
poses a signal into individual mono-components called intrin-
sic mode functions (IMFs), each containing content of a narrow
range of frequencies that make up the signal. The HHT is then
applied to each IMF to obtain its instantaneous frequencies,
potentially revealing characteristic signatures that may inform
on the physical meaning of each IMF.34,35

Nonetheless, the STL decomposition allowed the two cur-
rent density profiles to be decomposed in to their constitu-
tive patterns, providing insights that aid the understanding of
the performance of the LSTM network discussed in the next
section.

3.3 LSTM network prediction of current density

3.3.1 Prediction of observed current density profile. A LSTM
network was first trained using the observed current density
profile of BPV 1. Table 1 summarises the hyperparameters
trialed during training. The values in bold resulted in the best
LSTM performance i.e. lowest MAE on the validation set. The
best performing window size was confirmed to be 14 as selected
from the PACF plot (see Experimental). The LSTM network was
able to predict the observed current density profile with reason-
able success away from light changes, but struggled to capture
the post-illumination phenomena discussed above. Overfitting
of the training set was observed (MAE 0.008 on the training set
vs. MAE of 0.017 and 0.032 on the validation and test sets
respectively, see Fig. S9 and S10, ESI†). Regularisation, a method
for penalising the network for fitting large weights during
training, was tried as a way to minimise the overfitting. This
led to a decrease in performance on the training set as expected,
but did not result in improved performance on the validation or
test sets.

Furthermore, the trained network failed the correlation-based
model validation test. The coefficient f(ye)e2(t) was outside the
large-lag 95% confidence interval at t = 2 (Fig. S11, ESI†) which
indicates the model was poorly defined. In particular, this
indicates that the errors were not an uncorrelated sequence, i.e.
e(t) a e(t), but included a delayed error term, i.e. e = f (e(t� 2),e(t)).
This suggests that an additional predictor variable is required to
predict the observed current density profile.30 The network per-
forms worst in generalising to the validation set during period 5 of
BPV 1 (Fig. S10, ESI†) where the remainder component during the
illuminated interval is v-shaped, unlike any other behaviour in the
training set (Fig. 3a). The network also struggles to generalise to
the test set particularly during period 3 of BPV 2 (Fig. S10, ESI†),
consistently over predicting the seasonal component prior to the
characteristic dip in current 16 min post-illumination, and con-
sistently under predicting the current density for the subsequent
16 min. Again, the behaviour of the remainder component in this
period is significantly less erratic than in the periods in the
training set. The inadequacy of the model is therefore suggested
to be a failure of the LSTM network to learn a generalisable
pattern for the irregular remainder component of the current
density profile from the training set.

3.3.2 Prediction of seasonal component profile. In order to
overcome this challenge, the network was trained using the
seasonal component of the current profile of BPV 1. Because
the seasonal component is due to the dark-light cycle and does
not include the irregular remainder component, it was hypothe-
sised that the light status should suffice as the sole exogenous
predictor variable. The bold hyperparameter values in Table 1

Table 1 Hyperparameters trialed during training. Settings that resulted in
the best performance are shown in bold font

Hyperparameter Values

No. of neurones [14, 28, 30, 35, 64, 128]
Window size (time steps) [10, 12, 14, 30]
Learning rate decay [0.0085, 0.00875, 0.009, 0.01]
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again resulted in the best performance following a trial and
error sensitivity analysis. Fig. 5a shows the LSTM network
predictions for BPV 1, and Fig. 5b shows the LSTM network
predictions for the seasonal component of BPV 2 which was
unseen during training.

The LSTM network performs well in predicting the seasonal
component of the training, validation and test data sets, with
lower overfitting than the observed current profile LSTM net-
work. MAEs of 0.007, 0.014 and 0.013 for the training, valida-
tion and test sets respectively were achieved. Errors had zero
mean and a variance of 0.07 mA m�2. Correlation testing using
f(ye)e2(t) and f(ye)u2(t) confirmed that the errors are uncorrelated
with past outputs and the input light status (Fig. 6), validating
that the model was adequately defined.

It should be noted that while the performance of the LSTM
network is satisfactory, a closer look at the predictions in the
validation phase shows that the network still struggles to generalise
during the first 20 min post-illumination (Fig. 7d and e).
A potential additional predictor to improve the ability of both
the seasonal component and observed current density LSTMs to
generalise may be the fluorescence yield of the biofilm, which
would capture information on the changing efficiencies of
photochemical and non-photochemical quenching. The trade-
off between the added accuracy in the predictions and the
difficulty of in situ measurement of the fluorescence yields of
biofilms in an operational BPV should be assessed before taking
this approach.

3.4 Application of results

In this work, we have shown that LSTM networks can be used to
predict the seasonal component of a BPV’s current density
profile using two predictors: past current density and light
status. The work may be extended to train LSTM networks
using data from BPVs operated in a variety of environmental
conditions, with the environmental variables serving as additional
predictors. For example, at different pH levels, light intensities,
media concentrations, or ambient CO2 concentrations. Once

trained, these networks may be used in a variety of ways. Three
suggestions are given below.

First, they may be used for device optimisation. Device perfor-
mance may be forecast using a virtually limitless set of variable

Fig. 5 LSTM network one-step-ahead seasonal component predictions for BPV 1 and 2. (a) Predicted BPV 1 seasonal component (training and validation
sets). (b) Predicted BPV 2 seasonal component (test set, unseen during training).

Fig. 6 Correlation tests using inputs, residuals and outputs on the seasonal
component LSTM network. (a) Correlation between ye and e2. The negative
correlation at t = 0 reflects that errors (e) are largest during the first 20 min
post illumination when the seasonal component (y) is low, and decrease as
the seasonal component increases over the illuminated interval. (b) Correla-
tion between ye and u2, where the input u is light status. The seasonal
component LSTM network passes the model validity tests with all values of
f(ye)e2(t) for t a 0 and f(ye)u2(t) for all t below the 95% large-lag confidence
interval.
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level combinations (within the bounds used to obtain the training
data) as inputs to the trained network. Only combinations that
lead to high performance (e.g. maximum power output) need be
trialled experimentally to confirm the prediction. Collectively, this
will reduce the number of physical experiments that need to be
performed, resulting in substantial time and cost savings.

Second, they may be used for rapid sensitivity analyses to
test the effects of variable levels on the prominence of stand-out
features that may hold clues to the electron path. For example,
the photocurrent lag and current density dip prior to the
photocurrent rise observed in this work. Once a strong correla-
tion between a variable and a feature of interest has been
identified via the LSTM network, advanced techniques can
then be applied for in-depth investigation based on what is

known about the organism’s response to the variable. The
LSTM network serves as an initial sieve for the researcher and
helps focus their experiments.

Third, the LSTM network models may be incorporated into
control algorithms. For BPVs to be a commercially viable
technology, it is critical that power outputs can be maintained
at nominal levels in a predictable and controllable way. Unlike
purely chemical systems that are controlled by physical and
thermodynamic considerations, biological systems are controlled
by cellular metabolic pathways which are characterised by highly
selective reactions.19,20 As discussed in the introduction, it is often
difficult to extract biologically significant information from the
few physical system conditions that are pragmatically measurable
in situ such as pH, light intensity, and compositions (Fig. 1).19,20

This makes it difficult to develop first-principle models for system
control. LSTM network models that can predict device perfor-
mance from the measurable process states would substantially
mitigate this challenge.

4 Conclusions

This work explored the use of LSTM networks to overcome
some of the challenges of developing first-principle models for
predicting the current output and photoresponse in BPVs.
These include various unknowns in the electron path, and
difficulties in online measurement of several key variables. It
was shown that LSTM networks are suitable models that can
predict, with high accuracy, the seasonal component of a BPV’s
current density obtained after removing the trend and irregular
components from the measured signal using STL. Two inputs,
past current density and light status, suffice as the only
predictors. For this particular data set, an LSTM network of
35 neurones, and a window size of 14 (i.e., the prior 14 current
density and light status values are used to predict the one-step-
ahead current density) resulted in the best performance. MAEs
of 0.008, 0.014 and 0.0013 mA m�2 on the training, validation
and test data sets were achieved. For the first time, to the best
of the Authors’ knowledge, LSTM networks were used to
accurately predict the current output and photoresponse of a
BPV. This work provides a foundation for developing LSTM
models for device optimisation, sensitivity analyses, and control
software. While the LSTM model has been demonstrated for
BPVs, the learnings from this work can be transferred to other
bioelectrochemical systems used for environmental remediation,
electrochemical energy conversion and chemicals synthesis, such
as microbial and enzymatic fuel and electrosynthesis cells.
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Fig. 7 Zoomed in seasonal component profiles showing the first 40 minutes
post-illumination for each period. Y-Axis units are mA m�2. (a–c) BPV 1
periods 1 to 3 sequentially (training set). (d and e) BPV 1 periods 4 and 5
sequentially (validation set). (f)–(h) BPV 2 periods 1 to 3 sequentially (test set).
In (a) and (f), there are no LSTM predictions for the first 28 minutes (or 14 time
steps). This is because a window size of 14 is used to calculate the one-step-
ahead value. Therefore, because these are the first periods of the BPV 1 and 2
current density profiles respectively, the first time step where there is full data
to predict the current is time step 15.
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