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The continuous development of improved non-fullerene acceptors and deeper knowledge of the

fundamental mechanisms governing performance underpin the vertiginous increase in efficiency

witnessed by organic photovoltaics. While the influence of parameters like film thickness and

morphology are generally understood, what determines the strong dependence of the photocurrent on

the donor and acceptor fractions remains elusive. Here we approach this problem by training artificial

intelligence algorithms with self-consistent datasets consisting of thousands of data points obtained by

high-throughput evaluation methods. Two ensemble learning methods are implemented, namely a

Bayesian machine scientist and a random decision forest. While the former demonstrates large

descriptive power to complement the experimental high-throughput screening, the latter is found to

predict with excellent accuracy the photocurrent–composition phase space for material systems outside

the training set. Interestingly, we identify highly predictive models that only employ the materials band

gaps, thus largely simplifying the rationale of the photocurrent–composition space.

Broader context
Multicomponent systems underline the significant performance improvements recently witnessed in many energy fields, from electrodes in batteries, to
multication perovskites for photovoltaics and to high-ZT thermoelectric composites. Predicting the specific composition that would result in optimum
performance is, however, one of the greatest unresolved problems in materials science. This is, in part, due to the fact that performance maximization is a
complex multiparametric problem. Here we show that combining high-throughput experimental data with artificial intelligence (AI) algorithms enables
unprecedented predicting capability. Specifically, we applied our methodology to the case of organic photovoltaics (OPV), since active layer composition is the
parameter that affects more strongly OPV efficiency (e.g. 1 : 0 or 0 : 1 compositions result in zero efficiency for a blend whose optimum gives 18%). We generate
thousands of data points in the performance–composition phase space for 15 different donor:acceptor blends and use the generated datasets to feed AI
algorithms. Our work results in the identification of highly accurate and predictive models for the photocurrent–composition dependence unravelling the key
material descriptors governing such behaviour (i.e. band gaps and charge mobility imbalance). This study paves the way for the use of AI and high-throughput
experimentation to predict optimum composition in energy materials.

Introduction

The synthesis of novel conjugated semiconductors underpins
the striking performance upswing that the field of organic
photovoltaics (OPV) is currently experiencing.1 Photoactive

blends of non-fullerene acceptors2–4 (NFAs) and low band gap
donor co-polymers5,6 have demonstrated power conversion
efficiencies (PCEs) over 18% in single-junction binary
devices.7 Such figures result from an improved understanding
of the donor:acceptor (D:A) material requirements in terms of
extended light absorption, frontier energy level alignment and
film morphology,8,9 as well as from enhanced charge transport
properties.10 Indeed, the advanced understanding of many of
the fundamental working principles in OPV combined with the
inherent synthetic flexibility of conjugated materials is prompt-
ing the large-scale screening of potentially high-performing
OPV material candidates. Yet, for a given material system, what
could we say a priori about its OPV potential?

At the molecular level, computational algorithms such as
those developed in the on-going Harvard Clean Energy Project
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(CEP)11 serve to rapidly pre-screen millions of molecular motifs
and classify them according to their theoretical OPV outcome,
thus motivating their ulterior synthesis. Beyond purely in silico
screening, the development of data-driven models in the OPV field
has so far been mostly restricted to data mining and training of
artificial intelligence (AI) algorithms using intrinsic material
descriptors.12 This approach has been applied to make predictions
in terms of novel materials13,14 and their corresponding expected
PCE,15 as well as to guide researchers in the design of potentially
top-performing materials.16 While promising, these calculations
have had modest success thus far. This is due, in part, to the lack
of sufficiently reproducible data in the literature; also to the
difficulty to predict solid-state properties of the blend such as
microstructure or gas-to-solid shifts in the optical properties and
molecular energy levels; and finally, due to the fact that relevant
device information is not considered in the calculations.17

At the device level, one aspect that has been modelled very
successfully is the dependence of the performance on the active
layer thickness. Device modelling based on transfer matrices
has been demonstrated to reproduce accurately the mild oscil-
lations of the photocurrent found experimentally.18,19 Further
refinements based on advanced charge transport descriptions
and unintentional doping effects have precisely described the
thickness-dependent photocurrent.20

Despite acutely affecting the OPV performance,21–25 predicting
the optimum D : A ratio has been much more challenging due

to the complexity of charge photogeneration and transport
through the blend towards the electrodes. For semicrystalline
polymers blended with fullerenes, optimum D : A ratios have
been rationalized by the binary phase diagram.21 In particular,
slightly hypoeutectic concentrations with respect to the poly-
mer loading were found to lead to a good compromise between
charge generation and appropriate percolating pathways for
charges to reach the electrodes. Also the balance of charge
carrier mobilities between electrons and holes has often been
considered a key feature determining the shape of the photo-
current–composition curve26 (hereafter referred to as Jsc–vol%).
The current OPV paradigm led by NFAs as excellent light
harvesters adds another ingredient to the Jsc–vol% dependence
compared to fullerene-based devices since photocurrent
generation is now fully distributed between both materials.
Given the intricate optoelectronic trade-off that sets the location
of the optimum D : A ratio, novel experimental approaches and
data-driven predictive models are required to enhance the
current understanding of the Jsc–vol% dependence in binary
OPV blends.

In this work, we adopt a synergic combination of experimental
high-throughput screening and AI to study the relationship
between the photocurrent generation and the active layer
parameters (i.e. thickness and D : A ratio) in binary OPV devices.
The experimental exploration is performed by processing ortho-
gonal parametric gradients or libraries, which in combination

Fig. 1 The photocurrent–composition prediction workflow for binary OPV blends is divided into three main blocks. First, the generation of parametric
libraries by blade coating on functional devices in the form of lateral gradients in the active layer thickness and the D : A ratio. Second, the
high-throughput photovoltaic characterization by means of co-local Raman spectroscopy and photocurrent imaging, which serves to correlate the
local device performance with the variation of the target features (thickness and D : A ratio). Third, AI algorithms are trained on the experimental datasets
using intrinsic fundamental descriptors of the blended materials. In the last step, the AI models are exploited to make predictions of the photocurrent–
composition dependence for materials in and outside of the training dataset.
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with local probing techniques (namely Raman spectroscopy and
photocurrent imaging) serve to assess the corresponding photo-
current phase space diagrams with minimal effort.27–32 The
exploration results in a plethora of possible Jsc–vol% depen-
dences: from strongly skewed bell shapes to bimodal distribu-
tions. Then, in an attempt to rationalize these complex
relationships, we implement two different AI algorithms that take
as input a series of intrinsic optoelectronic material descriptors.
The first algorithm is a Bayesian machine scientist,33 which is
found to complement the high-throughput experimental
screening due to its large descriptive power while providing an
analytical equation to describe the intricate Jsc–vol% phase spaces.
Second, we use a random forest (RF) algorithm as a predictive
model for the normalized Jsc–vol% dependences retrieving a mean
absolute error (MAE) below 0.20 in untrained OPV binaries. In the
RF models, we find that descriptors related with the alignment of
the frontier energy levels and the mobility difference are statisti-
cally relevant in shaping the Jsc–vol% space. Finally, feature
selection procedures reveal highly predictive models when only
the donor and acceptor electronic (or optical) band gaps are
employed in the training step. The RF models found herein
define the Jsc–vol% curves in both NFA and fullerene-based binary
blends with excellent accuracy.

Results

General workflow

Fig. 1 illustrates the high-throughput evaluation, training, and
prediction workflow used throughout the article. The processing
of compositional libraries was accomplished by blade coating via
the coalescence of pristine donor and acceptor ink drops at the
blade reservoir. The blade movement induced their mixing
during the coating to generate a compositional gradient perpen-
dicularly to the displacement direction.29 In parallel, ink deple-
tion at the front reservoir generates a thickness gradient along
the blade movement direction. The dissimilar ink rheology also
created film thickness fluctuations in conjunction with the D : A
ratio library (see Section I in the ESI†). Following electrode
deposition, a simultaneous characterization based on Raman
spectroscopy and light-beam induced-current (LBIC) mapping
was used to image the heterogeneous film features including
thickness and composition,34 and to correlate them to the
corresponding photocurrent images. This approach allowed the
efficient exploration of the photocurrent phase diagram of binary
OPV blends in a combinatorial manner: the time and semicon-
ductor material cost requirements can be as low as 90 seconds
and 50 ng per data point, respectively (see Section II in the ESI†).

Fig. 2 (a and b) Normalized distribution of the short-circuit current density obtained in discrete devices as a function of the D : A weight ratio
in PTB7-Th:ITIC and PBDB-T:ITIC-C2C6 blends. (c and d) Normalized photocurrent dispersion obtained following the high-throughput
optimization approach for the same blends. Green dashed lines are polynomial fits of the high-performing envelope of photocurrent values. In each
case we indicate the number of devices needed to generate these plots. The reader is referred to Section I in the ESI† for further details on device
manufacture.
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The highly efficient screening process generated large
amounts of thickness–composition parametric combinations
per D:A pair in the corresponding Jsc space (ca. 24 000 data
points). This was then employed in the training and validation
of AI algorithms together with fundamental optoelectronic
material descriptors such as highest occupied molecular orbital
(HOMO) and lowest unoccupied molecular orbital (LUMO)
energy levels, absorption coefficients (see Section III in the
ESI†) and charge carrier mobilities. As detailed in Section IV in
the ESI,† the descriptors extracted from literature can be
selected following distinct criteria. With these data, we first
validated the ability of the AI models to reconstruct the com-
plete Jsc–vol% diagram and then predict the corresponding
dependence for material combinations out of the original
training set. This approach is exploited to determine the
optimum active layer thickness and composition in terms of
photocurrent for any D:A pair (with known input descriptors).

High-throughput experimental screening

Herein, the high-throughput experimentation strategy based on
lateral parametric libraries substitutes the traditional sample-
by-sample methodologies (aka Edisonian experimentation) in
the screening of the Jsc–vol% space. Hence, we first verify that
both approaches converge to the same figures in the normal-
ized Jsc–vol% diagram. Fig. 2 compares the Jsc dispersion
obtained following the traditional fabrication-intensive protocol
(Fig. 2a and b) and the measuring-intensive strategy proposed
here (Fig. 2c and d). We study two high-performing OPV binary
systems, namely the workhorse PTB7-Th:ITIC blend35 as well as
a novel, unreported binary formed by PBDB-T:ITIC-C2C6. The
preparation of premixed inks from pristine D and A aliquots (as
required in traditional experimentation procedures) enables us
to estimate the corresponding D : A density ratios, x (see Section
VII in the ESI†). In Fig. 2 we accordingly transform vol% to the
more familiar D : A weight ratio typically followed in OPV sample
preparation. However, the transformation from vol% to wt%
does not generally lead to an acute displacement of the scattered
data distributions since x is found to be close to unity in the here
explored cases. This indicates that Jsc–vol% phase diagrams (as
raw-extracted from optical probes such as Raman or ellipsometry)
will generally resemble quite closely Jsc–wt% distributions. On the
other hand, the observed photocurrent dispersion along the y-axis
in Fig. 2a and b is mainly related to the screening of the active
layer thickness as we varied the thickness at each composition in
the pursuit of the optimum thickness at each blending ratio (see
Section I in the ESI†). Importantly, the two systems exhibit very
different Jsc–wt% curves, one being a single peak centered at ca.
40 wt% of donor, while the other appears bimodal (vide infra).

Notably, the high-throughput methodology reproduces the
unimodal and bimodal photocurrent dispersions observed as a
function of the donor loading in both binaries (Fig. 2c and d).
Importantly, it does so with very large statistics, strongly
reducing the uncertainty with respect to the actual shape of
the curve. In this approach, the vertical Jsc dispersion originates
from both active layer thickness and morphology variations,
the latter being a consequence of the in situ mixing of the

pristine inks in the blade reservoir. By quantifying the Raman
blue-shifting of the corresponding D and A vibrational finger-
prints, we have verified that devices containing compositional
gradients can reproduce the degree of mixing attained when
casting fully premixed solutions. Moreover, they embrace a
richer catalogue of film morphologies than conventional
methodologies expanding the available data to correlate micro-
structure and device performance (see Section II in the ESI†).
Note that the high-throughput screening requires a signifi-
cantly reduced amount of experimental time and resources:
hundreds of discrete devices (here 137 and 176 devices in PTB7-
Th:ITIC and PBDB-T:ITIC-C2C6, respectively) versus a single
combinatorial device per binary.

The high-throughput methodology has, however, the caveat
of measuring Jsc only rather than the full set of solar cell
parameters (open-circuit voltage (Voc), fill factor (FF) and
PCE). Nevertheless, since Voc remains fairly constant, the PCE
correlates well with Jsc for the range of compositions of interest
despite the variations observed in FF (see Section II in the ESI†),
which is in excellent agreement with the overall trends depicted
from data-mining studies (i.e. Jsc is the best proxy for PCE).17

Interestingly, we have determined that parameters related with
morphology such as Raman (blue-)shifting and photolumines-
cence (PL) quenching and shifting are closely related with
microstructure and FF, thus opening up the possibility to take
into account their effect in the high-throughput determination
of the D : A ratio that maximizes the overall PCE (see Section II
in the ESI†). On the other hand, the use of non-standardized
white light for the acquisition of the Jsc data (see Section I in
the ESI†) and the intrinsic uncertainty of the Raman-based
determination of composition34 can explain the small
differences observed in the photocurrent distributions when
comparing both optimization protocols; more specifically, the
ca. 15 wt% offset in the donor content that maximizes the
photocurrent in PTB7-Th:ITIC devices. Nonetheless, these
drawbacks are significantly outweighed by the rapid attainment
of large experimental datasets, which serve as ideal seeds for
training AI algorithms. Furthermore, the experimental
approach demonstrates high reproducibility from batch-to-
batch (see Section II in the ESI†).

Implementation of artificial intelligence algorithms

We next examine the upper crust of the scattered photocurrent
distribution observed in the combinatorial samples (dashed
green lines in Fig. 2c and d). These provide a large overview of
the photocurrent phase space in a very efficient manner. After
determining the optical properties of the D:A blends (see
Section III in the ESI†) and indexing their electronic properties
from the literature (see attached spreadsheet in the ESI†), we
start feeding AI algorithms to elucidate the origin of the
observed trends. Our tentative list of relevant descriptors con-
tains 23 elements per D:A pair, including eight dimensionless
parameters (see Section IV in the ESI†). At this stage, we did not
include descriptors based on properties of the blends, such as
their phase diagrams.
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Our first implementation of AI is a Bayesian machine
scientist,33 which includes the dimensionless descriptors as
inputs to develop analytical models that explore the Jsc–vol%
dependence (see Section V in the ESI†). For any given set of
scattered data, the Bayesian machine scientist identifies the
plausible and simplest mathematical models that describe the
observed trends. We applied this methodology to two families
of OPV binaries (Fig. 3) with PTB7-Th and PBDB-T as donors,
individually blended with four ITIC-based acceptors showing
either distinct end groups (ITIC-M) or side-chains (ITIC-C8 and
ITIC-C2C6). We note that, experimentally, small but non-zero
photocurrent has been measured for some pristine NFAs. A full
study of this goes beyond the scope of this manuscript, but it is
worth noting it, even when the corresponding solar cells have
comparatively low overall efficiencies.

According to the solid curves in Fig. 3, which delimit the Jsc–vol%
space encountered at different active layer thickness values, the
Bayesian machine scientist reproduces well the highest-
performing experimental trends. The actual model equation
is provided in Section V in the ESI.† While we would not
rationalize any physical meaning, we use it to evaluate the
parameter space. Importantly, regarding the photocurrent
phase space, the modeling indicates that (i) PTB7-Th binaries
are characterized by sharp and unbalanced compositional
optimum peaks; (ii) PBDB-T blends are more tolerant to com-
positional fluctuations and their maxima are more balanced in
D : A ratio; (iii) binaries containing ITIC and ITIC-M show
limited thickness dependence; (iv) ITIC-C8 and ITIC-C2C6

blends are very sensitive to active layer thickness variations;
and (v) the bimodal distribution is more or less pronounced
depending on the actual thickness range. Despite the great
descriptive power of the machine scientist in completing the

exploration of the complex photocurrent phase space, it has
some limitations arising from its computational complexity
and the size of the training dataset, including: (i) month-scale
times needed for training; (ii) poor predictive capability out of the
training materials dataset due to the unfeasibility of sampling
models for long enough time; and (iii) an uninformative utiliza-
tion of the features, which makes it impossible to determine
which of them are really important.

Therefore, we tested alternative ML approaches such as the
random forest (RF) algorithm to improve the predictive capability
of the AI models. The RF ensemble is initially trained using the
same OPV binaries previously explored by the Bayesian machine
scientist, which are highlighted with green frames in Fig. 4. The
validation (testing) datasets are highlighted in blue while the
purely predictive scenarios are framed in magenta color. Thus,
Fig. 4 accordingly depicts a combinatorial matrix of the scattered
Jsc–vol% dependences obtained in distinct D:A pairs following the
high-throughput experimentation approach, as well as the RF
model predictions (dashed lines) at different active layer thickness
values (colored from grey to black). Therein, we include organic
semiconductors out of the pristine training material set such as
PCDTBT as donor polymer and two additional acceptors, namely
a fluorinated ITIC derivative (ITIC-4F) and the workhorse
fullerene, PC70BM.

As part of the RF model validation process, we first perform
a leave-one-out cross-validation (LOO-cv) of the RF ensemble
including the 8 training datasets (green frames in Fig. 4), as
detailed in Section VI in the ESI.† Based on the extrapolation
reliability found (ca. 65% of success rate), we further validated
the RF model by comparing the predicted trends with the
experimental results obtained in D:A pairs out of the training
set selection, i.e. binaries for which either one or the two

Fig. 3 A Bayesian machine scientist successfully models the photocurrent phase space in OPV binaries. The high-throughput experimental evaluation
approach is first exploited to efficiently explore the corresponding photocurrent phase space as a function of the active layer thickness and the D : A ratio.
Then, 1000 high-performing photocurrent data points obtained in each of the eight different D:A combinations of PTB7-Th (upper row) and PBDB-T
(lower row) blended with ITIC, ITIC-M, ITIC-C8 and ITIC-C2C6, are selected to train a Bayesian machine scientist. The training results in a unified model
equation including eight dimensionless parameters that can fully explore the photocurrent phase space. Such an equation enables evaluation of
tolerances upon thickness and D : A ratio fluctuations as illustrated by the solid green curves and shaded areas, which delimit the high-performing shell of
normalized photocurrent values at distinct active layer thicknesses: 200 nm, 150 nm, 100 nm and 50 nm.
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materials have not been used within the training step (blue
frames in Fig. 4). This trait is precisely the main feature desired
for highly predictive models.

Our results indicate that the RF model extrapolates very well
(MAE o 0.20) in all validation binaries explored, both the
position of the Jsc maximum and its modulation in the

composition (and thickness) diagram. The results obtained
are equally consistent when validating a larger combinatorial
matrix including data for high performing donor polymers
such as PBDB-T-2Cl (PM7) and PBDB-T-2F (PM6), see Fig. S23
in the ESI.† It is worth highlighting that regardless of the
molecular nature of the materials blended, the only model
inputs for the extrapolation are the corresponding optoelectro-
nic descriptors used in the training of the RF algorithm. In this
particular case, we hand-picked the HOMO/LUMO energy levels
reported from cyclic voltammetry (CV) measurements only as
well as the corresponding mobilities from the same references
(whenever possible), as detailed in Section IV in the ESI.†

Discussion

Undoubtedly, the predictive power of the RF model is remark-
able given its simplicity. From a chemical and fundamental
point of view, the dissimilarities between the materials
employed in the training and both PCDTBT and PC70BM (as
the most distinct validation species in Fig. 4) are important.
The type of moieties in the backbone and grafted side chains
(for the donor polymers), as well as the chemical structure and
topology (for the acceptors) are significantly different. Despite
these acute differences, the RF model draws well the Jsc–vol%
dependence experimentally found in the validation datasets.
On the other hand, the predictive capability of the RF model
(magenta panels in Fig. 4) is extremely powerful to evaluate a
priori the Jsc–vol% diagram of any OPV binary, including their
tolerance against blending ratio fluctuations. This latter fact
has important consequences in the upscaling of any novel D:A
pair and is largely acknowledged in the OPV industry. Indeed,
our results are very promising considering the limited number
(8) of D:A material combinations employed in our first tentative
model training. Further enhancements in the predictive power
can be expected when the training set is extended or additional
material-specific descriptors are included, such as the molecu-
lar structures.

AI models, such as the RF ensemble, also provide the
so-called feature importance (FI), a magnitude that serves to
identify and rank quantitatively those characteristics that
mostly govern the experimental observables, i.e. the Jsc–vol%
dependence. Accordingly, we first perform subsequent FI
analysis using three distinct selections of optoelectronic
descriptors. These differ on how the actual values are picked
from the literature database (480 references accessed): either
randomly, by a consistent manual selection or calculated from
the statistical medians of the scattered data. This analysis is
performed to evaluate the sensitivity of the model against the
consistency of the input descriptors. The accumulated analysis
of the FI in each model (Fig. 5) indicates that parameters
related to the HOMO/LUMO energy level alignment, such as
CTe, CTh or Egap,d–a, as well as those related to the mobility of
the blended species (Dm and mimb) are, statistically, the most
important descriptors in defining the Jsc–vol% dependence.
These findings are in good agreement with the current

Fig. 4 Combinatorial matrix of photocurrent phase diagrams for a set of
high-performing polymer donors (PTB7-Th and PBDB-T) and acceptors,
including traditional fullerenes (PC70BM) as well as a family of novel NFAs
(ITIC and its derivatives: ITIC-M, ITIC-C8, ITIC-C2C6 and ITIC-4F). The
photovoltaic performance is assessed by quantifying the photocurrent
under white light illumination (y-axis) as a function of the donor polymer
loading (x-axis) and the active layer thickness (whose dependence is
implicit in the y-axis dispersion). Datasets are highlighted in green
(training), blue (validation) and magenta (prediction) in correspondence
with the type of D:A combinations when in use with random forest (RF)
models. The mean absolute error (MAE) of the RF model in reproducing
the photocurrent upper shell of 1000 values (depicted in colored rainbow
scale, to be distinguished from the remaining experimental data points in
blue) is shown for the validation datasets. The dashed lines correspond to
the RF model predictions obtained at different active layer thickness
values: from 50 nm (lightest grey) to 200 nm (black).
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understanding of the performance–composition space in OPV,
as the existence of unbalanced charge carrier mobility has been
considered one of the key features that influences the Jsc–vol%
diagram in binary blends.26 Nevertheless, we observe that the

actual selection of values for the descriptors has a large effect
on the FI distribution, thus highlighting the requirement for
great consistency among the experimental data selected or
measured. In this regard, feature selection approaches might
help in identifying those combinations of descriptors that
return more robust models against experimental noise.

In particular, by performing a greedy MAE feature selection
procedure we identify several two-parameter combinations that
yield highly accurate RF models, even showing in some cases
lower MAE than those models trained with a larger list of
descriptors (see Section VI in the ESI†). Among them, we would
like to highlight the pair formed by Egap,d and Egap,a, whose
LOO-cv in 15 distinct D:A binaries is depicted in Fig. 6.
This model, based on Egaps, is remarkably robust against
experimental fluctuations and it extrapolates moderately well
in some unseen blends, including all-polymer binaries (see
Section VI in the ESI†). Moreover, successful model equations
are drawn by the Bayesian machine scientist when employing
these two descriptors only (see Section V in the ESI†). Finally,
we observe that model training using the consistently extracted
solid-state optical band gaps from Tauc plots results as well in
successfully validated RF models (see Section VI in the ESI†).
Hence, Egap,d and Egap,a (either electronic or optical) unify the main
learning characteristics previously found by the 23-parameter
model yet in a more physically intuitive approach and providing
comparable predictive accuracy. Nevertheless, model predictions in
workhorse D:A pairs such as P3HT:PC60BM are not successful,
which we believe is a consequence of the limited extension of the
training datasets employed and the absence of highly semi-
crystalline donor polymers in our training dataset.

Fig. 5 Accumulated feature importance (FI) depending on the choice of
descriptor values. Since the HOMO and LUMO energy levels as well as the
charge carrier mobilities are taken from the literature, we explore the
effect that the actual value of the descriptors has on the FI drawn by the RF
ensemble. We generally observe that descriptors related with energy level
alignment (CTe, CTh, Egap,d–a) as well as those related with the mobility
imbalance (Dm = |md � ma|, mimb = ma/md) show the highest accumulated FI.
The reader is referred to Section IV in the ESI,† for a detailed mathematical
definition of the descriptors employed.

Fig. 6 Leave-one-out cross-validation (LOO-cv) of the two-parameter random forest (RF) model. By performing a greedy mean absolute error (G-MAE)
feature selection procedure we identify the corresponding donor and acceptor electronic band gaps (Egap,d and Egap,a) as one of the most descriptive
paired features in two-parameter RF models. The corresponding LOO-cv predictions (black dots) performed in 15 experimental datasets show excellent
agreement with the experimental normalized Jsc distributions (rainbow colored), with a MAE of 0.16 (�0.07). The RF models are evaluated at the same
grid of thickness–composition values as the experimental measurements.
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In spite of such limitations, we believe that the simplicity
and accuracy of this two-parameter model are powerful
for several reasons: (i) for theoretical material screening, as
Egap is a byproduct of density functional theory (DFT) calcula-
tions; (ii) for combinatorial material synthesis, as organic
semiconductors are usually subjected to CV to quantify
the HOMO–LUMO energy levels as part of a routine set of
electrochemical characterizations; and (iii) because Egap is a
magnitude sufficiently unrelated to processing. We further
note that similar predictive accuracy can be obtained by using
easily measured solid-state optical band gaps in the model
training.

These features are especially advantageous when dealing
with small batches of novel materials. In this case, RF models
may help researchers to tailor more effectively the optimal
device features (i.e. active layer thickness and composition)
and explore de facto the full photovoltaic potential of the new
molecular species. The here employed training dataset initially
formed by 15 D:A binaries is in constant growth; therefore, the
conclusions extracted by the RF model will be progressively
refined blend after blend. For this reason, we make accessible
our combinatorial screening database in a public CSIC reposi-
tory (http://hdl.handle.net/10261/223231), which is open to
contributions from any researchers as part of a joint OPV
materials screening project.

Conclusions

In this work, we have shown the synergic use of high-
throughput experimentation and AI algorithms for the predic-
tion of the Jsc–vol% space in binary bulk heterojunction organic
solar cells. The generation of combinatorial libraries via blade
coating and their subsequent imaging by Raman spectroscopy
and LBIC mapping enables the efficient exploration of the
complex performance landscape in such devices. The subse-
quent training of a Bayesian machine scientist is demonstrated
to be useful in filling the corresponding parameter space,
which serves to evaluate the sensitivity of the selected binary
upon variations of composition, active layer thickness and
other intrinsic optoelectronic descriptors. We finally validate
RF models that are able to predict the Jsc–vol% dependence
with excellent accuracy in unseen binary blends (i.e. blends that
are not in the training materials set). We identify descriptors
related with the HOMO/LUMO energy level alignment of the
donor and acceptor materials, as well as their mobility imbal-
ance among the most important features in shaping the Jsc–
vol% predictions. Interestingly, simple intuitive models of only
two features, namely the electronic (or solid-state optical) band
gaps of the blended species, reproduce with large accuracy the
Jsc–vol% dependence.
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28 S. Langner, F. Häse, J. D. Perea, T. Stubhan, J. Hauch,
L. M. Roch, T. Heumueller, A. Aspuru-Guzik and
C. J. Brabec, Adv. Mater., 2020, 32, 1907801.

29 A. Sánchez-Dı́az, X. Rodrı́guez-Martı́nez, L. Córcoles-Guija,
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33 R. Guimerà, I. Reichardt, A. Aguilar-Mogas, F. A. Massucci,
M. Miranda, J. Pallarès and M. Sales-Pardo, Sci. Adv., 2020,
6, eaav6971.

34 X. Rodrı́guez-Martı́nez, M. S. Vezie, X. Shi, I. McCulloch,
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