Issue 27, 2021

On the metal–ligand bonding in dinuclear complexes with redox-active guanidine ligands

Abstract

Coordination compounds with redox-active ligands are currently intensively studied. Within this research theme, redox-active guanidines have been established as a new, eminent class of redox-active ligands. In this work the variation of metal-guanidine bonding in dinuclear transition metal complexes with bridging redox-active tetrakisguanidine ligands is analysed. A series of dinuclear complexes with different metals (Mn, Fe, Co, Ni, Cu and Zn) is synthesized, using either newly prepared redox-active tetrakisguanidino-dioxine or previously reported tetrakisguanidino-benzene ligands. The discussion of the bond properties in this work is predominantly based on the trends of structural parameters, derived from determination of single-crystal structures by X-ray diffraction and quantum chemical calculations. In addition, the trends in the redox potentials and magnetometric (SQUID) measurements on some of the complexes are included. Due to their combined σ- and π-electron donor capability, redox-active guanidine ligands are weak-field ligands; the σ- and π-bonding contributions vary with the metal. The results highlight the peculiarity of copper-guanidine bonding with a high π-bond contribution to metal-guanidine bonding, enabled by structural distortion of the coordination mode from tetrahedral in the direction of square-planar, short copper-guanidine bonds and minor displacement of the copper atoms from the ligand aromatic plane.

Graphical abstract: On the metal–ligand bonding in dinuclear complexes with redox-active guanidine ligands

Supplementary files

Article information

Article type
Paper
Submitted
23 Apr 2021
Accepted
09 Jun 2021
First published
10 Jun 2021

Dalton Trans., 2021,50, 9467-9482

On the metal–ligand bonding in dinuclear complexes with redox-active guanidine ligands

L. Steuer, E. Kaifer and H. Himmel, Dalton Trans., 2021, 50, 9467 DOI: 10.1039/D1DT01354H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements