Daisuke Tanaka et al.
Electrolytic synthesis of porphyrinic Zr-metal-organic frameworks with selective crystal topologies
Electrolytic synthesis of porphyrinic Zr-metal–organic frameworks with selective crystal topologies†

Keito Okada,a Yoko Tanaka,a Tomoko Inose,a Hirofumi Yoshikawa,a,b and Daisuke Tanaka a,c

The thermodynamic (PCN-222) and kinetic (PCN-224) products of porphyrinic Zr-metal–organic frameworks (MOFs) were synthesized via an anodic dissolution approach for the first time. To the best of our knowledge, this is the first report of MOF polymorphs being controlled by electrolysis. The selective formation of PCN-222 requires an amorphous component to be present on the electrode during the initial reaction process.

Recently, the electrochemical synthesis of metal–organic frameworks (MOFs) has attracted considerable attention as a promising industrial method because it allows the in situ deposition of MOFs onto conductive surfaces.1–3 Various MOFs have been synthesized using both anodic dissolution4–10 and cathodic deposition approaches.7,11–16 In particular, Zr(IV)-based MOFs have been widely investigated due to their high chemical and thermal stabilities.17 Ameloot et al. reported the electrochemical deposition of UiO-66 films, which are prototypical Zr-MOFs, onto the surfaces of anodes and cathodes.18 However, there are numerous difficulties in the electrochemical synthesis of Zr-MOFs, because the clusters formed by zirconium are largely affected by slight changes in the reaction conditions, such as concentration, reaction temperature, and reaction time. In particular, the adduct of a carboxylic acid modulator is known to be effective for selectively forming clusters.17,19 In addition, controlling the various crystal topologies (polymorphs) and defects of Zr-MOFs is a central research topic in this area of chemistry.17 Generally, electrolytic reactions are interfacial heterogeneous reactions that proceed near the electrodes. The reactivity of the substrates in an electrochemical reaction differs from that of substrates in conventional bulk reactions because the precursor is not homogeneously distributed in the reaction cell but rather localized near the electrode.20 Therefore, an approach for controlling the MOF topologies in an electrolytic reaction has not yet been completely elucidated, leaving room for further investigation.

Herein, we have investigated the electrochemical synthesis of porphyrinic Zr-MOFs on an electrode surface. These MOFs are highly stable and exhibit excellent photocatalytic properties, which originate from the porphyrin ligand; viz., tetraakis(4-carboxyphenyl)porphyrin (H4TCPP).17,21 Crystals of Zr-MOFs can exist in different topologies depending on the reaction conditions. In particular, porphyrinic Zr-MOFs with Zr6O8 nuclei can exist in at least six different topologies.22–27 Generally, the obtained crystal topology depends on the various experimental parameters used during the crystal growth process.22,28–35 Recently, the correlation between the topologies and the experimental parameters of porphyrinic Zr-MOF syntheses was systematically investigated by the solution-stirring method, and the effects of temperature and reaction time on the crystal phases were reported.36 Although porphyrinic Zr-MOFs have been synthesized via the electrophoretic deposition (EPD) method, which employs both synthesis and deposition processes,37 the in situ electrochemical deposition of porphyrinic Zr-MOFs by a facile one-step synthesis has not yet been accomplished. Moreover, there are no reports on the selective production of MOF crystal topologies via electrolysis. In this study, we used an anodic dissolution approach to synthesize Zr-MOFs and determined the synthetic conditions required to yield the thermodynamic product PCN-222/ MOF-545 (esq topology) and the kinetic product PCN-224 (she topology) (Fig. 1).23,25,27,36 To the best of our knowledge, this is the first report of MOF polymorphs being controlled by electrolysis. In particular, the formation of PCN-222 is preceded by
the formation of an amorphous component during the initial stages of electrolysis.

The synthetic conditions used in this study are similar to those used for electrochemical UIO-66 film deposition but with slight modifications. A Zr plate (1 × 1 cm², thickness: 0.2 mm) welded to a Pt/Ir wire was used as the anode, while another Pt/Ir wire was used as the cathode. A ligand solution was prepared by dissolving H₄TCP in N,N-dimethylformamide (DMF). Acetic acid (AcOH) was added as a modulator, while water and nitric acid were used as additives to enhance the crystallinity of the product. The two electrodes were immersed in the ligand solution and heated to 110 °C under a nitrogen atmosphere and a constant current of 30 mA for 2 h. The crystalline compound obtained under condition A, which employed low ligand and modulator concentrations, was different from the compound formed under condition B, which used high ligand and modulator concentrations (see the table in Fig. 1). The same reactions were carried out at 60 °C: under conditions A and B, but no crystalline compound was obtained in either case (see note S3 in the ESI†). Furthermore, crystals could not be obtained without the applied current (see note S4 in the ESI†). This suggests that the generation of Zr(IV) ions by electrolysis is crucial for the formation of crystalline compounds.

Under conditions A and B, purple and dark purple crystals, respectively, were obtained on both sides of the anode. Scanning electron microscopy (SEM) observations of the synthesized anode substrate under each condition showed that spherical polycrystals and cubic crystals were formed under conditions A and B, respectively (Fig. 2a and b). These two types of crystals were peeled off of the substrate and then characterized by powder X-ray diffraction (PXRD) measurements (Fig. 2c and S4†). The PXRD patterns revealed that the purple crystals formed under condition A were PCN-222 and PCN-224. However, there is a possibility of MOF-525 (ifw topology) also forming under condition B because its simulation pattern is similar to that of PCN-224. In addition, the PXRD patterns of the crystals precipitated in the solution (Fig. S5†) revealed the low crystallinity of PCN-222 precipitated under condition A and suggested that a mixture of Zr-MOFs with different crystal topologies (NU-902 with scu topology and PCN-223 with shp topology) was formed in the solution under condition B. Subsequently, the properties of the pores of the crystals deposited on the anode substrates were evaluated by nitrogen gas adsorption measurements performed at 77 K (see note S6 in the ESI†). The purple crystals produced under condition A showed a type-IV isotherm, while the dark purple crystals yielded under condition B followed a type-1 isotherm. The shapes of the adsorption isotherms are identical to those previously reported for PCN-222 and PCN-224. Thus, PXRD and nitrogen sorption isotherms verified that two types of porphyrinic Zr-MOF crystal topologies were selectively synthesized via electrolysis. However, the reported Brunauer–Emmett–Teller (BET) surface areas of PCN-222 and PCN-224 are 2200 m² g⁻¹ and 2600 m² g⁻¹, respectively, while the BET surface areas of our crystals obtained under conditions A and B are 419 m² g⁻¹ and 2093 m² g⁻¹, respectively. The crystals obtained under condition A had low crystallinity, suggesting the presence of non-porous impurities. However, the crystallinity of PCN-222 was improved by additional heating after electrolysis (see note S7 in the ESI†). This suggests that there is a good possibility that the crystallinity can be improved by further optimizing the synthetic conditions to include extended heating times.

Previous reports have indicated that PCN-222 is the thermodynamic product and PCN-224 is the kinetic product. Considering the precursor concentrations used in this study, lower ligand and modulator concentrations promoted the formation of the thermodynamic product, while higher concentrations afforded the kinetic product. This observation is strik-
ingly different from those made during conventional synthetic techniques, wherein the thermodynamic products were more likely to be obtained in the presence of high concentrations of strongly binding modulators. Furthermore, compared to that of PCN-224, the formation of PCN-222 during bulk synthesis is facilitated in the presence of high porphyrin concentrations under conventional solvothermal synthesis condition.23,25 Thus, the phenomenon involved in the electrolytic process seems to significantly differ from that observed in conventional bulk syntheses. Therefore, we investigated the mechanism responsible for the formation of PCN-222 and PCN-224 under the different electrolysis conditions.

To elucidate the reaction mechanism, time modulation experiments were performed under each concentration condition. The formation of PCN-222 and PCN-224 was investigated using PXRD at different reaction times: 3 min, 1 h, and 3 h. Materials that formed on the substrates after 3 min were characterized as is, while those formed after 1 h were peeled off of the substrate prior to PXRD analysis. The PXRD patterns of the time modulation for conditions A and B are shown in Fig. 3a, 3b, S8, and S9†. Under condition A, the crystallinity of the product, PCN-222, improved with time. Under condition B, peaks corresponding to PCN-224 were observed in the samples obtained after 1 h and 2 h. However, a shoulder appeared at approximately 5° and new peaks were observed at approximately 7° and 10° in the PXRD pattern of the crystals formed after 3 h. The positions of the new peaks were identical to the diffraction angles of the major peaks of the NU-902 and PCN-223 crystal topologies (Fig. S9†), indicating that under condition B, a mixture of Zr-MOFs with different crystal topologies (NU-902 and PCN-223) was yielded with increasing time.

The SEM images and photographs of the substrates obtained under each condition revealed that at a reaction time of 3 min, purple deposits were only observed on the anode under condition A, while the anode substrate remained unchanged under condition B (Fig. 3c and d). The PXRD patterns of the substrates obtained under each condition showed no clear diffraction peaks (Fig. 3a and b; S8; and S9†). Therefore, Raman spectroscopy was conducted to analyze the surface states of the anodes. The results obtained after 3 min and 2 h under each condition are shown in Fig. S10 and Table S6 (see note S9 in the ESI†). Under condition A, a porphyrin-derived vibration was observed from the substrate formed after 3 min and 2 h, indicating that the porphyrin-derived material was immediately deposited after applying a current under condition A. By contrast, deposition did not occur in the initial stages of the reaction under condition B. This difference in the deposition phenomena possibly arises from the modulator concentration present in condition B being higher than that in condition A, resulting in impeded porphyrin aggregation under the former and successful aggregation under the latter.

Furthermore, additional experiments were performed to investigate the effects of ligand and modulator concentrations on the crystal phase changes of porphyrinic Zr-MOFs formed by electrolytic synthesis. To accomplish this, electrolytic synthesis was carried out under two other sets of conditions: Condition C, which employed the same amount of modulator as that used in condition A and the same ligand concentration as that in condition B; and condition D, which used the same amount of modulator as that used in condition B and the same ligand concentration as that in condition A (see the table in Fig. 1). The crystals obtained on the anode under these two conditions were subsequently analyzed by PXRD (Fig. 2c and S4†). The PXRD patterns showed that PCN-222 was formed under condition C, where only the ligand was added in large amounts (similar to condition A). On the other hand, under condition D, where only a large amount of modulator was added, a mixture of various crystal topologies, such as PCN-222, PCN-223, and PCN-224, was formed. Therefore, it is suggested that the amount of modulator contributes more than the ligand concentration to the different MOF crystal topologies formed during electrolytic synthesis.

Based on these results, we propose that the mechanism for PCN-222 and PCN-224 formation on the anode proceeds as shown in Fig. 4a. Under condition A, the amorphous, porphyrin-derived component, which was deposited immediately after applying a current, gradually changes to a crystalline PCN-222, whose crystallinity improves with increasing reaction time. Nucleation of the thermodynamically stable PCN-222 does not occur directly on the substrate; instead, PCN-222 is formed by heating the amorphous phase present on the substrates for a certain time period. This presumption is consistent with the low specific surface area of the synthesized PCN-222. On the other hand, as mentioned earlier, under condition B, the high AcOH concentration near the anode hinders the approach of porphyrin toward the Zr(IV) ions. Thus, the deposition of amorphous components is inhibited during the initial stages. However, after sufficient time, the Zr(IV)-ion concentration increases and the ions are able to react with the porphyrin ligands approaching the interface to form crystalline PCN-224.
nuclei. This initiates the growth of PCN-224 crystals, which are more thermodynamically stable than the amorphous components. However, over time, a mixture is obtained as the generated PCN-224 gradually transforms into other, even more thermodynamically stable crystal topologies. These findings indicate that the amorphous component is the kinetically-favored compound, PCN-222 is the most thermodynamically stable, and PCN-224 is an intermediate compound (Fig. 4b). Thus, the selective synthesis of thermodynamically stable PCN-222 was achieved via the formation of a kinetic, amorphous compound at the electrode interface. On the other hand, by adding a large amount of modulator, the low-crystalline amorphous-phase formation was hindered, while the highly crystalline PCN-224 was deposited directly onto the anode.

Conclusions

Two types of porphyrinic Zr-MOF crystal topologies were successfully synthesized for the first time via an anodic dissolution approach, wherein a Zr plate was used as the anode. The thermodynamic product, PCN-222, was obtained under low ligand and modulator concentrations, and the kinetic product, PCN-224, was obtained under high concentrations. These concentration conditions differed from those used in bulk synthesis. The mechanism for the formation of both MOFs was investigated by time modulation experiments. These experiments revealed that under low modulator concentrations, the kinetically-favored, amorphous component is initially deposited and then gradually transforms into PCN-222, the most thermodynamically stable MOF. On the other hand, under high modulator concentrations, PCN-224, which is more thermodynamically stable than the amorphous component, is directly produced onto the anode surface and converts to various other thermodynamically stable phases over time. In this study, we demonstrated that the interfacial reactions, and consequently the MOF crystal topologies, can be successfully controlled by modifying the reaction conditions. These findings may assist the development of an electrolytic process for precise MOF synthesis. In addition, this study encourages the development of other novel methods for fabricating various crystalline porphyrinic Zr-MOFs. Furthermore, since past literature has reported that the formation of zirconium oxide competes with the electrolytic synthesis of UiO-66, the effect of the presence of zirconium oxide on the crystallinity and selectivity of Zr-MOF synthesis is currently being investigated.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by JST PRESTO (Grant No. JPMJP17NA) and JSPS KAKENHI (Grant No. 20H02577, 17H03003, 20K21165, 20K05413, 19KK0136, 20H04646, and 20H04680). This work was performed under the Cooperative Research Program of “Network Joint Research Center for Materials and Devices”.

References