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COVID-19 has resulted in huge numbers of infections and deaths worldwide and brought the most severe

disruptions to societies and economies since the Great Depression. Massive experimental and

computational research effort to understand and characterize the disease and rapidly develop diagnostics,

vaccines, and drugs has emerged in response to this devastating pandemic and more than 130 000

COVID-19-related research papers have been published in peer-reviewed journals or deposited in preprint

servers. Much of the research effort has focused on the discovery of novel drug candidates or repurposing

of existing drugs against COVID-19, and many such projects have been either exclusively computational or

computer-aided experimental studies. Herein, we provide an expert overview of the key computational

methods and their applications for the discovery of COVID-19 small-molecule therapeutics that have been

reported in the research literature. We further outline that, after the first year the COVID-19 pandemic, it

appears that drug repurposing has not produced rapid and global solutions. However, several known drugs

have been used in the clinic to cure COVID-19 patients, and a few repurposed drugs continue to be

considered in clinical trials, along with several novel clinical candidates. We posit that truly impactful

computational tools must deliver actionable, experimentally testable hypotheses enabling the discovery of

novel drugs and drug combinations, and that open science and rapid sharing of research results are critical

to accelerate the development of novel, much needed therapeutics for COVID-19.
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Introduction. A brief survey of
COVID-19 drug discovery landscape

With almost 180 million cases and 4 million deaths worldwide
(June 2021),1 the COVID-19 pandemic generated a need for a
rapid, massive and effective therapeutic response. Since the
emergence of COVID-19 in late December 2019, both its causative
agent, SARS-CoV-2 virus, and the host response to the virus have
been extensively studied to understand the disease pathogenesis,
the structure of the constituent viral proteins, and the viral-host
interactome to guide rapid development of both direct-acting
antiviral (DAA) and host-directed agents. Clearly, an immediate
emergence of new, effective drugs for COVID-19 has not been
an option because the usual extensive drug development and
clinical testing takes 10–15 years. Thus, along with immense,
and fortunately, successful efforts to develop vaccines against
COVID-19, many scientists and clinicians have pursued the
repurposing of existing drugs, clinical trials candidates,
and approved natural products that have already been in man
and whose toxicity and preliminary pharmacokinetics have
been known.

The response by the research community to the pandemic
measured by the number of publications has been substantial.
As of April 2021, nearly 125 000 research papers on COVID-19
have been annotated in Pubmed2 and more than 14 500 preprints
have been deposited by the scientific community in MedRxiv or
BioRxiv,3 with many more appearing in other preprint servers.
Many of these publications reported on extensive structural and
proteomic studies of SARS-CoV-2 components, biological screen-
ing of chemical libraries, and other experimental investigations

that provided valuable data to support multiple computational
approaches to COVID-19 drug discovery. Conversely, many
computational studies proposed candidates for drug repurposing
as well as novel drug candidates, but the overwhelming majority of
respective publications reported no supporting experimental
evidence. The number of such manuscripts has become so
overwhelming that even preprint servers have stopped accepting
manuscripts describing purely computational submissions.4

However, comprehensive studies combining computational inves-
tigations with experimental validations have emerged as well.

Due to this unprecedented number of studies by both specialists
and novices in computer-aided drug discovery (CADD) who
embarked on virtual searches for COVID-19 drug candidates,
we considered it extremely timely to critically review computational
approaches employed in CADD for COVID-19 and the results of
their application. We felt it was important to summarize the
strategies and best practices of computational drug discovery
that have emerged from the analysis of the most impactful
publications. We have focused on small molecule drugs, as
vaccine development has been reviewed elsewhere.5,6 It worth
noting that although multiple effective COVID-19 vaccines have
been developed, tested, and distributed with unprecedented
speed, their long term efficacy, side effects, and coverage of
rapidly emerging SARS-CoV-2 variants are not fully understood.
In addition, none of the vaccines developed thus far offered
100% protection to all vaccinated people. It is also important to
state that small-molecule DAA agents and vaccines correspond to
fully complementary therapy- and prevention-oriented approaches,
both aiming to contain COVID-19 pandemics. Thus, as emphasized
in the recent Nature editorial7 and argued in a recent historical
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survey on antiviral drug discovery,8 efforts to develop new antiviral
medications should not only continue but accelerate.

In this review, we provide a critical summary of research
efforts that emerged in the CADD community in response to the
pandemic. The overall flow of this review is shown in Fig. 1.

We start by providing brief overview of small molecule drug
discovery and repurposing efforts and key data-rich resources
that have been developed in the last year with the focus on
SARS-CoV-2 and COVID-19. We follow with the detailed con-
sideration of SARS-CoV-2 proteins critical to the virus’ life cycle
and a critical overview of the computational drug discovery
studies that can be classified into three major categories:
structure-based approaches including molecular docking,
molecular dynamics (MD) and free energy perturbations (FEP)
(reviewed, in part, recently9); ligand-based methods such as
Quantitative Structure–Activity Relationship (QSAR) modeling;
and knowledge-mining approaches, including Artificial Intelli-
gence (AI), that led to data-supported nomination and testing of
several repurposed drug candidates and drug combinations. In
reviewing these approaches and their applications, we empha-
size the importance of reliable experimental validation of
computational hits and describe the advantages of open drug
discovery to accelerate the discovery of novel therapeutics
against both the current and possible future pandemics.

We can summarize our analysis of the CADD research
literature for COVID-19 as follows:

– The magnitude and urgency of the research response to
COVID-19 pandemics highlights the ability of CADD to capture

and transform both pre-existing and new data of relevance to
the pandemic into actionable drug discovery hypotheses.

– CADD provides a robust framework for open science including
knowledge exchange, open-source software implementation, and
data sharing, as the nature of the field embodies collaboration
between computational, experimental, and clinical scientists, and
convergence of multi-disciplinary, goal-oriented approaches toward
discovery and development of novel and powerful medicines.

– The expert use of methods and adherence to the best practices
of CADD catalyze faster experimental success and enable rapid
emergence of valid, experimentally confirmed drug candidates.

We trust that our observations and summaries of the best
practice approaches to CADD in the times of pandemic are
helpful to all investigators working on COVID-19 as well as other
important drug targets. We hope this critical review will prove
valuable not only for researchers but also for journal editors by
helping them to assess quality and impact of manuscript
submissions and media stories on COVID-19 drug discovery.

Critical assessment of early
experimental, clinical, and
computational studies on drug
repurposing against COVID-19

The emergence of COVID-19 generated a sense of urgency
among scientists from around the world. Many scientists with

Fig. 1 Summary of key developments in CADD for COVID-19.
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diverse educational and professional backgrounds have refocused
their computational or experimental research toward the discovery
of drug candidates for COVID-19. In the earliest stages of the
outbreak, several publications reported compounds with low
micromolar in vitro activity against SARS-CoV-2. Most of these
studies involved FDA approved drugs with limited assessment of
novel chemical entities. Larger screens were subsequently per-
formed, and many hits were screened with human, or animal cells
infected with the virus. To date, hundreds of structurally diverse
small molecules have been assessed for their activity in virus-
infected cells (Table 1). We briefly review some of these studies
below as many of them have provided data to empower computa-
tional model development and hit validation.

One of the earliest drug repurposing studies18 identified
several previously known antivirals with low mM activity against
SARS-CoV-2 virus in Vero cells and possessing a selectivity index
(SI) greater than 10,. Those included FDA-approved drugs
nitazoxanide (EC50 2.12 mM), remdesivir (EC50 0.77 mM), and
chloroquine (EC50 1.13 mM). Although subsequent clinical trials
did not deliver a ‘silver bullet’ for COVID-19, remdesivir was
eventually authorized for the clinical use.19 Other notable
repurposing examples included lumefantrine (EC50 23.50 mM),
the natural products lycorine (EC50 0.31 mM) and oxysophoridine
(EC50 0.18 mM), where the latter two demonstrated Vero cell
activity superior to gemcitabine (EC50 1.24 mM) and chloroquine
(EC50 1.38 mM). Another repurposing screen identified niclosa-
mide (IC50 0.28 mM), ciclesonide (IC50 4.33 mM), and tilorone

(IC50 4 mM), previously shown to be active against MERS and
Ebola. Pyronaridine (IC50 31 mM) was also identified as a SARS-
CoV-2 candidate inhibitor, and both tilorone and pyronaridine
have progressed into clinical trials.20 The FDA approved anti-
parasitic, ivermectin (IC50 2.8 mM) also demonstrated significant
in vitro activity in Vero cells leading to broad discussions in the
literature21 and eventual nomination for clinical trials.22

Progressive growth of assay- and robotic capabilities has
enabled large-scale screening campaigns against SARS-CoV-2. For
example, a recent study23 used biological activity-based modeling
to identify 311 chemicals, of which 99 demonstrated in vitro
activity against the virus. In another notable large-scale study,
12 000 clinical stage or FDA approved compounds from the
ReFRAME library were evaluated in a Vero cell assay.12 As the
result, twenty-one hits were identified with promising dose–
response readouts. Of those, clofazimine (EC50 0.31 mM) and
the kinase inhibitor apilimod (EC50 0.023 mM) were of particular
interest. Apilimod was subsequently tested in 293T and Huh-7
infected cells where it demonstrated striking potency (12 and 88
nM, respectively);12 the drug entered clinical trials for COVID-19
in June 2020.24 In July 2020, clofazimine has also advanced into
clinical trials as a part of a combination therapy.25

In another study,26 authors demonstrated that SARS-CoV-2
virus can rewire phosphorylation signaling in infected Vero and
A549 cells, also suggesting the use of kinase inhibitors, including
apilimod. A drug repurposing study14 used a protein interaction
map to identify approved and experimental drugs that bind to

Table 1 Examples of actives derived from drug repurposing for SARS-CoV-2

Molecule Name Target
SARS-CoV-2 activity
in Vero cells SARS-CoV-2 activity on other cell types

Remdesivir RNA-dependent
RNA polymerase EC50 0.77 mM2 Human epithelial cell culture

(EC50 0.01 mM); Calu3 (EC50 0.28 mM)10

EC50 1.65 mM5

Apilimod PIKfyve EC50 0.023 mM11 293T cells (EC50 0.012 mM)12

IC50 o 0.08 mM13 Huh-7 cells (0.088 mM)12

A549 cells (IC50 0.007 mM)14

GC376 Mpro (Ki 12 nM)15 EC50 0.91 mM15 Not tested

EIDD-1931 RNA-dependent
RNA polymerase IC50 0.3 mM16 Calu-3 (IC50 0.08 mM)17

Review Article Chem Soc Rev

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
Ju

ly
 2

02
1.

 D
ow

nl
oa

de
d 

on
 2

/4
/2

02
6 

11
:5

3:
41

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0cs01065k


This journal is © The Royal Society of Chemistry 2021 Chem. Soc. Rev., 2021, 50, 9121–9151 |  9125

sigma-1 and 2 receptors (acting as host factors), where the most
potent compound, PB28 demonstrated IC90 of 280 nM in Vero cells.

According to DrugBank, more than 680 medications have
been in over 3300 clinical trials, including remdesivir, hydroxy-
chloroquine, chloroquine, lopinavir, ritonavir, camostat, ivermectin
and baricitinib, among others.27 Unfortunately, despite significant
effort toward finding COVID-19 drugs among approved therapeu-
tics, most repurposing studies (including clinical trials) have proved
unsuccessful. A recent summary of trends observed across several
thousand of COVID-19 therapeutic clinical trials of drug products
and antibody-based agents with the total enrolment of over 500 000
patients was recently published by the FDA.11 The study came to
rather unenthusiastic finding that ‘‘the vast majority of trials of
therapeutics for COVID-19 are not designed to yield actionable
information; low randomization rates and underpowered
outcome data render matters of safety and efficacy generally
uninterpretable’’. This observation, however, does not obviate
the need for carefully designed and executed trials involving
evidence-supported drug candidates. For instance, Pfizer’s
SARS-CoV-2 Main protease (MPro) inhibitor PF-0083523113 con-
tinues to be clinically evaluated and still provides hope. Moreover,
Pfizer recently announced that the company started clinical trials
of another, new oral antiviral agent PF-07321332, designed as
specific SARS-CoV-2 MPro inhibitor in less than a year.

Along with experimental repurposing screening campaigns,
there has been an avalanche of computational drug repurposing
studies, especially against SARS-CoV-2 main protease (Mpro)
that was the first viral protein with X-ray resolved structure.28

Shortly after the first structure Mpro was deposited into the
Protein Data Bank,29 numerous research groups from all
around the world started submitting manuscripts describing
docking experiments with SARS-CoV-2 Mpro and various drugs,
natural products, nutraceuticals, etc., have been annotated as
putative hits.

In our observation, many researchers started to use molecular
modeling and cheminformatics tools for the first time. Conse-
quently, many were unaware of the best practices of CADD and
rigorous protocols required for data preparation, curation, and
proper validation of predictions. Arguably, the most common
issue was the absence of chemical standardization and curation,
leading to the use of incorrect protonation states in the ligands,
missing hydrogen atoms, presence of salts, duplicates, incon-
sistent representations of chemical moieties and tautomers,
etc.30 Additionally, some studies employing molecular docking,
omitted key steps of protein structure preparation, including
removal of water molecules, addition of explicit hydrogens
and assignment of accurate protonation states for residues,
identification and addition of missing side chains or loops,
removal of overlapping atoms and energy-minimization of side-
chains among others. Some papers apparently docked their
library ‘‘directly from SMILES strings’’, strongly suggesting
neglect of proper compound curation and preparation, which
are critical.30 Another common shortcoming was the use of rigid
docking, which has significant limitations and may require
additional post-processing steps.31 Unfortunately, as mentioned
above, many of such papers (frequently accompanied by

press releases) made misleading claims about the discovery of
COVID-19 cures based solely on computational model predictions.32

Clearly, such statements can only be made after robust experimental
and, ideally, clinical validation of computer-generated drug
candidates.

Most promising drug candidates that were not FDA approved
drugs have been previously known or well-advanced experimental
DAA agents. For example, the SARS-CoV Mpro inhibitor GC376
also showed excellent potency against SARS-CoV-2 Mpro

(Ki 12 nM) and demonstrated significant activity in Vero cells
(EC50 0.91 mM). Another important example is EIDD-1931, a
broad-spectrum antiviral, targeting RNA viruses and causing
mutations to accumulate in viral RNA. It was shown to inhibit
SARS-CoV-2 in Vero (IC50 0.3 mM) and Calu-3 cells (IC50 0.08 mM)
and a prodrug version of this molecule was previously reported
active against SARS-CoV and MERS-CoV in mouse models.
Notably, recent clinical trials33 of the Pfizer’s SARS-CoV Mpro

inhibitor PF-07304814 (a prodrug form of the aforementioned
PF-00835231) generated promising initial results warranting
the continuation of the study.13 There is growing understanding
that future computational and experimental studies need to place
greater focus on the development of novel chemical entities with
targeted, tailored activity against SARS-CoV-2 virus. As mentioned
above, clinical studies of another Pfizer compound, PF-07321332,
have begun: if approved, it could become the first DAA drug
developed specifically against SARS-CoV-2. This compound is an
example of the focused drug discovery approach enabled by the
knowledge of the specific viral target. Thus, continuously evolving
knowledge of these targets along with the expert use of current
and novel computational approaches to antiviral drug discovery
using constantly emerging SARS-CoV-2 and COVID-19 knowledge
bases is critical for guiding DAA efforts as discussed in the next
sections of this review.

Databases and research resources that
support COVID-19 drug discovery

In response to the pandemic, many established research resources
have created focused COVID-19 data and publication collections,
and several new resources have appeared as well. To name a
few, the world’s premier biomedical and life sciences literature
collection, PubMed, has created a special SARS-CoV-2 Data
Resource,2 providing linkages to the respective collections of
publications annotated in both Pubmed and Pubmed Central,
clinical trials described in ClinicalTrials.gov, and other informa-
tion summaries. One of the most important general collections of
biochemical endpoints – the ChEMBL database – released a
special edition including COVID-19 relevant screening results for
more than 20 000 compounds.34 The European Bioinformatics
Institute (EBI) that hosts ChEMBL established a comprehensive
COVID-19 Data Portal35 that integrates data on both viral and host
protein sequences, interacting viral-host proteins, and several
other information sources. An important chemical genomics
resource, providing data on biological screening of chemical
libraries in SARS-CoV-2 target-specific as well as phenotypic assays,
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has been established by the National Center for Advancing Trans-
lational Studied (NCATS) at the NIH.36

In support of structure based drug discovery, the Diamond
Synchrotron source has made available a set of B1500 resolved
crystal structures of low-molecular weight fragments bound to
SARS-CoV-2 Mpro, along with their experimentally estimated
binding affinities.37 This and similar efforts resulted in more
than 1100 protein structures deposited into the Protein Data
Bank (PDB) to date, covering most of SARS-CoV-2 RNA
translates.29 Furthermore, the Diamond fragments collection
was used as a starting point for collaborative, community-
sourced de novo ligand design led by PostEra.38 As the result,
more than 1800 of specifically designed compounds have been
proposed, synthesized, and screened to date and the results
were publicly disclosed.

Unstructured data depositories offer another source of
valuable information on the virus and the infection. Thus, most
scientific publishers agreed to freely disclose all COVID-19
related papers to the public. Kaggle has made available the
COVID-19 Open Research Dataset (CORD-19) containing about
200 ,00 scholarly articles on new and related coronaviruses,
including over 100 000 full-text items.15 Similarly, Elsevier,
released the free Coronavirus Information Center encompassing
more than 30 000 papers and book chapters.39

The experimental information of protein–protein inter-
action (PPI) in SARS-CoV-2-virus represents another invaluable
knowledge source. Such PPI networks have been reconstructed
for proteins encoded by genes, which expression is altered in
SARS-CoV-2-infected human cells organs, model organoids and
cell lines. These networks enable to identify hubs (highly
connected protein nodes), and bottlenecks (proteins exclusively
connecting distinct modules), that represent potentially valuable
drug targets for COVID-19.16 A powerful Coronavirus Discovery
Resource to visualize such network was developed by the Institute
of Cancer Research in the UK.40

Similar approach have been used to construct drug–protein
interaction networks, such as Connectivity Map, which has been
extensively employed to flag potential COVID-19 therapeutics.16

This approach identifies compounds (including known drugs),
which upregulate human genes that are suppressed in cells
invaded by SARS-CoV-2. These chemically induced gene expression
profiles can be obtained from LINCS L1000 database, which
contains information on thousands of perturbed genes at various
time points, doses, and cell lines. This approach can be used
separately or together with network-based applications to
identify possible anti-COVID drugs.16 Examples of such studies
are summarized in Table 2 illustrating that COVID-19 targets
can be identified from PPI networks, from compound-target
interactions, at transcription levels, as well as from pathways
and biological processes.

In summary, data accumulated in multiple databases and
repositories enable the application of ligand based, structure
based, and knowledge mining approaches in support of
COVID-19 drug discovery that we discuss below. The role of
SARS-CoV-2 targets in guiding DAA drug discovery efforts is
discussed in the next section of this review.

Targets for antiviral drug discovery for
SARS-CoV-2

SARS-CoV-2 is a member of the same single positive-stranded
RNA enveloped virus Coronaviridae family responsible for the
2002 severe acute respiratory syndrome (SARS) and 2012 Middle
East respiratory syndrome (MERS) epidemics. Notably, the
number of potentially harmful pathogens is very large, while
resources for anti-infective research are limited and, in fact,
have been diminishing over recent years. In April 2018, a World
Health Organization (WHO) panel of scientists and public
health experts listed nine highly pathogenic viruses likely to
cause major epidemics, including Ebola, Zika and Lassa
viruses, as well as MERS and SARS coronaviruses. Although
none of them are new, there are no DAA agents or vaccines
capable to address these life-threatening pathogens.45 Remark-
ably, the WHO panel also considered a likely-to-emerge
‘‘Disease X’’ with epidemic or pandemic potential caused by a
previously undisclosed pathogen.46 In hindsight, COVID-19
became the first such ‘‘Disease X’’, and there is a significant
likelihood that similar pandemics will emerge in the future,
unless the need for ‘‘disease preparedness’’ is recognized and
properly resourced. We anticipate that rapid CADD methodology
should become an integral part of future integrated pathogen-
defense systems, and the current efforts on targeting SARS-CoV-2
could be used as a practical road map.

The relatively small SARS-CoV-2 genome suggests that most
of its 29 encoded proteins should play important roles in host
invasion and/or viral replication. Hence, successful inhibition of
many of them could lead to useful therapeutics. An insightful
recent study has examined the variability of these targets across
58 coronaviruses (CoVs) to support the search for broad spectrum
antivirals.47 The authors have also established an interactive web
portal48 displaying the 3D structures available for 15 of the SARS-
CoV-2 proteins with 19 putative drug binding sites mapped on
these structures; this set of binding sites was collectively called a
SARS-CoV-2 pocketome. This portal is very useful for scientists
interested in analyzing these binding sites as part of the future
structure based drug discovery efforts. Computer-aided discovery
of drug candidates targeting key coronaviral proteins is discussed
in subsequent sections. Herein, we summarize relevant informa-
tion about the SARS-CoV-2 protein targets that can be explored by
computational modeling.

At the whole-genome level SARS-CoV-2 exhibits 79% sequence
identity to SARS-CoV and about 50% identity to MERS-CoV. In
spite of the relatively modest levels of sequence conservation, CoVs
share essential (more conserved) genomic targets. This suggests
that repurposing of existing antivirals and, or rational develop-
ment of novel DAAs using the wealth of information collected from
previous drug discovery efforts, both represent promising avenues;
both approaches are discussed below in greater details.

Viral proteins can be grouped into three main functional
categories: attachment and penetration into host cells; viral replica-
tion and transcription; and suppression of the host immune
response. Although the SARS-CoV-2 replicative and host invasion
mechanisms are not yet fully understood, rapid structure
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determination of many SARS-CoV-2 proteins from all three groups
enables structure-based drug discovery. Table 3 summarizes drug-
gable sites in experimental structures of SARS-CoV-2 proteins that
can be exploited using a wide range of CADD methods. We
provide brief functional description of SARS-CoV-2 proteins
listed in Table 3.

Following release of the viral RNA into the host cytoplasm,
two open-reading frames translate the viral RNA into two over-
lapping co-terminal polyproteins, pp1a and pp1ab, containing
the non-structural proteins (nsps) (1–16), involved in immune
suppression, replication, and transcription of the RNA.

Nsp1 suppresses host gene expression, thus weakening
cellular antiviral defense mechanisms, including the interferon
response.49 A recently resolved crystal structure of nsp1 bound
tightly to the mRNA entry channel of the 40S ribosomal subunit
(PDB: 6ZLW) suggests that blocking this interaction (ID = 1 in
Table 3) could help reactivate the host immune response
against SARS-CoV-2.

Nsp3 is a multifunctional protein comprised of several distinct
domains, some with papain-like protease (PLpro), activity while
others play important complementary roles. Thus, the phospha-
tase domain of nsp3, also referred as MacroD (ID = 2), is

Table 2 Examples of PPI network-based analysis for COVID-19

Study Cava et al.41 Hazra et al.42 Karakurt et al.43 Zhou et al.44

Source of
network

Human PPI network
subnetwork from the genes,
which are co-expressed with
ACE2. Human PPIs were
obtained using SpidermiR
tool (PMID: 28134831)

Human PPI network from
STRING (https://string-db.
org)

Metabolic network of
bronchus respiratory
epithelial cell based on
Recon2 (PMID: 23455439),
human PPI network from
STRING (https://string-db.
org)

SARS-CoV-2-human PPIs,41 viral-human
PPIs for other coronaviruses, human
PPIs from 18 public databases.

Source of
compound-
target
interactions

Drug-target interactions were
obtained from Matador (http://
matador.embl.de) and DGIdb
(https://www.dgidb.org)
databases

STITCH (http://stitch.
embl.de)

NAa Drug–target associations from DrugBank
(https://www.drugbank.com), Therapeutic
Target Database (http://db.idrblab.net/
ttd), ChEMBL (https://www.ebi.ac.uk/
chembl), PharmGKB (https://www.
pharmgkb.org), BindingDB (https://www.
bindingdb.org/bind/index.jsp), Guide To
Pharmacology (https://www.guidetophar
macology.org)

Transcrip-
tion dataset

Data on transcription in
normal lungs was obtained
from Cancer Genome Atlas
(https://www.cancer.gov/
about-nci/organization/ccg/
research/structural-genomics/
tcga), Gene Expression
Omnibus (https://www.ncbi.
nlm.nih.gov/geo) and Genotype-
Tissue Expression (https://gtex
portal.org) databases.

Transcription profiles
of peripheral blood
mononuclear cells from
SARS-CoV-1 infected
patients (GEO ID:
GSE1739)

Transcription profiles
from SARS-CoV-2 infected
human lung epithelial cells
(GEO ID: GSE147507)

Transcription profiles from SARS-CoV-2
infected human lung epithelial cells
(GEO ID: GSE147507). Protein expression
profile from human Caco-2 cells infected
with SARS-CoV-2 (PRIDE ID: PXD017710)

Pathways and
biological
processes

Genes correlated with ACE2
are mainly enriched in the
sterol biosynthetic process,
aryldialkylphosphatase
activity, adenosylhomocysteinase
activity, trialkylsulfonium
hydrolase activity, acetate-CoA
and CoA ligase activity

MMP9 showed functional
annotations associated
with neutrophil mediated
immune-inflammation

Matrix metalloproteinase
2 (MMP2) and matrix
metalloproteinase 9
(MMP9) with keratan
sulfate synthesis pathway
may play a key role in the
infection.

Co-expression of ACE2 and TMPRSS2
was elevated in absorptive enterocytes
from the inflamed ileal tissues of
Crohn’s disease patients compared to
uninflamed tissues, revealing shared
pathobiology by COVID-19 and
inflammatory bowel disease. COVID-19
shared intermediate inflammatory
endophenotypes with asthma (including
IRAK3 and ADRB2)

Potential
targets

NAa Hub-bottleneck node
MMP9

IL-6, IL6R, IL6ST, MMP2,
MMP9

NAa

Potential
drugs

36 potential anti-COVID drugs.
Among possible interesting 36
drugs for COVID-19 treatment,
the authors found Nimesulide,
Fluticasone Propionate,
Thiabendazole, Photofrin,
Didanosine and Flutamide

Chloroquine and
melatonin targeting
MMP9. Melatonin appears
to be more promising
repurposed drug against
MMP9 for better immune-
compromising action in
COVID-19

MMP9 inhibitors may have
potential to prevent
‘‘cytokine storm’’ in
severely affected patients

34 potential anti-COVID drugs. Among
them melatonin was confirmed by
observational study of 18,118 patients
from a COVID-19 registry. Melatonin was
associated with 64% reduced likelihood
of a positive laboratory test result for
SARS-CoV-2

a NA – Not applicable.
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believed to interfere with the immune response by acting as
a ADP-ribose phosphatase to remove ADP-ribose from host
proteins and RNAs.50 The recently reported crystal structure of
a liganded MacroD (PDB: 6W02) provides an important avenue
for rational development of MacroD-directed inhibitors that
could restore host immune capabilities.

PLpro (nsp3) (ID = 3) and main protease Mpro (nsp5) (ID = 4)
are enzymes that carry the critical upstream function of cleaving
mature nsps from the pp1a and pp1ab polyproteins, following their
initial translation. Both protease targets are under intensive investi-
gation as discussed in great detail below. It is important to note that
Mpro is a stable homodimer and its dimerization interface (ID = 5)
may be an important site for targeting this critical viral enzyme.53

Nsp7 and nsp8 form a primase complex, involved in the RNA
synthesis pathway and required for enhanced functionality of
RNA-dependent RNA polymerase RdRp.67 A recently published
crystal structure of nsp7 complexed with the C-terminus of
nsp8 (PDB: 6XIP) identified several potentially druggable pock-
ets in the dimerization interface (ID = 6) that could potentially
be used to design interaction inhibitors capable of suppressing
SARS-CoV-2 replication.

The exact role of nsp9 in SARS-CoV-2 biology is not yet
fully defined, but its structural homolog in SARS-CoV species
suggests that the protein may be essential for viral replication.
To be functional, nsp9 needs to form an obligate homodimer
via its conserved ‘‘GxxxG’’ motif (ID = 7). Notably, disruption of
key residues in this motif in related coronaviruses resulted in
reduction of viral replication.54

The replication-transcription complex (RTC) represents the
major viral assembly responsible for RNA synthesis, replication,
and transcription. The RTC consists of RNA-dependent RNA
polymerase (RdRp, nsp12), the primase complex (nsp7–nsp8),

and helicase (nsp13) that combine to maintain optimal function-
ing of the replication machinery. The RTC provides numerous
opportunities to inhibit SARS-CoV-2 replication. In particular, RTC
activity relies heavily on RdRp, an indispensable enzyme in the life
cycle of all RNA viruses.68 RdRp supports the transcription and
replication of viral RNA genome by catalyzing the synthesis of viral
RNA templates to produce genomic and subgenomic RNAs.69

SARS-CoV-2 RdRp contains an extended N-terminal nidovirus
RdRp-associated nucleotidyltransferase (NiRAN) domain (ID = 9),
and, although its exact role is still unknown, its enzymatic activity
is considered critical for viral propagation.56 Recent cryo-EM
structures of the NiRAN domain (PDB: 6XEZ) revealed a potential
allosteric site that may be a suitable target for drugs that disrupt
the function of NiRAN and RdRp. In the resolved structure of the
complex, ADP is located in the active site of the NiRAN domain,
highlighting a potentially druggable area, although further inves-
tigations will be required to determine the exact NiRAN activity as
well as its preferred substrate.

The core and main structural motifs of RdRp are highly
conserved between SARS-CoV-2 and SARS-CoV species (96%
sequence identity) including sharing key residues in their active
sites.70 An apo-structure of RdRp has pockets in the catalytic
chamber (active site) (ID = 10) where the RNA template needs to
bind for replication (PDB: 7BV1). These pockets could be
targeted by small molecules to impede RNA binding and
disrupt RNA replication by the RTC. Situated next to the
catalytic chamber, the NTP entry tunnel (ID = 11) guides new
NTP into the extending RNA primer. Recently resolved structure
of the RdRp (PDB: 7BW4) demonstrates that the tunnel could
be blocked to interrupt elongation of the RNA duplex.68 As
previously mentioned, the primase complex (nsp7–nsp8) also
interacts with RdRp to significantly enhance polymerase activity

Table 3 Potential targetable sites identified in structurally resolved SARS-CoV-2 proteins

ID Protein Target PDB Ligand Ref.

1 Nsp1 Nsp1/ribosome 40S interaction interface 6ZLW NA 49
2 Phosphatase ADP-ribose binding site 6W02 ADP-ribose 50
3 PLpro (nsp3) Active site 7JIW PLP_Snyder530 51
4 Mpro (nsp5) Active site 6W63 X77 52
5 Mpro (nsp5) Dimerization interface 5RFA Fragment x1187 53
6 Primase (nsp7) nsp7/nsp8 interaction interface 6XIP NA
7 Nsp9 Peptide binding site 6W9Q NA 54
8 Nsp10 Predicted pocket, not annotated 6ZCT NA 55
9 RdRp (nsp12) NiRAN domain 6XEZ ADP-Mg2+ 56
10 RdRp (nsp12) Active site 7BV1 NA 57
11 RdRp (nsp12) NTP entry site 7CTT NA 57
12 RdRp (nsp12) Nsp12-Nsp7/Nsp8 interaction site 7BV1 NA 58
13 Helicase (nsp13) ATP/ADP binding site 6XEZ NA 56
14 Helicase (nsp13) DNA/RNA binding site 6ZSL NA 59
15 Endoribonuclease (nsp15) Catalytic site 6WXC Tipiracil 60
16 20-O methyltransferase (nsp16) RNA binding site 6WKS RNA cap 55,61
17 20-O methyltransferase (nsp16) Active site 6YZ1 Sinefungin 55
18 20-O methyltransferase (nsp16) Allosteric site 6WKS Adenosine 61
19 Spike (post-fusion) HR2 linker motif 6M3W HR2 motif 62
20 Spike (post-fusion) S2 HR1/HR2 bundle fold 6M3W NA 62
21 Spike (pre-fusion) S2 U-turn loop 6NB6 NA 62
22 ORF3a Predicted pocket, not annotated 6XDC NA 63
23 ORF8 Predicted pocket, not annotated 7JTL NA 64
24 ORF9b Lipid binding site 6Z4U PEG lipid 65
25 Nucleoprotein RNA binding site 6M3M NA 66
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of the RTC.58 Thus, the critical interaction between nsp7–nsp8
complex and RdRp (ID = 12) (PDB: 7BV1) represents another
rational drug target. In the early phase of the pandemic,
remdesivir (RDV) was considered a potential treatment for
COVID-19, as studies reported that it was highly effective in
inhibiting growth of SARS-CoV-2.18 RDV targets the RdRp to arrest
RNA synthesis, thus highlighting the key role of RdRp in replication
of SARS-CoV-2 and its potential as a druggable target.71

The helicase (nsp13) facilitates unwinding of RNA helices
to prepare a template strand for replication and to hydrolyze
various NTPs.72 There are two major functionalities of helicase
that could be therapeutic targeted: the ATP binding site (PDB:
6XEZ) and RNA binding site (PDB: 6ZSL).56

The function of a nidoviral RNA uridylate-specific endoribonu-
clease NendoU (nsp15) in the viral replication cycle is also not fully
understood. Nsp15 may be involved in interfering with host response
and/or in viral replication by processing RNA. Nonetheless, the role
of NendoU protein is considered essential,73 and its crystal struc-
ture (with the active site occupied by citrate, PDB: 6WXC) provides
an attractive starting point for structure-based drug design.

20-O-RNA methyltransferase protein (MTase, nsp16) is also
involved in viral RNA replication. MTase ensures the integrity of
viral RNA by adding to its 50end a cap fragment consisting of a
N-methylated GTP and C20-O-methyl-ribosyladenine moiety.
The cap ensures adequate RNA integrity and stability for
translation.55 Based on the available crystal structure of MTase,
several potentially targetable sites have been identified: a positively
charged RNA binding canyon (capping site, PDB: 6WKS),
S-adenosylmethionine binding site (ID = 17, PDB: 6YZ1) and a
unique allosteric site (ID = 18) found to be occupied by
adenosine in the 6WKS crystal structure.61

The spike glycoprotein (S protein) initiates the attachment
and penetration of SARS-CoV-2 into host cells and consists of
two subunits: S1 and S2. The former is responsible for binding
the virus particle to the host’s angiotensin-converting enzyme 2
(ACE2) receptor, while the latter facilitates the fusion of the viral
and host cellular membranes. The receptor-binding domain
(RBD) of S1 is the only exposed part of the virus and, therefore
represents an exceptional targeting opportunity (described in
detail in the following sections).

The S2 subunit of S protein also presents opportunities to
inhibit attachment of SARS-CoV-2 to host cells. S protein
undergoes significant structural rearrangements upon binding
to ACE2 to allow fusion of host and viral membranes. Thus,
disrupting S protein from reaching its stable fusion conformation
could be a viable therapeutic approach. A linker needs to bind in
a cavity upstream of the heptad repeat 2 (HR2) in S2, and this
positively charged cavity represents a rational surface target
(ID = 19). Moreover, small pockets along the HR1–HR2 six-helix
bundle in the post-fusion state (ID = 20) could be targeted to
prevent S protein from forming its fusion core (PDB: 6M3W).
Similarly, the S2 U-turn loop in the pre-fusion state (ID = 21)
could also be targeted by small molecules to hamper S protein’s
appropriate refolding (PDB: 6NB6).62

The SARS-CoV-2 virus evades the host immune system
through an intricate network of interfering proteins. Thus, accessory

protein 9b (ORF9b) is another virulence factor that may suppress
type I interferon responses by associating with TOM70 human
protein (translocase of outer membrane 70). This reduces the
development of innate and adaptive immunity.65 A recently resolved
crystal structure of ORF9b (PDB: 6Z4U) revealed the presence of a
lipid binding site (ID = 24) that could be relevant for targeting with
small molecules.

Finally, the nucleocapsid protein (N protein) of SARS-CoV-2
virus plays a structural role in protecting viral RNA. The N
protein enhances the efficiency of virion assembly by binding to
viral RNA to form functional ribonucleocapsid (PDB: 6M3M).74

Therefore, blocking RNA binding to the N protein may disrupt
the critical RNA packing event.66

The valuable structural information on SARS-CoV-2 proteins
generated to date has identified up to 25 potential target sites for
rational drug discovery campaigns. Notably, this list is constantly
evolving with more viral proteins and protein complexes qualifying
as potential targets. Additional potentially targetable sites in
SARS-CoV-2 proteins and complexes are being discovered and
researched by CADD methods. Furthermore, various cryptic
target sites on SARS-CoV-2 proteins represent another important
targets for structure-based drug discovery.75 So far, these has
been identified in nsp10, ORF3a, and ORF8 proteins from
Table 3 (ID= 8, 22, 23) that do not exhibit distinct druggable
sites on their surfaces.63 By combining Molecular Dynamics
(MD) simulations with target site prediction tools, one could
identify such cryptic protein pockets and develop inhibition
strategies for SARS-CoV-2 proteins that are otherwise deemed
non targetable. A more detailed discussion on this topic will be
presented in a later section on molecular dynamics simulations
for discovery of cryptic pockets.

Although this section has focused on SARS-CoV-2 protein
targets for drug discovery, substantial efforts are underway to
repurpose or discover drugs acting on human proteins that play
significant roles in SARS-CoV-2 infection. Thus, in a seminal
work by Gordon et al.,14 UCSF researchers expressed 26 of the 29
SARS-CoV-2 proteins and used them as baits in a mass-spectral
proteomics experiment to identify 332 critical interactions with
human proteins. Subsequently, cheminformatics and text-mining
tools identified 66 human proteins that could targeted by 69
approved and experimental drugs. A subset of those identified
by docking experiments was assessed in multiple viral assays.
Ultimately, two series of host-directed pharmacological agents
(inhibitors of mRNA translation and the sigma-1,2 receptor
regulators) demonstrated significant antiviral activity.14

In summary, detailed structural information on both static
and dynamic pockets in viral proteins and PPIs provide significant
opportunities for structure-based drug discovery.

Structure-based drug discovery
approaches

Computational methods of structure-based drug discovery
(SBDD) simulate how potential ligands can interact with the
putative binding (target) site under investigation. The ultimate
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objective of SBDD is to rank known or de novo designed
chemicals for desired biological activity and, most importantly,
to translate computer-generated hypotheses into actionable
experimental steps. Along with the use of conventional molecular
docking and scoring protocols, recent SBDD studies for COVID-19
have begun to exploit novel DL and AI methodologies.

While no repurposed or novel SARS-CoV-2 inhibitors have
yet been identified with SBDD tools, an important trend has
emerged that involves applying supercomputing resources to
COVID-19 drug discovery. Early work by Smith and Smith76

employed the world’s largest supercomputer – the IBM SUMM-
MIT to screen the SWEETLAND library consisting of 8000 drugs
and natural products against the complex of SARS-CoV-2 Spike
protein and human ACE2 receptor. The computationally
demanding replica-exchange MD simulations were combined
with ensemble docking and resulted in identification of 77
candidate drugs, of which five were approved therapeutics
(pemirolast, isoniazid pyruvate, nitrofurantoin, ergoloid, and
cepharanthine) that constituted putative treatment options for
COVID-19. While the work by Smith and Smith has received
broad coverage,32 the proposed repurposing candidates have
not been properly validated nor confirmed by experiments.
Moreover, ergoloid is a mixture of three different compounds
but there was no indication which of them was identified. Such
modest outcome from 200 petaflops of computational power,
together with a notable lack of validation of the repurposing
hits, might suggest that it would be more effective to simply
screen relatively small drug libraries (e.g., a few thousand
compounds) in a wet lab. In support of this notion, recent
high-throughput repurposing campaigns conducted by NCATS
and leading academic groups12 resulted in a number of attractive
repurposing candidates that demonstrate potent inhibition of
SARS-CoV-2 virus, as described in earlier sections of this review.
However, computational resources are still very important in
virtual screening campaigns that aim to identify novel chemical
entities as potential COVID-19 therapeutics. This scenario, which
promises to design or discover bespoke drugs with greater potency
than repurposed drugs, needs to work in much larger chemical
spaces that are currently inaccessible to experimental screening
methods.

Below we summarize expert SBDD approaches that have
been applied to SARS-CoV-2 targets and discuss recent trends
in SBDD that aim at more rigorous, computationally efficient,
and affective COVID-19 drug discovery.

SBDD studies with key SARS-CoV-2 targets

Most of the SBDD research involving SARS-CoV-2 proteome has
been focused on three main targets: the Spike glycoprotein
(S-protein); papain-like protease (PLpro); and prominently,
main protease Mpro (that has already been extensively high-
lighted in previous sections). More than 1100 structures have
been deposited to date in the RCSB’s COVID19/SARS-CoV-2
Special collection,29 and an important recent study mapped
binding pockets of all major SARS-CoV-2 proteins.48 Practically
all major docking programs and molecular databases have been
used to identify approved, pre-clinical or experimental drugs,

natural products, or nutraceutics (among others) that could be
rapidly repurposed. The main docking tools used are AutoDock,
AutoDock Vina, SMNA, PLANTS, Glide, DOCK, and ICM. These
have largely screened the DrugBank, ZINC, SuperDRUG2,
Selleckchem, TargetMol, Drug Target Commons (DTC), BindingDB,
Supernatural II, Drugs-lib, SWEETLAND and several other
repurposing databases. In accordance with best practices, the
docking campaigns were often followed by more rigorous
determination of binding poses and free energies estimations
using MD packages AMBER, MOE, MM-PBSA-WSAS, SOMD,
GROMACS and MM-GBSA/MM-PBSA, among others. These
studies aimed to find a ‘silver bullet’ that will either halt the
pandemic or at least provide effective treatment for those
severely affected by SARS-CoV-2.

On the other hand, the use of rigorous SBDD tools significantly
facilitated our knowledge about SARS-CoV-2 target proteins
including their dynamic behavior, induced ionization states
and plasticity among other major factors potentially influencing
ligand binding. The SARS-CoV-2 pocketome portal48 mentioned
above can be used to visualize the details of the binding sites
within individual target structures described below.

Thus, SARS-CoV-2 PLpro active site is centered on the catalytic
triad of C111-H272-D286, which cleaves the replicase polyproteins
at three specific sites featuring a conserved LXGG motif.77 The
motif residues are labeled based on their relative position within
the cleavage site. Position P1 is closest to the cleavage site, followed
by P2, P3, and P4 at the end of the site, as shown in Fig. 2.

The catalytic site of PLpro can be divided into different sub
pockets identified by the residue recognized at each position.
Flexibility in the PLpro active site complicates rational
SBDD. Notably, the loop formed by Tyr268/Gln269 is highly
flexible and adopts a closed conformation via an induced-fit
mechanism by interaction with specific inhibitors.78 Thus, the
active site cavity can change from an open to closed state
depending on the co-crystallized ligand.

Fig. 2 Structure of SARS-CoV-2 PLpro and inhibitors in its catalytic site. In
PLpro (left), the proximity of the ubiquitin binding site (circled in blue) to the
catalytic site (squared in red) offers unique inhibition opportunities to target
both activities of PLpro. The active site can be divided into subpockets (right)
to guide drug design against SARS-CoV-2 PLpro. The four main pockets P1,
P2, P3, and P4 (colored teal, blue, orange, and purple, respectively) need to
be occupied for optimal inhibition. Ligands are represented in colored sticks.
VIR251: purple; PLP_Snyder530: pink; GRL-0617: green. Parts of the pock-
et’s surface were omitted for easier visualization.
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Detailed structural information on active site of PLpro has
been used to design a potent inhibitor GRL-0617 (PDB: 7JIW),
which binds to the active site of PLpro and inhibits its enzymatic
activity. Due to the proximity of the active site to the S1 ubiquitin
binding site, it was suggested that GRL-0617 could also inhibit the
interaction of PLpro with ubiquitin-like protein ISG15 responsible
for regulating host innate immune response.51 Other inhibitors
with similar modes of action, such as the PLP_Snyder series and
VIR250/VIR251, are also currently under investigation.79 Although
GRL-0617 and the PLP_Snyder series do not explicitly interact with
the P1 catalytic site, both compounds bound to the active site at
P3-P4 and GRL-0617, exhibited potent activity (IC50 of 2.2 mM).

The active site of, perhaps, the most prominent SARS-CoV-2
target protein Mpro is centered on the catalytic dyad of Cys145-
His41. It cleaves the replicase polyproteins at 11 specific positions,
using core sequences in the polyproteins to determine the cleavage
sites.80 The recognized residues on the polyproteins are named
depending on their relative position to the cleavage site (see Fig. 3).
Position P1 corresponds to the residue before the cleavage site up
until the N-terminal (P2, P3, P4, P5), while position P10 corre-
sponds to the residue immediately after the cleavage site up until
the C-terminal (P20, P30, P40, P50, etc.).81 Therefore, the active site of
Mpro can be partitioned into different pockets, depending on the
residue occupancy at each position. Rational drug design must
again take into consideration the flexible nature of Mpro active
site. Structural rearrangements of Met49 and Gln189 in the P2
position affects the size of the pocket for optimal occupancy.
Therefore, special scrutiny must be taken when designing Mpro-
specific inhibitors to fit the highly flexible P2 pocket in either
the open or closed state. The latest study also indicated that the
ionization state of Mpro active site residues could also be
context-dependent which further complicated SBDD efforts with
this protein.82

Nonetheless, based on the recognition sequence of the
polyproteins, ligands can be effectively designed to occupy

the same pockets in SARS-CoV-2 Mpro active site. Recent X-ray
structures of Mpro with potent inhibitors revealed key features
of various different binding modes to the enzyme. Thus, P1 and
P2 pockets must be occupied to inhibit Mpro activity, as all
current ligands interact with Mpro via those two sites. Thus, early
SBDD efforts with Mpro target site allowed the development of a
potent covalent inhibitor, 11b (partly occupying the P10 pocket)
that exhibited IC50 values of B50 nM in vitro.83 The same
molecular scaffold was later combined with different covalent
warheads to generate more soluble Mpro inhibitors such as
GC376, occupying pockets P1 and P2. This candidate had an
in vitro IC50 B 500 nM and is undergoing more extensive
evaluation. More recently, a more potent derivative, PF-00835231
(with a prodrug PF-07304814), was developed with nanomolar
potency against Mpro. Conspicuously, it also exhibited potent
in vitro suppression of SARS-CoV-2 as a single agent and in
combination with remdesivir.33

De novo drug design efforts exploiting the Mpro active site
received a significant boost in early 2020 when scientists in the
UK Diamond Center made available 470 experimentally resolved
structures with diverse chemical fragments non-covalently bound
to the Mpro active site.37 Importantly, these structures have been
crowdsourced for de novo design of fragment-based Mpro inhibi-
tors. This resulted in 410 000 submissions from all around the
world.84 Of these, B 1000 compounds have been synthesized and
experimentally tested, resulting in several low- to sub-micromolar
hits that await rigorous evaluation. The most active fragment-
derived derivatives are being further refined using another
computational crowdsourcing campaign, folding@home.85

A recent seminal work by Lyu et al.86 demonstrated that
expanding virtual screening to include large ‘make-on-demand’
chemical libraries yields highly potent compounds and new
scaffolds not present in available chemicals libraries. Importantly,
this study used extensive computational resources but could only
process 170 million molecules. However, the number of accessible
small molecules to date is numbered in the billions. Potential
synergy between massive chemical libraries, such as ZINC15,87 and
supercomputing facilities, such as SUMMIT at the Oak Ridge
National Laboratory, have been identified in a recent study.88

Enhanced sampling MD and ensemble docking with AutoDock-
GPU was applied to eight SARS-CoV-2 target proteins. This
achieved exhaustive docking of 1 billion compounds against the
8 targets in under 24 hours. Unfortunately, as noted above, this
extensive computational study was not followed by the experi-
mental evaluation, so the value of the practical value of the
identified hits is yet to be determined. However, this study
highlights the previously unattainable boundaries of molecular
docking that have emerged in the time of pandemics.

Ligand docking with template-based approaches, shown to
often outperform conventional docking, were used to discover
novel inhibitors of SARS-CoV-2 Mpro. Thus, LigTBM89 was
employed to obtain a model of SARS-CoV-2 Mpro active site in
complex with a low mM noncovalent inhibitor characterized
crystallographically in the COVID Moonshot initiative.89 Unlike
conventional docking, template-based methods are particularly
useful because they do not require detailed binding site

Fig. 3 Structure of SARS-CoV-2 Mpro and inhibitors in its active site. The
unique dimer structure of Mpro (left) offers one distinct path to block its
catalytic activity through the substrate-binding pocket. The active site can
be partitioned into subpockets (right) to rationalize the design strategy
against SARS-CoV-2 Mpro. The four main pockets P4, P2, P1, and P10

(colored blue, teal, orange, and green, respectively) need to be occupied
for optimal inhibition of Mpro. Ligands are represented in colored sticks in
the active site. PF-00835231: grey; GC376: orange; 11b: green; N3:
purple; 13: red.
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information. They also provide measures of model quality
based on the similarity between the target and the template.
Template-based approaches can be readily applied to modeling
interactions between inhibitors and SARS-CoV-2 viral and
human targets relevant to COVID-19, as their structural cover-
age in PDB is on exponential trajectory.

Molecular dynamics simulations and the discovery of cryptic
target pockets

Drug targets are complex, dynamic entities and no experiments
can currently deduce all possible aspects of their biological
function. Hence, molecular dynamics (MD) simulations are the
only way to obtain detailed information on drug target dynamics
and their interactions with potential ligands. Although MD
simulations are computationally intensive, the COVID-19 High
Performance Computing Consortium established in March 2020,
provides rapid access to powerful computational resources
for teams studying SARS-CoV-2 targets. Furthermore, the
MD simulation community collectively committed to a set of
principles governing methodologies and data sharing practices
for COVID-19 related MD models.90

The already outlined, the massive increase in SARS-CoV-2
structural information provides valuable inputs for MD simulations.
In mid-February, just when cases in the US were very low, the
McLellan group developed the first cryoEM dataset of the SARS-
CoV-2 main infection machinery, the spike protein.91 Its early
release set the stage for the first SBDD efforts using that key
target. Subsequent work by several groups established strong
methodological frameworks for the construction and simulation
of the glycosylated spike protein,92 including the need for long
MD runs (mS) in order to reveal the active participation of glycans
in the spike opening motions.93 Additionally, a large-scale
simulation of a patch of viral membrane containing four spikes,
coupled with data from cryoEM, indicated that the spike stalk
has joints that enable it to undergo hinge bending motions.94

In addition to the ability to explore orthosteric and allosteric
binding pockets, an interesting recent application of MD
simulations is the analysis of hidden (cryptic) binding sites.
These sites are particularly useful for the design of compounds
that have enhanced selectivity or resistance profiles.95 Because
MD simulations explore the low lying energy landscape around
the minimum energy, high-resolution static structure from x-ray
crystallography or cryoEM, simulations are increasingly being
used to discover these cryptic pockets.9697 MD has identified
cryptic pockets for both SARS-CoV-2 spike protein (at or near
joints or hinges in the protein)98 and Mpro (near the active site
and at the allosteric site), though these have not yet been
experimentally validated.

Finally, MD simulations can identify potentially useful phar-
macophores or targetable epitopes. For example, simulations of
truncated human ACE2 in complex with the spike receptor
binding domain generated a topological map of the key inter-
actions. It further suggested the importance of rigidity at the
binding interface,99 molecular details that can inform on
the design of peptidomimetics, for example. MD simulations
of the full length ACE2 embedded in the host cell membrane

indicated an unexpectedly large degree of flexibility in the linker
domain. This may provide another avenue of exploration for
small molecules that disrupt mechanical processes related to
the virus-cell fusion.100

Another potentially impactful study used MD to explore
details of molecular complexes between the Spike protein and
nicotinic acetylcholine receptors in the muscle and brain.101 These
simulations provided support for the nicotinic hypothesis and
provided a molecular basis for receptor subtype specificity. These
findings may facilitate development of compounds selective for
the a7 subtype as a way of blocking the interaction. Undoubtedly
there will be many additional simulation-based studies that con-
tribute to therapeutic programs against COVID-19.

Machine learning methods of scoring protein–ligand
interactions at quantum-mechanical level

The development of fast and accurate methods to predict
protein–ligand binding affinities represents a key challenge of
SBDD because of two bottlenecks: statistical sampling; and the
scoring problem. The former involves protein and ligand flexibility,
solvent effects, and overall complexity of the protein–ligand inter-
action (particularly challenging in such cases as Mpro active site
mentioned throughout above sections). The latter deals with
accurate estimation of the interaction energy of the ligand with
the target protein in the complex.102

The explicit use of quantum mechanical (QM) methods can
aid solving the scoring problem and can provide more accurate
estimates of binding affinity.102 This is especially important in
cases involving metal ions, covalent bond formation, strong
polarization and charge transfer effects, halogen bonding, etc.102

However, accurate QM calculations are very computationally
demanding. Conventional Density Functional Theory (DFT)
method scales nominally as O(N3), N being a measure of the
system size. Wave-function based post-Hartree–Fock methods
could scale even worse: O(N4–N7). The most popular strategies
for addressing this challenge include hybrid QM/MM methods
that partition the protein–ligand system such as only small most
important region is treated with QM (e.g., ONIOM or QM/MM)
and semiempirical and tight-binding methods that are applic-
able to thousands of atoms but need parametrization to over-
come their inaccuracies.103

To date QM studies related to COVID19 have focused on
reaction mechanisms and substrate specificity of the SARS-
CoV-2 Mpro enzyme. Thus, Ramos-Guzmán et al.104 presented a
detailed QM/MM analysis of the proteolysis reaction catalyzed
by Mpro, modelling different states along the reaction pathway.
These calculations were consistent with recently reported kinetic
data for SARS-CoV-2 Mpro. Both studies presented a detailed analysis
of key protein interactions and the critical importance of the P1/P10

pockets in the design of potent and specific inhibitors.
Hatada et al.105 employed a fragment molecular orbital

(FMO) interaction analysis of the complex between the SARS-
CoV-2 Mpro and its peptide-like inhibitor N3 (PDB ID: 6LU7).
They computed the contributions of different residues and
elucidated the nature of interactions in this complex. Similarly,
Ramos-Guzmán et al.104 identified the important role of His41
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and Cys145 in the design of covalent inhibitors of SARS-CoV-2
Mpro. Furthermore, Khrenova et al.106 used hybrid QM/MM
MD simulations to derive a simple descriptor, based on the
Laplacian of the electron density and the electron localization
function, that discriminated between covalent and non-covalent
complexes. Cavasotto et al.107 used semiempirical PM7 calculations
to rescore docking to the SARS-CoV-2 Mpro, PLpro, and spike
glycoprotein, while Adhikari et al.108 used large-scale DFT
calculations to analyze interactions in the RBD domain of the
spike protein.

The modest contribution of QM studies to the body of literature
covered in this review highlights the slow pace of these approaches.
Therefore, the ability of QM methods to contribute to the develop-
ment of therapies for COVID-19, under the time constraints of the
pandemic, is quite limited. However, very recent, and exciting
developments in AI and ML have the potential to greatly
enhance the role of QM methods in drug discovery and develop-
ment. Substantial progress has been made in the development of
general-purpose atomistic potentials using ML, in particular,
using deep neural networks (DNN).109

The ANAKIN-ME (or ANI for short) method110 is one example
of transferable DNN-based molecular potentials. The key com-
ponents of ANI models include the selection of diverse training
data with active learning, non-equilibrium sampling of 3D
conformations, and atom-centered descriptors to represent
molecules for learning.111 The ANI-1ccx model was built from
energies and forces of B60 000 small organic molecules (con-
stituted of C, H, N and O atoms), considering non-equilibrium
molecular conformations, using 5 million DFT (wB97x-D/DZ) and
0.5 million DLPNO-CCSD(T)/CBS calculations. These bench-
mark studies demonstrated the ANI-1ccx model to be within
1–2 kcal mol�1 of the reference (and extremely computationally
demanding) Coupled Cluster calculations and to exceed the
accuracy of DFT in multiple applications.112 The Atoms-In-
Molecules neural Network or AIMNet improves the performance
of ANI models for charged states and continuum solvent effects.113

The recently-developed ANI-2x model supports three additional
chemical elements: S, F, and Cl. ANI-2x underwent torsional refine-
ment training to better predict molecular torsion profiles.114 These
new features open a wide range of new applications, including
receptor–ligand systems, as they now cover 90% of drug-like
molecules. Consequently, Lahey et al.115 demonstrated that by using
the ANI potential to represent intramolecular interactions of ligands
in protein pockets, both binding poses and conformational energies
could be accurately calculated.

The NSF Molecular Sciences Software Institute (MolSSI), in
collaboration with BioExcel, has set up a centralized hub and
file sharing service for COVID-19 applications. It will connect
scientists across the global biomolecular simulation community.
The COVID-19 Molecular Structure and Therapeutics Hub also
improves connection and communication between simulation,
experimental, and clinical data investigators.90

The ANI-2x model was used to generate two public datasets,
ANI–FDA Drugs and ANI–CAS Antiviral, for SBDD research for
COVID-19.116 ANI–FDA Drugs contains low-energy conformers,
tautomers, and dipole-consistent partial atomic charges for

6433 FDA approved and investigational drugs. It consists
of 32 036 tautomeric structures and approximately 3 million
conformers. ANI-CAS Antiviral contains 67 167 tautomeric
structures and B6.6M conformers for 20 306 molecules from
the CAS Antiviral database.117 Axelrod and Gomez-Bombarelli118

used semi-empirical tight-binding density functional theory
(GFN2-xTB) to compute minimal conformers for 278 622 mole-
cules that have been tested for in-vitro inhibition of SARS-CoV-
related assays in PubChem. These recent developments are bound
to improve the accuracy of both ligand representation and scoring
functions used in virtual screening of chemical libraries against
SARS-CoV-2 targets.

Deep learning approaches for SBDD

While none of supercomputer-driven campaigns have yet delivered
validated, therapeutic candidates, the ultra-large chemical libraries
can provide novel leads for COVID-19 drug discovery. An virtual
screening campaign on the active site of Mpro, used deep learning
(DL) methods to address the mismatch between the size of
available chemical databases (the ZINC15 contains 4 1.3B mole-
cules) and conventional docking resources.119 The Deep Docking
platform generated QSAR models trained on docking scores
(Fig. 4). This approach takes a full advantage of all docking results
(both favorable and negative) in contrast to conventional docking
that does a complete screening run and selects only a small set
of favorably docked molecules (hits). In the pilot study,
Deep Docking rapidly and accurately predicted docking scores
for 1.36 billion molecules from ZINC15 library against
12 prominent target proteins. It demonstrated up to 100-fold
higher computational efficiency of virtual screening and up to
6000-fold enrichment for high scoring molecules.119 When
used for virtual screening against Mpro,52 Deep Docking
enabled the filtering of 41.4B molecules (the ZINC15 database,
plus the Enamine PPI and Life Chemical antiviral libraries)
down to 1000 potential hits in just one week. It used 640 CPU
and 40 GPU units (running GLIDE docking and DL computations,
respectively). Remarkably, without DL augmentation, the con-
ventional docking programs would take years of continuous
computation on this hardware.

Consistent with the Best Practices of CADD,120 consensus
filtering and post-processing of GLIDE hits with a 3-feature
pharmacophore generated from the active site of Mpro was
employed (see Fig. 4).

This protocol enabled the identifications of 211 compounds
highly ranked by both GLIDE and pharmacophore model that
were selected for experimental evaluation. A continuous fluores-
cence resonance energy transfer (FRET)-based assay using recom-
binant Mpro allowed reliable and fast identification of small
molecule inhibitors.121 Recombinant his-tagged protein was
purified from E. coli lysates by Ni2q binding chromatography
following protocols for SARS-CoV-2 Mpro108 495% pure
samples of the 211 selected compounds were acquired from
vendors and tested in the FRET assay with serial dilutions.
Ultimately, 25 molecules were confirmed as active, with IC50

values in the range 10–100 mM, a respectable 12% hit rate for
the Deep Docking method.
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Notably, eight top-scoring ZINC compounds from the original
Deep Docking paper were also evaluated by a third-party group
resulted in identification of two low micromolar hits for SARS-CoV-
2 Mpro.122

Importantly, these results identify the need for the use of
stringent methods and consensus protocols, relying on a larger
number of more diverse CADD and experimental approaches
discussed below.

Ligand-based antiviral drug discovery
approaches

Here, we discuss application of traditional ligand-based methods,
sometimes combined with knowledge mining approaches, that
not only leverage but guide the experimental drug discovery for
COVID-19. We highlight the utility of some recent innovative
techniques such as Generative Topographic Mapping (GTM) and
deep learning (DL) for the discovery of novel DAA agents as well
as for COVID-19 drug repurposing.

REDIAL-2020 machine learning platform

The utility of predictive models is ultimately judged by their
ability to guide the experiments. This objective formed a part of
REDIAL-2020 – a suite of ML models aiming to predict anti-
SARS-CoV-2 activities from chemical structure.123 It utilizes
ML algorithms from the scikit-learn package, combined with
cheminformatics protocols from RDKit.124 The platform was
used to generate six best-in-class models for the following
assays: viral entry (cytopathic effect, CPE, and host cell cyto-
toxicity counter-screen); viral replication (Mpro inhibition); and
live virus infectivity (a spike-ACE2 interaction (AlphaLISA) assay,

its TruHit counter-screen, and an ACE2 inhibition counter-screen).
The corresponding data for 11 SARS-CoV-2 related assays were
made openly available at NCATS COVID-19 portal.125

These NCATS datasets were consequently processed within
this workflow using three different families of descriptors:
fingerprints; pharmacophores; and physico-chemical properties.
Starting from 22 different ML algorithms, six best performing
algorithm/descriptor/assay combinations were selected, and
voting-based consensus models were implemented on the
REDIAL-2020 server for most of the assays (except AlphaLISA
and ACE2). When tested on the external data, the REDIAL-2020
models correctly predicted 24 out of 39 published compounds
for the CPE assay,126 15 out of 21 CPE actives from the
ReFRAME library,12 and four out of the six Mpro inhibitors.127

Comparisons of a large number of anti-SARS-CoV-2 active
compounds from the literature126 highlight frequent inconsisten-
cies and discrepancies between different experimental measure-
ments. For instance, out of 9 compounds tested in 6 published CPE
assays,20,128,129 only remdesivir was active across all studies. As
noted in the beginning of this review, the rush to publish initiated
by the urgency of the COVID-19 pandemic has resulted in an
unprecedented number of communications in peer-reviewed
sources and media.130 Hence, it is particularly important to obtain
an independent confirmation of anti-SARS-CoV-2 activities using
alternative approaches. A recent study131 provides an example of
such confirmatory evaluation of SARS-CoV-2 DAAs predicted by
REDIAL-2020 with independent ligand-based virtual screen. From
an initial set of 9 ‘‘chloroquine-like’’ drugs, zuclopenthixol, a typical
antipsychotic, and nebivolol, an antihypertensive beta-adrenergic
blocker, were identified as efficient inhibitors of SARS-CoV-2 infec-
tion with EC50 values in low micromolar range (see Table 4). The
anti-SARS-CoV-2 activity of the antimalarial drug amodiaquine20,129

Fig. 4 Schematic representation of a Deep Docking (DD) workflow.
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was also confirmed, and its metabolite, N-mono-desethyl amodia-
quine, also appeared active and had a notable half-life of 21 days.
Furthermore, two additional independent experimental evaluations
were conducted, both of which confirmed zuclopenthixol and
nebivolol as potential therapeutic agents for the treatment of
incubation and early stage COVID-19 infections. The REDIAL-2020
platform123 can be accessed from any web browser; it accepts
SMILES, drug names (e.g., generic or trade names), or PubChem
IDs as an input, and generates predictions against 11 assays, with
the top compounds from the NCATS training set, ranked by the
corresponding chemical similarity; applicability domain was
estimated for each assay.

Exploring chemical space of DAA candidates by chemography

Methods of chemical cartography, or chemography, enable
visual analysis of an ensemble of chemical structures encoded
by vectors of molecular descriptors enabling the projection of
very complex data onto a two-dimensional chemical space
maps.132 This approach exploits the ‘neighborhood behavior’
principle implying that close-proximity compounds possess
similar properties, and hence chemical space maps can reflects
relevant SARs. One of the most widely used chemical space
mapping (chemography) approaches is Generative Topographic
Mapping (GTM), a nonlinear grid-based method where the
manifold is fitted into a high-dimensional descriptor space
followed by projections of the chemical entities onto a grid of
nodes superposed with the manifold.132 In such representation
each compound is fuzzily associated to one or more of such
nodes with certain probabilities (responsibilities) and, therefore,
can be characterized by its responsibility vector. A distinctive
feature of the GTM method is the combination of intuitive
visualization and significant predictive ability. Any biological
endpoint can be associated with a map via activity or classifica-
tion landscapes that can visualize particular areas populated
by molecules with a given activity and therefore enabling
proximity-based classification of untested compounds.133

In the early days of drug discovery for SARS-CoV-2 no
experimental data were available, and therefore, the initial studies
were based on the prior data for related pathogens and hence
chemography helped developing a global overview of the corona-
viral DAA agent landscape. For instance, Horvath et al.134 have
prepared several GTMs representing previous medicinal chemistry
efforts to target CoVs. All CoV-associated molecules and antiviral

DrugBank135 entries were projected onto seven maps hosting over
700 predictive activity landscapes.136 The list of approved or
pending drugs associated with an ‘‘antiviral’’ label in DrugBank
annotated the maps and fixed specific residence areas corres-
ponding to compounds under clinical evaluation against SARS-
CoV-2 (see Fig. 5). This framework, presenting the density
distribution of CoV DAA agents, helped to highlight structural
relatedness between compounds of different categories. Thus,
similarity between umifenovir and SARS-CoV Mpro-inhibiting
indole esters raised a new hypothesis that umifenovir might
also act on viral proteases.

Generative neural network models for de novo drug discovery

In contrast to virtual screening of available chemical libraries,
de novo molecule construction provides access to a virtually
infinite chemical space and offers innovative molecular architec-
ture with desired properties.137 Recent advances of molecular
design with the use of AI include so-called ‘generative’ (or
‘constructive’) models,138 which support augmented design of
innovative therapeutics, including DAA agents.

Contemporary generative approaches usually build on deep
neural networks (DNN),139 aiming to model the underlying
distribution of a given set of molecules and, by sampling from
the modelled distribution, construct novel chemical entities.140

Recurrent neural networks (RNNs) with long short-term memory
(LSTM),141 as well as variational autoencoders,142 generative adver-
sarial networks (GANs),143 graph neural networks (GNNs),144 and
other network architectures145 have been explored. These methods
are trained using algorithms that are successful for language
analysis. Accordingly, for the purpose of molecular design, the
training molecules are represented in terms of string notations,
most often as simplified molecular input line entry systems
(SMILES strings). Importantly, generative DL models automatically
derive internal representations of SMILES, without relying on
human-engineered molecular descriptors or reaction schemes.
The generative model captures the syntax of these training
molecules and generates new SMILES-encoded molecules that
satisfy the constraints of the training set. This RNN-LSTM
approach previously resulted in prospective discovery of novel
compounds with desired bioactivities.146

As an example of generative de novo design, RNA-dependent
RNA polymerase (RdRp) of SARS-CoV-2147 was targeted, aiming
to obtain new potent DAA agents. An RNN-LSTM model was
employed for molecule generation,141 that was trained in two
steps. Firstly, a generalized model (‘virtual medicinal chemist’)
was developed by learning the syntax of approximately 400 000
SMILES strings of known bioactive compounds.148 Secondly,
the model was fine-tuned with four nucleoside analogues that
were effective against SARS-CoV-2 RdRp: approved favipiravir,
and ribavirin; investigational galidesivir; and the active compo-
nent GS-5734 of remdesivir prodrug. These four template
compounds biased the model toward nucleoside analogues.
Consequently, new SMILES were sampled by the tuned model,
and the computer-generated molecules were ranked according
to their topological pharmacophore similarity to the four RdRp
inhibitor templates. Notably, the de novo generated structures

Table 4 Anti-SARS-CoV-2 activity values from two separate experiments,
and pharmacokinetic properties for amodiaquine, its active metabolite,
nebivolol, and zuclopenthixol. First column, EC50 CPE measured at
UTHSC; 2nd EC50 values were determined at UNM. Pharmacokinetic
properties were extracted from literature

Compound
EC50

(mM)
EC50

(mM)
Cmax

(mM) % oral
t1/2

(hours)

Amodiaquine 5.4 0.13 0.13 29 7.9
N-Mono desethyl
amodiaquine

4 N/A 2.5 N/A 500

Nebivolol 2.8 2.72 0.02 12 10
Zuclopenthixol 0.015 1.35 0.03 B50 20
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contained several substructures of known RdRp inhibitors, but
also carried novel chemical moieties, especially among the lower
ranking designs (data not shown). We anticipate that these
computer-generated molecules could serve as prospective tem-
plates rather than elaborated DAA designs because of limitations
of the approach. For example, no background information about
nucleoside interaction in RNA was considered during RNN-
LSTM training. Neither target selectivity, pharmacokinetic and
-dynamic properties, nor the synthesizability of the designs were
explicitly considered. Consequently, the suggested molecules will
benefit from careful checking by human experts and other
computational tools. The selected designs then have to be
synthesized and tested before any claim of pharmacological
activity can be made. Nonetheless, some of the de novo generated
molecules appear chemically feasible and attractive, contain
innovative molecular scaffolds and deserve further consideration,
illustrating the potential of generative models for rapid delivery
of testable chemical designs and concepts.149

Knowledge mining tools for COVID-19
drug discovery

The severity of coronaviral pandemics prompted open science
and FAIR (Findable, Accessible, Interpretable, Reusable) data

initiatives150 to be embraced by researchers, institutions,
publishers, companies and regulators to better understand
the disease and to rapidly find an effective cure. Various
structured and unstructured COVID-19 data sources have been
made publicly available, enabling broader use of knowledge
mining approaches and Artificial Intelligence (AI) – accelerated
tools for COVID-19 drug discovery,151 with some notable exam-
ples discussed in the following section.

The use of knowledge graph approaches for COVID-19 drug
repurposing

Biomedical Knowledge Graphs (KG) aim to provide a high level
overview of the association between diseases (symptoms, ontologies,
etc.), biological targets (genes, proteins, protein complexes, nucleic
acids), and chemical entities (clinical and investigational drugs, tool
compounds, etc.).152 These associations may be extracted directly
from structured data sources such as medical and biochemical
databases, or unstructured data such as a corpus of scientific
articles and patents using text mining techniques assisted by ML
methods. Building a KG from unstructured data can be achieved by
NLP algorithms called entity recognition. This identify which objects
in the text refer to the same underlying entities; relation extraction,
finding relevant subject – predicate – object triplets in the text;
and relation ranking, assessing the reliability of the information

Fig. 5 Pool of 1000 compounds predicted to inhibit the 3CL proteinase of the novel SARS-CoV-2 (red) mapped against the SARS-CoV (betacoronavirus)
compounds (blue). Location of several ‘‘antiviral’’ DrugBank molecules color-coded by their approval status (not-yet approved in red) is shown.
Reproduced from ref. 134 with permission from the WILEY, copyright 2021.
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extracted algorithmically or with human supervision).153 Once
such a KG is built, experts can explore the associations to
discover important new drug targets or chemicals implicated
in a disease mechanism. Other ML algorithms, such as tensor
factorization, graph convolutional neural networks, logical
inference algorithms, can be used for graph completion, to
predict novel links between objects in the graph.153

One of the most notable examples of a KG was developed for
drug repurposing against COVID-19 by BenevolentAI. This KG
integrated a vast repository of structured medical information,
including numerous connections extracted from scientific
literature by various ML algorithms.154 To find a drug effective
against COVID-19, a custom graph was created and a subgraph
relating to SARS-CoV-2 extracted to permit inspection by
experts.16 This KG revealed that the virus binds the host cells
via the ACE2 receptor expressed on the surface of lung AT2
alveolar epithelial cells. ACE2 is involved in clathrin-mediated
endocytosis, which in turn is promoted by members of the
numb-associated kinase (NAK) family, including AAK1 and
GAK. Baricitinib, a drug approved for the treatment of rheumatoid
arthritis, was identified as a NAK inhibitor with sufficient plasma
concentration to inhibit AAK1. It was therefore submitted for
clinical testing.16 Furthermore, baricitinib is a JAK–STAT signaling
inhibitor and was predicted to be effective against the elevated
levels of cytokines (cytokine storm) observed in people with
COVID-19. It was also predicted to have a tolerable side effect
profile and low risk of interactions with other drugs based on
the KG.154

These predictions were verified in vitro: baricitinib inhibited
signaling of cytokines implicated in COVID-19 infection, it
showed high affinity to several members of the NAK family,
and it showed reduced viral infectivity in human primary liver
spheroids.16 Initial clinical data has shown that baricitinib
treatment was associated with clinical and radiologic signs of
recovery, and a rapid decline in viral load and inflammatory
markers in patients with bilateral COVID-19 pneumonia. A
randomized clinical trial, ACTT-II, has been initiated by Eli
Lilly and NIAID to study the effectiveness of baricitinib for
serious COVID-19 infections and resulted in drug’s approval for
emergency use in combination with remdesivir.155

Taking advantage of publicly available information, a network
of universities and biotechnology companies in China have
created a KG for target-drug interactions, protein–protein inter-
actions, drug molecular similarities, and protein sequence simi-
larities. The KG was queried, using a network-based knowledge
mining algorithm, for suitable drugs. These were identified as hit
candidates if another NLP relation extraction model found a bag
of sentences from the PubMed abstracts corpus describing a
relation between the drug and a target in the coronavirus of
interest. This method identified a PARP1 inhibitor, CVL218,
which subsequently exhibited effective inhibitory activity against
viral replication with no apparent signs of toxicity in rats and
monkeys. It also possessed anti-inflammatory effects.

Researchers from Amazon Web Services (AWS) and a network
of organizations in China and the USA have created a KG with
15 million edges (interactions) across 39 types of relationships

connecting drugs, diseases, genes, pathways, and expressions,
from a large scientific corpus of 24 million PubMed publications,
the GNBR data set, and the DrugBank database.156 The RotatE
algorithm was used to generate a low dimensional embedding of
the KG that suggested 41 drug candidates for repurposing. These
were supported by a high score in the treatment space, their
proximity in the low dimensional embedding, and gene-set
enrichment analysis from transcriptomic and proteomic data.
AWS has also generated a similar biological knowledge graph,
called DRKG, to fight COVID-19. It included information from six
databases (DrugBank, Hetionet, GNBR, String, IntAct and
DGIdb), and data collected from recent publications particularly
related to COVID-19, containing nearly 6 million edges between
100 thousand entities of 13 entity types.157

Other open source COVID-19 KGs include the extension of
ROBOKOP to COVID-KOP by researchers at the University of
North Carolina,158 and KG-COVID-19 by investigators at Berkeley,
California.159 The ROBOKOP biomedical KG was enriched with
information from recent biomedical literature on COVID-19
annotated in the CORD-19 collection. Sentence-by-sentence
co-occurrence analysis added 800 000 new edges to the COVID-
KOP graph, and co-occurrence counts at the paper level led to
4.5 million new edges. Gene ontology data for viral proteins and
symptom data was also added to the KG. The authors demon-
strated the utility of the new KG by retrieving the pathway serving
as a rationale for the linagliptin clinical trial against COVID-19 and
suggesting new inferences.158 Thus, KG-COVID-19 was created by
incorporating the latest data extracted from several biomedical
databases and literature, including drug, protein–protein inter-
actions, SARS-CoV-2 gene annotations, concept, and publication
data from the CORD19 data set in an ontology-aware way. it
contains about 16 million edges between nearly 300 thousand
entities. The KG can be queried using SPARQL and the authors
provide example queries to ease entry.

Another recent example of relevant KG construction is provided
by Neo4COVID-19,160 a knowledge mining workflow inspired by
SmartGraph161 and Hetionet,162 which served to assemble a Neo4j
network with essential ingredients such as virus-host protein–
protein interactions (VHPPIs), human protein–protein interactions
(hPPIs), and drug-target interactions (DTIs). Its purpose is to better
evaluate network-pharmacology-driven hypotheses and accelerate
anti-SARS-CoV-2 drug repositioning. VHPPI sources included two
proteomic studies,14,127 the SARS-CoV-2 subset from the viral-
human interactions atlas163 and a genome-wide CRISPR screen
for host genes related to SARS-CoV-2 infection.164 To streamline
these non-overlapping VHPPIs with hPPIs,14,127,164 the authors
used a KG based machine learning step (described elsewhere in
the context of autophagy),165 by using the ‘‘positive’’ (known)
interactions against true negatives (from the above experiments)
in the context of data aggregated from 17 distinct machine-
learning ready sets from TCRD/Pharos.166 For the pharmacology
component of the network, DTIs were extracted from the Drug-
Central database.167 DrugCentral currently includes 4642 drugs, of
which 2549 have regulatory approval dates. DrugCentral DTI
annotations include 19 959 human DTIs and 2570 non-human
DTIs; of these 2752 are mode-of-action DTIs.167
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In summary, recent efforts in knowledge graph construction and
data mining illustrate the immense amount of research already
performed on COVID-19, and the utility of KG approaches for the
drug repurposing is outlined by the stellar example of baricitinib.

Open-source implementations are also available for anyone
wanting to extend this work. It is important to note, however, that
proper clinical validation of suggested candidates will require
strong collaborations between academic, industrial, and govern-
ment partners, and will take much longer than a KG query. It is a
testament to the urgency of the pandemic that such a huge
amount of data has been released to the community, and a vast
array of AI and ML approaches have been brought to bear in the
challenge of discovering effective treatments for COVID-19.

Knowledge-based discovery of synergistic drug combinations
for COVID-19

Many valuable therapeutic opportunities arise from the synergistic
action of drugs. The great success of anti-HIV drug combinations,
and synergism of many other DAA agents highlight the importance
of exploration of combination therapy for COVID-19. For that
modern AI technologies can be used as powerful analytics tools
for exploring drug combinations with synergistic action against
SARS-CoV2.168

A detailed description of such study design is outlined in
Fig. 6, where the initial step corresponds to the use of the

combination of text mining (using Chemotext),169 knowledge
mining (using ROBOKOP/COVID-KOP knowledge graphs),158,170

and machine learning (QSAR)171 tools to identify existing drugs
with possible activities against SARS-CoV-2.172 Based on the
initial findings, 76 individual drug candidates were identified
as components of possible combinations.

These drugs can generate 2850 unique-component combi-
nations; to increase their synergetic probability, pairs of drugs
with different mechanisms of action, and/or targeting virus at
different lifecycle stages174 were prioritized. Consequently, 281
binary combinations of 38 drugs, and 95 ternary combinations
of 15 drugs were chosen for further consideration. The in silico
pipeline incorporating Chemotext169 along with recently developed
COVID-KOP,158 and QSAR models of major drug-drug inter-
actions175 was then used to determine whether selected compounds
had been previously tested together and whether negative drug-drug
interactions could be anticipated. The resulting prioritized list
included 32 drugs and their 73 selected binary combinations for
testing in vitro against SARS-CoV-2.173

Selected combinations were then experimentally screened in
a 6 � 6 dose matrix format, involving two biological batches
(cell and SARS-CoV-2 virus) and two assays (cytopathic effect
and cytotoxicity against Vero-E6 cells) across 42 384-well plates,
including replicates. Each batch was then assessed with five
known DAAs used as a positive control. The batch readouts
were highly reproducible, emphasizing the importance of using
a dose matrix, instead of a single dose combination, to enhance
the confidence of synergism/antagonism findings. The highest
single agent (HSA) synergy model was subsequently applied to
the screening outcomes and revealed that within 73 binary
combinations of 32 compounds, there were 16 synergistic and
8 antagonistic pairs, with 4 displaying both synergistic and
antagonistic interactions at different concentrations.176

Notably, these results demonstrated a strong antagonistic
effect between remdesivir and the antimalarial drugs hydroxy-
chloroquine, mefloquine, and amodiaquine (Fig. 7). Remarkably,
the most striking antagonism was observed in the combination
of the only two drugs approved with FDA Emergency Use Author-
ization (EUA) to treat COVID-19: hydroxychloroquine and remde-
sivir (the EUA for hydroxychloroquine has since been withdrawn
by the FDA).177

Among the identified 16 synergistic combinations, a significant
enrichment for nitazoxanide (FDA-approved broad-spectrum anti-
viral and antiparasitic drug) was also observed. The three most
synergistic combinations were: nitazoxanide with remdesivir;
nitazoxanide with umifenovir; and nitazoxanide with amodia-
quine. A complete rescue of CPE was observed when 0.6–5 mM of
nitazoxanide combined with remdesivir/umifenovir/amodia-
quine, while any of these drugs alone only achieved 40–60%
rescue. Important to note that amodiaquine, one of 32 drugs
identified as descibed above and found active in CPE assay,172

subsequenty was found to have antiviral activity against SARS-
CoV-2 in vitro131 and in vivo.178

These findings demonstrate the importance of preclinical
research on antiviral drug combinations, as well as the utility of
data and text mining approaches to explore modes of action

Fig. 6 Study design for identifying drug combinations. Reproduced from
ref. 173 with permission from the Cell Press, copyright 2021.
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(MoA) underlying synergism/antagonism in the context of
COVID-19. These results also signal that the paucity of preclinical
studies on drug combinations, prior to their use in patients, may
significantly increase risks of undesirable side effects and poor
outcomes. Furthermore, the developed matrix screening plat-
form173 represents an efficient, data-driven means for prioritizing
synergistic combinations of COVID-19 therapies and flagging
undesirable drug interactions. All the results were made publicly
available via NCATS Open Data Platform.125

The importance of rigor in
computational and experimental
approaches to COVID-19 drug
discovery

As we repeatedly outlined in this review, rigor and best practices
must be executed in all major elements of the modeling workflow:
data curation; model development and virtual screening; and
experimental analysis of computational hits. Best data curation
and model development practices have been extensively covered in
the scientific literature. Specific approaches to both chemical179

and biological30,180 data curation have been discussed elsewhere.
Similarly, best practices of computational model validation have
been discussed in multiple well-known papers and reports.171,181,182

The importance of rigor in data curation and model validation was
additionally publicized in highly cited reviews.183,184 However, we
felt it was important to highlight here best practices that should be
followed in nominating and testing compounds that emerge from
in silico studies as high-confidence tentative hits, especially in regard
to molecular docking.

Consensus approaches to SBDD screening

Typically, only one scoring function from a single software
would be employed in docking papers. Best CADD practice
places particular emphasis on consensus-based voting schemes
as generating the most enriched hit lists.120 This allows com-
parisons between the results from each scoring function
and should better prioritize the docked compounds and
should significantly increase confidence in the hits identified.
However, relatively few academic groups have access to
more sophisticated, commercial docking solutions such as
Schrodinger’s Glide (SP and XP scoring functions), ICM or
CCG’s MOE, among others. Additionally, very small datasets
of virtual compounds with limited structural diversity were
used in some of these docking studies. This puts comprehen-
sive ensemble docking using multiple conformations of the
target protein and multiple scoring functions out of the reach
of many research groups.

Consensus approaches and/or post-docking processing have
been used to a greater or lesser extent in the majority of VS
campaigns on SARS-CoV-2 targets reported to date. As we have
mentioned, the vast majority of these studies have not provided
experimental validation for predictions.107,185–187 Only a few
reported VS campaigns on Mpro resulted in identification of con-
firmed hits.28,52,188 While these represent rare cases of experimen-
tally validated inhibitors of SARS-CoV-2 targets, the levels of activity
achieved were not sufficient for direct therapeutic use. As we have
described above, such hits may conceivably be improved by con-
ventional medicinal chemistry-driven hit to lead optimization,
however any NCEs that arise would have to follow the lengthy drug
development pipeline. It is likely, therefore, that the flexible and
chemically active enzymatic site of the Mpro requires use of more

Fig. 7 Activity and synergy/antagonism matrices for selected drug combinations (A: Remdesivir + Hydroxychloroquine; B: Remdesivir + Amodiaquine;
C: Nitazoxanide + Remdesivir; D; Nitazoxanide + Amodiaquine). Reproduced from ref. 173 with permission from the Cell Press, copyright 2021.
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diverse and accurate CADD tools and more stringent and
sophisticated consensus protocols.

To address the question of whether more rigorous scoring
schemes could lead to more accurate VS performance, various
consensus docking approaches were investigated using four
major programs Autodock-GPU,189 FRED,190 GLIDE,191 and
ICM.192 They were applied to the consensus protocol in sequential
order (noting the decrease in the respective program’s efficiency).
A closely related SARS-CoV main protease (PDB: 4MDS193) was
employed, for which many validated, diverse non-covalent inhibi-
tors have been reported.194 From the literature, 81 such non-
redundant inhibitors were identified,194 and for each, up to 50
molecular decoys were generated using the Directory of Useful
Decoys–Enhanced (DUD-E) server.195 The resulting test set
included 81 active and about 4000 inactive molecules, corres-
ponding to a rather optimistic 2% background (random) hit rate.

For all poses generated by different docking programs for the
same ligand, their pairwise RMSD values were calculated. Mole-
cules that were docked by different programs with and RMSD o
2A were then considered to have been predicted by the consen-
sus. The generated docking scored were consequently ranked by
the last docking protocol used. The performance of this con-
sensus approach was evaluated by the Enrichment Factor:196

Other common scoring criteria used were the receiver operating
curve (ROC) and the area under the curve (AUC)120 metrics that
illustrate the general quality of the ranking schemes. The result-
ing EF and ROC metrics estimated for the four VS strategies are
presented in Fig. 8.

These results demonstrate that consensus prediction by two
or more docking programs results in significantly better ROC
statistics (with improvements in both initial slope and AUC
values). In cases when all four docking programs were used, the
AUC value was as high as 0.96 using ICM scoring function,
indicating a very significant capability to distinguish between
active and inactive compounds in the test set (Fig. 8). Similarly,
EF values consistently increased with the number of programs
combined in the consensus strategy, clearly indicating that

consensus discarded decoys at a significant higher rate than
active molecules.

In another conceptually similar study by Ghahremanpour
et al.,188 consensus docking approaches also led to notable success.
The authors concurrently employed Glide, AutoDock Vina, and two
protocols with AutoDock 4.2 for concurrent virtual screening of
B2000 existing drugs against the Mpro active site to arrive at 42 top-
scoring consensus hit compounds. Then, taking into account
intermolecular contacts, conformation, stability in molecular
dynamics (MD) simulations, and potential for synthetic modifica-
tion, 17 compounds were selected for purchasing. Remarkably, 14
out of these 17 tested compounds were found to be micromolar
inhibitors of Mpro with IC50 values of 5–10 mM. This investigation
suggests that rigorous approaches to molecular docking and con-
sensus hit selection afford very high experimental hit rates. While
compounds demonstrating micromolar activities in vitro are un-
likely to be potent enough to be stand-alone drug candidates, these
compounds were expected to be very useful for conventional hit-to-
lead medicinal chemistry optimization. Indeed, in a recent exciting
sequel to the aforementioned study,188 using Free Energy Perturba-
tion (FEP approach, Zhang et al. redesigned the weak hit perampa-
nel to yield multiple noncovalent, nonpeptidic inhibitors with ca.
20 nM IC50 values in a kinetic assay.

In summary, examples of studies described in this section,
demonstrate that rational reduction of a molecular database
through consensus VS could represent a rational strategy to find
elusive, potent noncovalent SARS-2-CoV Mpro inhibitors. They also
show the importance of rigor in evaluating computational hits and
the power of the experimental confirmation of hits selected by
computational protocols to increase the impact and recognition of
CADD methods. We additionally reflect on the importance of
rigorous execution of both molecular simulations and confirmatory
experimental bioactivity testing in the next sections of this review.

On the importance of ligand entropy in SBDD for COVID-19

Studies described above188 illustrate that given the limitations
of the use of rigid ligands and/or receptors in docking it is

Fig. 8 (A) Enrichment factors for different consensus docking schemes applied to SARS-CoV-1 Mpro test set. (B) Receiver operating curves (ROC) for virtual
screening using one software for docking and ranking (Autodock-GPU, AD, in green), and consensus docking using two (gold), three (grey) and four (purple)
programs followed by ranking using the scoring function of the last indicate program for each strategy. Area under the curve (AUC) values are reported in brackets.
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essential that the ligand:receptor complexes of molecules with
the best docking scores be simulated by subsequent MD
calculations. This allows more realistic contributions of ligand
entropy to binding free energy to obtained, and also eliminates
much of the errors resulting from the use of rigid receptors or
ligands in docking. Guterres and Im showed how substantial
improvements in protein–ligand docking results could be
achieved using high-throughput MD simulations.197 They
employed AutoDock Vina for docking followed by MD simulation
using CHARMM. Over 56 protein targets (of 7 different protein
classes) and 560 ligands they demonstrated a 22% improvement in
the area under receiver operating characteristics curve, from an
initial value of 0.68 using AutoDock Vina alone to a final value of
0.83 when the Vina results were refined by MD.

Experienced CADD users know that very flexible ligands suffer
from entropic penalties that can affect their binding affinities.
Thus, some important candidate hits that have emerged from
virtual screening against the SARS-CoV-2 Mpro and RdRp are very
flexible, with large numbers of rotatable bonds that make sig-
nificant conformational entropy contributions to the ligand
binding free energies. Studies that combine docking calculations
with MD simulations of the best scoring hits often employ the
Poisson–Boltzmann or Generalized Born and surface area con-
tinuum solvation (MM/PBSA and MM/GBSA) methods to estimate
the free energy of the binding of small ligands to their targets.
These popular methods are intermediate in accuracy and com-
putational effort between empirical docking scores and strict
alchemical perturbation methods. While they do a reasonable job
of accounting for the entropic contributions of solvent, they
ignore or approximate the conformational entropy of ligands
due to the high computational cost of normal mode analysis.198

For example, Alamri et al. reported the results of a combined
AutoDock Vina and MMGBSA study of the binding of libraries of
covalent inhibitors and antiviral compounds against the SARS-
Cov-2 Mpro.199

Researchers using MD simulations of molecules with the
most favorable docking scores to calculate absolute binding
energies need to be aware of the approximations inherent in the
popular MMPBSA and MMGBSA methods and in the use
thermodynamic cycle methods with insufficient conformational
sampling. There are several recent developments that allow
ligand entropies to the accounted for in more computational
efficient ways.200 We expect that the use of the such corrections
will improve the accuracy of docking calculations as applied to
SARS-CoV-2 targets whereas approaches considered in following
sections will help improve their computational efficiency.

Best practices of experimental validation of computational hits

Rapid accumulation of computational hit compounds has
driven a demand for their proper experimental validation.
Thus, many industrial and academic groups have established
a large number of SARS-CoV-2 assays, broadly classified by
(i) the type of assay – biochemical, biophysical, cell-based, proxi-
mity (immunoassays), (ii) the assay category – viral entry, viral
replication, live virus infectivity, in vitro infectivity, and (iii) the
detection method – fluorescence, microscale thermophoresis,

high-content imaging, luminescence, AlphaLISA, bio-layer inter-
ferometry, etc.

Different types of assays can assess activities in different
ways and can be used orthogonally to increase the confidence
in hits. For example, Hanson et al.201 developed a proximity-
based AlphaLISA assay to measure binding of SARS-CoV-2 spike
RBD protein to the ACE2 receptor that can be used to find small
molecules disrupting this critical interaction. These research-
ers screened 3384 drugs and pre-clinical candidates and iden-
tified 25 hits with IC50 values ranging from 0.1 to 29 mM.

Identification of false positives during any HTS campaign is
similarly crucial. There are many assay components that can
cause non-specific compound interference, such as readout
type, signal generation or detection, platform automation, assay
conditions, etc. To eliminate such potential false positives,
Hanson et al. used the AlphaLISA TruHits kit as a counter-
screen. This kit identifies inner filters, light scatterers (insoluble
compounds), singlet oxygen quenchers and biotin mimetics
interfering with the assay signal, thus eliminating false positives
and helping to improve HTS outcomes.

Several cell-based live virus assays have been developed for
SARS-CoV-2.125 One measures the ability of compounds to reverse
the viral induced cytopathic effect (CPE) in infected Vero E6 host
cells. The CPE reduction assay,202 indirectly detects the ability of a
compound of interest to inhibit viral replication and/or infection
through mechanisms such as direct inhibition of a viral entry,
suppression of enzymatic processes, and action on host pathways
that modulate viral replication. The CPE reduction assay was used
in many studies of individual DAA agents or drug combinations
that have been discussed in the previous sections.

To summarize, a significant number of cell-based and bio-
chemical assays have been developed to aid drug discovery for
SARS-CoV-2.203 Sharing and dissemination of such assays, along
with screening results and successful CADD protocols, is in high
demand. To address this need, the NCATS has developed open
science data portal125 offering real-time results of various
SARS-CoV-2 screening campaigns. This online resource contains
readouts for more than 10 000 compounds, when possible,
evaluated over full dose–response ranges. This portal stimulates
multi-faceted collaboration between groups from different
fields and represents the best practice scenario for drug dis-
covery research against COVID-19 as described in the final
section of this review.

COVID-19 and Open Science

This contribution was conceived and developed by a group of
scientists who have dedicated their professional careers to mole-
cular modelling and drug discovery. Many have worked on the
comprehensive reviews of QSAR and CADD best practices.183,184

Here, we provided an overview of the broad landscape of CADD
approaches used to target SARS-CoV-2, one of the most danger-
ous pathogens known to mankind. We reviewed known and
emerging computational methods and described best practices
for data processing and algorithm execution that will achieve
meaningful and impactful drug discovery for COVID-19. We also
stressed the importance of collaborative efforts and open science.
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Conspicuously, the COVID-19 crisis has done much to stimulate
collaboration and greater openness in science,204 driven by the
assumption that openness accelerates the research. Sharing data
and ideas with minimal restrictions allows all parties to capitalize
on new knowledge more quickly and effectively, avoiding unneces-
sary duplication. Our willingness and efforts to bypass traditional
scientific restrictions (e.g., the need to patent, secure research
funding, or boost our academic profile) is encapsulated in three
initiatives: Open access, Open data and Open source.

(1) Open access to computational research. Broad dissemina-
tion of peer-reviewed research is crucial for rapid drug discovery.
In the wake of a global pandemics, all major publishers made
COVID-related papers freely available in an unprecedented
move.205 Moreover, recent explosion in use of free (unreviewed)
preprint services has contributed significantly to Open access
COVID-19 research. However, the extraordinary surge of preprints
on computational discovery of potential COVID-19 therapies that
providing no experimental verification has led to bans being
placed on such unsubstantiated submissions.4

(2) Open data in COVID-19 computational research. The
deposition of open-license datasets has been crucial for science,
as illustrated by the high- profile example of the Human
Genome Project that fueled the life sciences for the last two
decades. The value of the Open data has also been clearly seen
through numerous COVID-19 related initiatives, including the
following: –

(i) Proteins and fragments. Central to all computational work
is free access to data on protein targets. Thus, the Protein Data
Bank developed a resource dedicated to SARS-CoV-2.29

The Diamond Light Source has also placed many of its
structures, and associated fragment screening results, into
public domain,206 preparing the ground for the community-
based Moonshot initiative.

(ii) Assays and target screening results. The NCATS conducted
a large number of screens with most important SARS-CoV-2
drug targets and disclosed all results in a real time, providing a
wealth of information for CADD efforts.125

(iii) Data management. Tools for data analysis and aggrega-
tion are invaluable in defining drug design strategies. Thus, the
Institute of Cancer Research has repurposed its cancer data
tool, CanSAR,207 for coronavirus targets. CORD-1915 represents
an integrated textual data platform for COVID-19 research.
Another notable project, Nextstrain, is tracking viral evolution
on the daily basis.208

(3) Open source COVID-19 CADD. The philosophy of Open
source is participatory than observational.209 It has been implemen-
ted in many areas of research including discovery and synthesis of
drugs for neglected and tropical diseases,210 for sharing physical
samples for biomedical research,211 for collective optimization of
drug candidates,212 among many others. In all those cases the
underlying belief is that the goal is achieved more efficiently if there
are ‘‘more eyeballs on the problem.’’ Such a belief is particularly
widespread in the time of the crisis, with a corresponding number
of COVID-19 research initiatives on a rise: –

(i) Collaborative drug design. The COVID Moonshot initiative
mentioned above is hosted by a for-profit startup and contri-
butors can submit candidate Mpro inhibitors built from crystal-
lographic fragments from the Diamond Center.38 Following
triage, the proposed compounds are synthesized by a contract
research organization and evaluated in two open source ortho-
gonal Mpro assays that provide new data into the next design
round. Other distributed, participatory projects have also been
launched for COVID-19 CADD campaigns.15

(ii) Competitions of approaches. The Joint European Disruptive
Initiative (JEDI) is hosting a grand challenge project aimed at
identifying the most promising computational approaches in
compound design by combining the predictions with experi-
mental validation of the best proposed structures. A prize is
offered following a three-stage competition.213

(iii) Sample sharing. The sharing of physical proteins samples or
potential drug/tool compounds can catalyze both computational
and experimental research efforts; several public sources of both
antiviral compounds214 and coronaviral target proteins215 have
been developed in this way.

(iv) Shared computational resources. The Folding@Home
project, a long-standing initiative for pooling computational
powers, has been adapted for rigorous MD simulations of SARS-
2-CoV target proteins, and major protein-host interactions.216

A generalized consensus on Open science has been agreed
on by a number of global and national coalitions,217 research,
business and regulatory consortia218 and progress-tracking initiatives
committed to supporting open research, and collectively battling the
deadly pandemic.

Concluding remarks

To conclude this review, we would like to state that along with
the emphasis on openness and data sharing, we continue to
stress the importance of best practices, rigor, and experimental
validation in computer-aided drug discovery. The greater accessi-
bility of computational resources and software has made it easy for
non-experts to employ CADD tools to datasets and biological
targets relevant to SARS-CoV-2 drug discovery. Hundreds of drugs
have been computationally repurposed as putative treatments for
COVID-19, many have gone into clinical trials with little or no
supporting data or rationale. A few (e.g., remdesivir and baricitinib)
have won regulatory approval, and yet, none has emerged yet as a
curative treatment for the disease. This observation suggests that
even massive computational resources cannot replace experi-
mental methods for identifying promising drug candidates. How-
ever, the use of carefully processed prior experimental data and
rigorous computational tools can enable successful experimental
discovery of viable drug candidates.

To illustrate this assertion, selected examples of de novo
designed chemical compounds, drugs, or drug combinations dis-
covered or repurposed using computational approaches are shown
in Table 5. Compounds MLS000699212-03 and NCGC00100647
were discovered using biological activity-based modeling approach,
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in which compound activity profiles established across multiple
assays were used as signatures to predict compound activity in other

assays or against a new target.219 Although the idea of using activity
data in the modeling is not new,220 the authors validated its utility

Table 5 Selected repurposed drugs or drug combinations (a), and de novo designed compounds (b) identified by computational approaches and
successfully confirmed in experimental studies

CPE: SARS-CoV-2 cytopathic effect assay; PPE: SARS-CoV-2 pseudo particle entry assay; Mpro: RFET-based SARS-CoV-2 main protease inhibition assay.
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by achieving B30% success rate in the discovery of novel antivirals.
Consensus of docking techniques resulted in repurposing of
nafamostat and camostat,221 manidipine and boceprevir,222 and
subsequent discovery of two antioxidant polyhydroxy-1,3,4-
oxadiazole compounds CoViTris2020 and ChloViD2020 with
high activities in vitro,222 and several perampanel analogs223

(identified using free-energy perturbation method) as novel,
non-covalent Mpro inhibitors with 20 nM–5 mM IC50 values in
a kinetic assay for Mpro. Several Deep Docking52 and QSAR224

hits were selected and confirmed experimentally by indepen-
dent research groups that led to discovery of several potent Mpro

inhibitors122 and repurposing of cenicriviroc and two other
drugs, among others.125 In case of mixtures, AI-derived hypothesis
of baricitinib as a potential treatment for COVID-1916 resulted
in Emergency Use Authorization (EUA) by the U.S. Food and
Drug Administration (FDA) granted for its combination with
Remdesivir.155 Sixteen synergistic and eight antagonistic drug
combinations, including most notable nitazoxanide – umifenovir
for synergy and remdesivir – (hydroxy)chloroquine for antagonism,
were identified using knowledge mining approaches and QSAR
and then confirmed experimentally. Importantly, amodiaquine,
identified as potential anti-COVID-19 repurposing candidate by
knowledge-mining approaches,172 was confirmed to have experi-
mental antiviral activity in CPE172 and titer reduction131 assays as
well as in animal studies.178 Given its half-life of 3 weeks,
amodiaquine could be a great solution, particularly for countries
lacking access to Remdesivir, Favipiravir and other antivirals.

Finally, Open Science and data sharing can go far in helping
computational modelers discover new therapies and computa-
tional scientists must routinely seek experimental validation of
their ‘‘digital dreams’’ before promoting computational results.
Adhering to rigorous practices of modern research may dramatically
reduce the number of publications but also dramatically improve
the number of computer-assisted, experimentally validated potent
antivirals discovered. We hope this collective contribution will be
useful for data modelling and experimental researchers wishing to
expand their toolkits to include rigorous computational approaches
in their efforts to combat current and future pandemics.
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78 Y. M. Báez-Santos, S. J. Barraza, M. W. Wilson, M. P. Agius,
A. M. Mielech, N. M. Davis, S. C. Baker, S. D. Larsen and
A. D. Mesecar, J. Med. Chem., 2014, 57, 2393–2412.

79 W. Rut, Z. Lv, M. Zmudzinski, S. Patchett, D. Nayak, S. J.
Snipas, F. El Oualid, T. T. Huang, M. Bekes, M. Drag and
S. K. Olsen, Sci. Adv., 2020, 6, eabd4596.

80 T. Muramatsu, C. Takemoto, Y. T. Kim, H. Wang, W. Nishii,
T. Terada, M. Shirouzu and S. Yokoyama, Proc. Natl. Acad.
Sci. U. S. A., 2016, 113, 12997–13002.

81 L. Kiemer, O. Lund, S. Brunak and N. Blom, BMC Bioinf.,
2004, 5, 72.

82 D. W. Kneller, G. Phillips, K. L. Weiss, Q. Zhang, L. Coates
and A. Kovalevsky, J. Med. Chem., 2021, 64, 4991–5000.

83 W. Dai, B. Zhang, X. M. Jiang, H. Su, J. Li, Y. Zhao, X. Xie,
Z. Jin, J. Peng, F. Liu, C. Li, Y. Li, F. Bai, H. Wang, X. Cheng,

X. Cen, S. Hu, X. Yang, J. Wang, X. Liu, G. Xiao, H. Jiang,
Z. Rao, L. K. Zhang, Y. Xu, H. Yang and H. Liu, Science,
2020, 368, 1331–1335.

84 J. Chodera, A. A. Lee, N. London and F. von Delft, Nat.
Chem., 2020, 12, 581.

85 Together We Are Powerful – Folding@home, https://foldin
gathome.org/, accessed 22 April 2021.

86 J. Lyu, S. Wang, T. E. Balius, I. Singh, A. Levit, Y. S. Moroz,
M. J. O’Meara, T. Che, E. Algaa, K. Tolmachova, A. A.
Tolmachev, B. K. Shoichet, B. L. Roth and J. J. Irwin,
Nature, 2019, 566, 224–229.

87 T. Sterling and J. J. Irwin, J. Chem. Inf. Model., 2015, 55,
2324–2337.

88 A. Acharya, R. Agarwal, M. B. Baker, J. Baudry, D. Bhowmik,
S. Boehm, K. G. Byler, S. Y. Chen, L. Coates, C. J. Cooper,
O. Demerdash, I. Daidone, J. D. Eblen, S. Ellingson, S. Forli,
J. Glaser, J. C. Gumbart, J. Gunnels, O. Hernandez, S. Irle,
D. W. Kneller, A. Kovalevsky, J. Larkin, T. J. Lawrence,
S. LeGrand, S.-H. Liu, J. C. Mitchell, G. Park, J. M. Parks,
A. Pavlova, L. Petridis, D. Poole, L. Pouchard, A. Ramanathan,
D. M. Rogers, D. Santos-Martins, A. Scheinberg, A. Sedova,
Y. Shen, J. C. Smith, M. D. Smith, C. Soto, A. Tsaris,
M. Thavappiragasam, A. F. Tillack, J. V. Vermaas,
V. Q. Vuong, J. Yin, S. Yoo, M. Zahran and L. Zanetti-
Polzi, J. Chem. Inf. Model., 2020, 60, 5832–5852.

89 J. S. Morse, T. Lalonde, S. Xu and W. R. Liu, ChemBioChem,
2020, 21, 730–738.

90 R. E. Amaro and A. J. Mulholland, J. Chem. Inf. Model.,
2020, 60, 2653–2656.

91 D. Wrapp, N. Wang, K. S. Corbett, J. A. Goldsmith,
C.-L. Hsieh, O. Abiona, B. S. Graham and J. S. McLellan,
Science, 2020, 367, 1260–1263.

92 H. Woo, S. Park, C. Yeol, T. Park, T. Maham, Y. Cao,
N. Kern, J. Lee, Y. Min, T. Croll, C. Seok and W. Im,
J. Phys. Chem. B, 2020, 124, 7128–7137.

93 L. Casalino, Z. Gaieb, J. Goldsmith, C. Hjorth, A. Dommer,
A. Harbison, C. Fogarthy, E. Barros, B. Taylor, J. McLellan,
E. Fadda and R. Amaro, ACS Cenral Sci., 2020, 6, 1722–1734.
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