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Kinetics of the parallel-consecutive bimolecular
reaction: a solution to the inverse problem
involving the Lambert-W function

Phillip Pitt * and Laurence M. Harwood *

For the parallel-consecutive bimolecular reaction mechanism, a

solution to the inverse kinetic problem can be approached directly

using a characteristic equation specified in terms of the Lambert-W

function, similar to the logarithmic and reciprocal plot-treatments

for simple first and second order reaction kinetics, respectively.

lnb
b
g �W b

b
g lnb

b
g

� �
¼ k� 1ð Þ ln b

where B and C are concentrations, b = B/B0, g = C/B0, k = k2/k1.
During studies into the ultra-high pressure synthesis of

imidazolium salts, we encountered some rapid and high-
yielding consecutive nucleophilic substitution reactions of
N-alkyl imidazoles with dichloromethane and homologous a,o-
dichloroalkanes (Scheme 1).1 These are examples of parallel-
consecutive (or competitive-consecutive) bimolecular reactions
(Scheme 2), the kinetic equations of which, despite simplicity
and similarity to those of other reaction mechanisms, are not so
obviously solved. Resultantly, solving the inverse problem has
posed a historical challenge.

One of the early historical motivations to solve the problem
was with application to the kinetics of diester hydrolysis – a
two-step bimolecular sequence involving a common reagent –
first reported by Ingold,2 and subsequently re-evaluated many
times. There have been various approaches to the inverse
problem of the parallel consecutive bimolecular reaction, and
there are many examples of such reactions.3–14 Probably the
most frequently reported data analysis methodology is that of
Frost and Schwemer, and this dates back about 75 years.15 Use
of the method, which requires the observation of particular
pairs of reaction extents, is however more appropriate for
continuously monitored reactions and less so for the post hoc
measurements, such as those allowed by high-pressure batch-
reactors, for example. This prompted the pursuit of alternative
means of kinetic characterisation. In this note we demonstrate

some mathematical features involving the intermediate
species, C, that allow for an expedient solution to the inverse
problem.

Theoretical treatment

The mechanism for the reaction illustrated in Scheme 2 is
defined by the differential rate eqn (1)–(4),

A0 tð Þ ¼ dA

dt
¼ �k1AB� k2AC (1)

B0 tð Þ ¼ dB

dt
¼ �k1AB (2)

C0 tð Þ ¼ dC

dt
¼ k1AB� k2AC (3)

D0 tð Þ ¼ dD

dt
¼ k2AC (4)

and in treatment of the kinetic data, the substitutions (5)–(8)
are made for convenience,

Uni-functional species a = A/A0 (5)

Bi-functional species b = B/B0 (6)

Scheme 1 Formation of bis(imidazoliumyl) alkane dichlorides, an
example parallel-consecutive bimolecular reaction.

Scheme 2 Kinetic scheme.
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Mono-adduct g = C/B0 (7)

Rate quotient k = k2/k1 (8)

where A, B and C are concentrations, A0 and B0 are initial
concentrations, a, b and g are fractional concentrations, and k1

and k2 are rate constants for the two steps, respectively.
As has been discussed elsewhere, there are no closed form

solutions to the differential rate eqn (1)–(4), which would be
required to exactly express the integrated, time-dependent rate
equations. Instead, solutions are obtained in terms of B rather
than time, since in this basis the equations for all species do
have closed form solutions.16 Correlations with time can then
be subsequently achieved through graphical integration.17

Taken together, typical, exact algebraic solutions to the inverse
kinetic problem appear precluded.

More widely known for his contribution to electrochemistry
(of ‘Frost diagram’ fame),18 Frost and Schwemer were first to
demonstrate the solution for the concentration A in terms of B
(and not in terms of time).17 Alluding to the difficulty in solving
the time-dependent integrals, their evaluation was not suggested,
but instead the technique of time-ratios was promoted for the
estimation of k, which they attribute to Powell. Using variable
transformations, McMillan later recast the differential rate
equations into homogenous form and demonstrated that
differential rate eqn (9), obtained by dividing (3) by (2), has the
solution (10).19

dg
db
¼ k

g
b
� 1 (9)

g ¼ b� bk

k� 1
(10)

Since (10) does not involve the concentration A, its analysis is
independent of the initial mixing ratio, r = A0/B0, provided only
starting materials are initially present. For physically meaningful
arguments viz., 1 r br 0, 1 r gr 0 and k4 0, (10) is not single-
valued, but each pair of measured concentrations [b, g] can belong
to only one contour, which is described by a unique value of k.
McMillan published19 a plot of these parametric contours and
suggested the use of these, or numerical methods, to approximate
k from experimental data. There are, however, several additional
relationships useful for describing the reaction profile and solving
the inverse problem, which to our knowledge, are absent from the
literature.

The stationary point

Following the derivation of Wen,16 using substitutions (5)–(8),
eqn (3) can be recast in fractional concentrations as (11),

dg
dt
¼ rasbs � rkasgs (11)

where the subscript s indicates a concentration at the stationary
point, the initial mixing ratio r = A0/B0 and t = B0k1t. Analogous
to the situation encountered in analysis of steady state kinetics,
at the quasi-stationary point in the reaction progression, (11) can

be set to nought, and this leads to expression (12) for the rate
constant quotient.

k ¼ bs
gs

(12)

The particular concentrations [b, g] that satisfy (12) are obtained
using (10) to give (13) and (14), respectively. Although not con-
sidered here, in the limit of k - 1, both concentrations are
convergent to the constant, exp(�1) E 0.368, and reflect a change
in the particular solution16 to the differential equation set.

bs ¼ k
1

1�k (13)

gs ¼ k
k

1�k (14)

Conversion back to absolute concentrations is achieved by multi-
plying b and g by B0, and are illustrated on the reaction profile,
Fig. 1.

Solving the inverse problem

Isolating the concentration ratio b/g in (10) gives (15), which is
single-valued for all k, and in the limit of b - 0+, converges to
k � 1 (16). This situation corresponds to an indefinite reaction
time and extrapolating the quantity b/g to its asymptotic
minimum would be at best unreliable, or at worst, and more
likely, guesswork. It does, however, yield a ceiling to the
possible range, since b/g Z k � 1, always.

Although it is convenient, equality (12), b/g = k, is only true at
the precise stationary point, i.e., when the value of b is exactly
described by (13). There is deviation at all other reaction extents,
which can be accounted for in a precise way using (17), but as an
impredicative expression, evaluation cannot yield an unknown k.

b
g
¼ k� 1

1� bk�1
(15)

lim
b!0þ

b
g
¼ k� 1 (16)

b
g
� lim

b!0þ

b
g
¼ bk

g
(17)

Instead, eqn (18) obtained by isolating (k � 1) from (15), unlike
(12), is true for all b. It may appear that the multiple occurrences

Fig. 1 Example reaction profile for k = 2.2 and A0/B0 = 2 with the
stationary point concentrations indicated.
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of (k � 1) prevent useful evaluation of (18), but on account of the
particular way the terms correspond, it is indeed soluble. Thus,
continuing where McMillan left off with the plot of (10), eqn (18)
is multiplied by ln b and, exploiting a few logarithmic transfor-
mations, the equation becomes the log-linear parametric
eqn (19).

b
g
� b

g
bk�1 ¼ k� 1 (18)

lnb
b
g � bk�1 lnb

b
g ¼ lnbk�1 (19)

Through substitutions (20) and (21), eqn (19) can be cast in the
form of Lambert’s identity (22),20,21 the analytic inverse of which
is the Lambert-W function (23), and leads to eqn (24).

z ¼ bk�1

b
b
g

(20)

n ¼ b
b
g lnb

b
g (21)

ln z + vz = 0 (22)

vz = W(v) (23)

bk�1 ¼
W b

b
g lnb

b
g

� �

lnb
b
g

(24)

Hence, the deviation of the instantaneous value b/g (15) from
that in the limit of b - 0+ (16) expressed in (17) can be usefully
evaluated without prior knowledge of k using (25).

b
g
� lim

b!0þ

b
g
¼

W b
b
g ln b

b
g

� �
ln b

(25)

Rearranging (25) yields a time-independent expression for the
rate quotient in terms of b and g at any reaction extent (26), and
eqn (27) is characteristic for the mechanism, where k 4 1.
Solving the inverse problem, a plot of (27) is linear, and passes
through the origin with a gradient equal the rate quotient, k.

k� 1 ¼ b
g
�
W b

b
g ln b

b
g

� �
lnb

(26)

ln b
b
gþ1 �W b

b
g lnb

b
g

� �
vs: ln b (27)

Example and implementation

Whilst the Lambert-W function is not natively available in
typical spreadsheet software packages, it can be implemented
as a macro through evaluation of its series expansion (28),
truncated to an arbitrary number of terms. A convenient
algebraic alternative (29), due to Winitzki,22 provides an
approximation of the appropriate branch (W0) in the necessary

domain (�e�1 o x o 0). This approximation introduces a
maximum error of less than 1 per cent.

W xð Þ ¼
X1
n¼1

�1ð Þn�1

n!
xn (28)

W xð Þ � x e1

1þ e1 � 1ð Þ�1�2�0:5 þ 2�0:5 e xþ 1ð Þ�0:5
� ��1 (29)

Using (29), a closed form expression can be cast (30) which
approximates the rate quotient to a satisfactory accuracy pro-
vided the kinetic data are of sufficiently good quality. Applying
(30) to the data presented in Fig. 1, a plot of the characteristic
equation evaluated using the approximation is illustrated in
Fig. 2.

lnb
b
gþ1� b

b
g lnb

b
g e1

1þ e1�1ð Þ�1� 1ffiffiffi
2
p þ 2þ2e1 b

b
g lnb

b
g

� ��0:5 !�1

¼ k lnb

(30)

In this example, the authentic rate constant quotient is k = 2.2.
As noted for (10), analysis using (26), (27) and (30) are

similarly independent of concentration A, time, and also of
the mixing ratio A0/B0 provided that only starting materials are
present initially.
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