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What can we learn from transition path time
distributions for protein folding and unfolding?

Rajesh Dutta and Eli Pollak *

Recent advances in experimental measurements of transition path time distributions have raised

intriguing theoretical questions. The present interpretation of the experimental data indicates a small

value of the fitted transition path barrier height as compared to the barrier height of the unfolded to

folded transition. Secondly, as shown in this paper, it is essential to analyse the experimental data using

absorbing boundary conditions at the end points used to determine the transition paths. Such an

analysis reveals long time tails that have thus far eluded quantitative theoretical interpretation. Is this due

to uncertainty in the experimental data or does it call for a rethinking of the theoretical interpretation?

A detailed study of the transition path time distribution using a diffusive model leads to the following

conclusions. a. The present experimental data is not accurate enough to discern between functional

forms of bell shaped free energy barriers. b. Long time tails indicate the possible existence of a ‘‘trap’’ in

the transition path region. c. The ‘‘trap’’ may be considered as a well in the free energy surface. d. The

long time tail is quite sensitive to the form of the trap so that future measurements of the long time tail

as a function of the location of the end points of the transition path may make it possible to not only

determine the well depth but also to distinguish between different functional forms for the free energy

surface. e. Introduction of a well along the transition path leads to good fits with the experimental data

provided that the transition path barrier height is B3kBT, substantially higher than the estimates of

B1kBT based on bell shaped functions. The results presented here negate the need of introducing

multi-dimensional effects, free energy barrier asymmetry, sub-diffusive memory kernels or systematic

ruggedness to explain the experimentally measured data.

1 Introduction

Understanding the folding and unfolding dynamics of bio-
molecules of proteins and nucleic acids from the perspective
of both theory1–5 and experiment6–15 has been an important
aim in recent years, especially in view of the experimental
results. The folding and unfolding dynamics is generally under-
stood in terms of a transition in a multidimensional free energy
landscape. In a simplified approach, one describes the transi-
tion as one-dimensional diffusion in a free energy landscape
with two minima separated by a barrier whose height is much
larger than the thermal energy. As a result, the biomolecules
predominantly spend the time near one of the minima; the top
of the barrier is rarely visited. Transition paths are the relatively
rare traversals of the molecule as it leaves one minimum,
moves across the barrier to end up in the other minimum. In
principle, transition paths contain microscopic information on
the folding and unfolding dynamics. However, as transition
paths are short-lived as compared to the dwell times in the

respective wells, it is experimentally challenging to observe the
transition event. It is thus remarkable that recent advances in
temporal resolution of single molecule experiments have made
it possible to observe the transition and measure not only the
mean transition path time8,9 but also the detailed transition
path time distribution.

The first such measurements of the detailed transition path
time distribution11 were explained in terms of a one dimen-
sional diffusion equation in which the shape of the barrier was
assumed to be parabolic. Fitting the experimental results to
such a theory leads to two parameters. One is a frictional time
scale, the other a reduced (in terms of the thermal energy)
transition path barrier height (Utp/kBT). The results were intri-
guing. Foremost, the resulting barrier height was found to be
an order of magnitude lower than that of the known barrier
heights of the thermal transition obtained from the residence
times in each well. Secondly, one should understand why a
Smoluchowski equation description is at all a valid tool for
describing the dynamics. Thirdly, as considered in some detail
in this paper, the theory as employed thus far is not able to
account correctly for the long time tail of the distribution,
which typically is much longer than predicted by the parabolic
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barrier diffusion model (with absorbing boundary conditions).
Fourthly, isn’t the one dimensional parabolic barrier model too
simplistic? What is the role of added dimensions? Finally, the
diffusion equation assumes a Markovian process, why is this
justified? Shouldn’t memory play a role?

These challenges have led to a flurry of theoretical activity.
As suggested in ref. 17 it is now well understood that the
transition path barrier height (Utp) should be smaller than
the true barrier height (U) since the experiment measures the
transition path time distribution for two points located on
either side of the barrier but still distant from the wells. Indeed,
it was suggested already in ref. 17 that by changing the initial
and final points of measurement, one should be able to extract
information about the shape of the free energy surface.

The justification for the use of a Smoluchowski equation to
describe the transition path time distribution is based on a
coarse grained picture of the barrier crossing dynamics. The
accepted picture is that the transition is in reality a series of
uncorrelated transitions between the many microstates that
exist along the reaction path. The hops between the microstates
are random, therefore as a reasonable zero-th order approxi-
mation the motion is diffusive hopping between nearest neigh-
bor sites, without memory. van Kampen16 showed that when
taking this picture to the continuum limit, the discrete master
equation which describes the hopping transitions between
nearest neighbor microstates of the protein reduces to the
Smoluchowski equation. The ‘‘friction coefficient’’ within this
picture is related to the mean time spent in the microstates
before escaping them. This mean time is long, as compared to
the time scale of vibrational motion, and assumed to be
dominated by the entropic barriers separating the microstates.
The free energy barrier heights themselves cannot be too large,
as the overall barrier height measured for the folding–unfold-
ing transition is B10kBT.

The question of memory effects has received much
attention.17–22 Using the normal mode transformation23–25 as
applied to dissipative dynamics,26 it was possible to derive
analytic expressions for the transition path time distribution
in the presence of a parabolic barrier and memory friction.17

Subsequently, the effects of the inertial term in a generalized
Langevin equation description of the dynamics as well as
memory effects were studied at length by many researchers in
the field.22,27 Makarov and co-workers incorporated memory by
implementing models that are based on the fractional Fokker–
Planck equation and fractional Brownian motion.18,19 They also
explored the effect of memory on the time duration of transi-
tion paths using the generalized Langevin equation with an
exponential memory kernel.21 Carlon and coworkers extended
the study by invoking a power-law-type memory kernel.20 The
inclusion of such a memory kernel broadens the distribution
when the motion is sub-diffusive, leading to a longer time tail,
but not sufficiently long to agree with the experimental
observations.

The effect of the shape of the barrier-whether parabolic,
symmetric, or asymmetric, was studied by Carlon and co-
workers.28 They showed that asymmetry could lead to a

broadening of the transition path time distribution. Metzler
et. al.,29 using a simplistic model, investigated the role of
ruggedness30 of the free energy profile on the transition path
time distribution. Yet, the upshot of all this work was that the
experimentally measured distributions on the one hand could
not affirm whether memory was important, nor could one
derive from them a characteristic memory time. The long time
tails were not accounted for, and the experimental data was not
sufficient for determining how anharmonic or asymmetric the
free energy surface is.

In principle, it should be possible to extract the shape of the
free energy barrier from the experimentally determined time
distribution.31 Unfortunately, although possible in principle,
experimental inaccuracies and complications associated with
the coupling of the molecules to the tethers make this inversion
as of now, indefinitive. As noted by Covino et. al.,31 ‘‘even
exponentially small inaccuracies in the observed committor
lead to large errors in the barrier height of the reconstructed
molecular free energy profile.’’

Multidimensional effects were also studied in depth. Satija,
Berezhkovskii and Makarov32 introduced a coefficient of varia-
tion which is the ratio of standard deviation of the time
distribution to its mean as a criterion for multidimensionality.
They showed that for a one-dimensional diffusive model the
coefficient of variation is always lower than unity. Values which
are greater than unity indicate not only a broadening of the
distribution, but that this results from multidimensional
effects. Interestingly, as we also show below, for the available
experimental results for the folding transition of DNA hairpins
and Prp proteins, the observed coefficient of variation is lower
than one. Multidimensional effects on protein folding have
been studied rather intensively in recent years.33–35 However,
these too have not led to firm conclusions, based on the
experimentally determined distributions.

It is with this background in mind that one may ask, if so,
what can one learn from the measured transition path time
distributions. Is it only two parameters, a barrier and friction
time scale, or can one elucidate more information from the
experimentally measured distributions or suggest further
experiments which could provide more insight into the actual
transition dynamics and what governs them? Is the transition
path barrier really of the order of 1kBT? The purpose of this
paper is to provide at least partial answers to these questions.

The transition path time is in principle, sensitive to the
shape of the barrier. In Section 2, using the Smoluchowski
equation (with absorbing boundary conditions) we investigate
the transition path dynamics for different barrier shapes:
cusped, parabolic, quartic and hexic. We try to understand
what can be gleaned from the experimental data, if one changes
the extent of the transition region. As already noted in ref. 17,
the larger the distance between the end-points used to measure
the transition path time distribution from the barrier top, the
higher is the transition path barrier, so that one should, at least
in principle, by measuring this width dependence, obtain
information on the barrier shape. Solving the diffusion equa-
tion numerically for parabolic, quartic, hexic and cusped
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potential models we find that although such experiments
would provide information on the overall distance dependence
of the barrier, the experimental noise prevents one from
distinguishing between different functional forms.

Inspection of Fig. 3 of ref. 11 shows excellent agreement of
the measured transition path time distribution with an analytic
expression based on diffusive dynamics on a parabolic barrier
with open boundary conditions. Alas, the experimental condi-
tions used to measure the transition path time distribution are
absorbing boundary conditions. This implies that the theore-
tical transition time would be shorter than that obtained from a
theory based on open boundary conditions, since with absorb-
ing boundaries there are no recrossings of the endpoints
defining the transition region. We find in Section 2, that
indeed, using absorbing boundary conditions reveals a long
time tail in the experimental distribution, which thus far has
not been accounted for.

In Section 3 we study the long time tails and their cause.
Although anharmonicity affects the long time tails, the assump-
tion of a bell shaped barrier whether symmetric or not, is not
sufficient to explain the measured results. Since the transition
path is in principle characterized by many microstates, there is
no reason to assume a-priori, that the free energy surface is a
simple single barrier separating the folded and unfolded states.
A few previous experiments have indicated the possibility of
‘‘traps’’ mediating between the unfolded and folded states.36,37

The experimentally measured long time tails suggest that
perhaps there exists a trap in the transition region which
prevents a rapid crossing. With this in mind, we consider the
effect of introducing a well along the free energy surface
separated by barriers from the folded and unfolded states.
We find that such a model not only accounts for the long time
tails, it also suggests that the transition path free energy barrier
measured in the experiments is of the order of B3kBT, while
the transition path well depth is similar. Considering that the
barrier separating the folded and unfolded states is of the order
of B10kBT, this also removes the puzzling more than order of
magnitude difference between the transition path barrier
height and the true barrier height as reported in ref. 11.
Furthermore, we find that the measured data is sufficient for
extracting the well depth of this intermediate state, though one
cannot distinguish the functional form of the free energy, both
cusped and piece-wise quadratic forms give a good fit to the
experimental data.

We conclude with a discussion of the results, suggesting
that this present work indicates how experimental data may be
further used to elucidate more information on the transition
path dynamics, while at the same time, noting the limitations
and some remaining open theoretical questions.

2 Transition path distributions for
anharmonic barriers

The experimental data reported thus far is based on measuring
a distance between two ends of a protein. This distance is

readily measured between the local minima of the folded and
unfolded proteins. The distance in the folded state is shorter
than in the unfolded state. In the experiments one chooses two
points whose distance lies half way between the distance of the
minima. The transition path time is then defined as the time
required to reach one of the boundaries starting from the other.
It cannot be over-stressed that the experimental data is
obtained by stopping the trajectory as soon as it reaches the
end point. In other words the experimental distribution is
obtained with absorbing boundary conditions. The distribution
of times is then called the transition path time distribution.

Here, we simulate this process by considering diffusive
dynamics along a one dimensional reaction coordinate x. The
diffusive (Smoluchowski) equation we use is

@x

@t
¼ �1

z
@U

@x
þ 1

z
FðtÞ (1)

where, �@U
@X

represents the force acting on the particle via the

free energy surface U, z ¼ kBT

D
is a friction coefficient, kB

denotes Boltzmann’s constant, D is the diffusion coefficient
and F(t) is a Gaussian random force with zero mean and (Dirac)
delta function correlation

hF(t)i = 0 hF(t)F(t0)i = 2zkBTd(t � t0) (2)

Numerical results are obtained by iterating eqn (1) with a
discretized reduced time step. This is done on an equal footing
for both experimental systems considered in this paper by
scaling the time with the frequency factor 6 � 104 s�1 for the
DNA hairpin and 3� 103 s�1 for the Prp proteins. The (reduced)
time step used in both cases was chosen to be 10�3. Distances
are rescaled with L = 2.5 nm for both proteins.11,38 The Euler–
Maruyama method is used to solve the stochastic differential
equation.39 The transition path time for a single trajectory is
obtained by imposing an absorbing boundary at the initial and
final positions. The transition path sample size was 106 trajec-
tories in each case studied.

The model barrier potentials we used are: cusped, parabolic,
quartic and hexic potentials as shown in Fig. 1. We use
dimensionless variables throughout so as to put the discussion
of the various potentials on the same footing. The dimension-
less symmetric cusped potential barrier is written as

bU(x̃) = �bFL|x̃|; |x̃| r a; F 4 0 (3)

where, ~x ¼ x

L
and L is the distance between the folded and

unfolded minima, F is the absolute value of the force acting on
the particle. bFL represents the reduced transition path barrier
height. 2a denotes the chosen extent or width of the transition
path. The symmetric parabolic, quartic and hexic (reduced)
barrier potentials are

bU(x̃) = �bk1L2x̃2; �a r x̃ r a; k1 4 0 (4)

bU(x̃) = �bk2L4x̃4; �a r x̃ r a; k2 4 0 (5)

bU(x̃) = �bk3L6x̃6; �a r x̃ r a; k3 4 0 (6)
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where, bk1L2, bk2L4 and bk3L6 are the reduced transition path
barrier heights for the symmetric parabolic, quartic and hexic
potentials respectively when the end points are chosen at a. The
reduced end point parameter a scales the transition path
barrier height so that we can compare between the width
dependence of the transition path mean time and standard
deviation for different barriers keeping the (reduced) barrier
height fixed. In the numerical calculations presented in this
section, we choose this reduced barrier height as unity
(bUtp = 1).

In order to obtain the transition path time distribution, one
needs to consider that the trajectories enter the transition
region by crossing the left boundary located at �a and arrive
at the right boundary a without returning to the initial position.
The transition path time pTP is then defined as

pTP tð Þ ¼ p a; tð ÞÐ1
0
dtp a; tð Þ

(7)

where, p(a,t) is the numerically determined histogram of times
with box size Dt = 0.2 (reduced time) at which trajectories reach
the right boundary a. Using the different potentials, we com-
puted the mean transition path time and its standard deviation
as a function of the reduced distance between the end points a.
The mean transition path time htTPi and standard deviation STP

are defined as

tTPh i ¼
ð1
0

tpTP tð Þdt (8)

tTP
2

� �
¼
ð1
0

t2pTP tð Þdt (9)

STP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tTP2h i � tTPh i2

q
(10)

where, pTP is the normalized transition path time distribution
as described above. The results are plotted in Fig. 2.

There are two striking results in this figure. On the one hand
as expected, the mean time increases as the distance a between

the endpoints increases. This implies that it would be worth-
while to repeat such a computation with the experimental data.
The dependence of the mean time on the distance may be
inverted to give the general shape of the free energy barrier. On
the negative side, the second important result is that this mean
time and its standard deviation are only weakly dependent on
the functional form of the barrier. Given the uncertainty in any
experimental measurement of the mean time it would not be
possible to associate experimentally measured results with a
specific barrier shape. We also note that the difference between
the mean times and standard deviations for different barriers
becomes more prominent as the distance a increases, which
amounts also to an increase in the physical barrier height
between the endpoints. Yet the differences would not be dis-
cernible at the present accuracy of the experimental data. The
experimental error bars reported in the measured transition
path times are E7% for the DNA hairpin and 20% for the Prp
protein,11 which would mask the mean time differences shown
in Fig. 2. Similar error bars were also reported (Fig. 5 of ref. 12)
in sequence dependent transition path times for a DNA
hairpin.12

A comparison between the theoretical transition path time
distributions for the different barrier shapes with the experi-
mentally measured time distribution for a DNA hairpin mole-
cule is shown in Fig. 3. The experimental distribution is
adapted from ref. 11 and normalized to unit area, as are the
theoretical distributions shown in the Figure. The time scale is
reduced using the experimentally fitted frequency factor
6 � 104 s�1. In other words the barrier height and time scales
are identical to the ones used in the experimental fit of the data
as reported in ref. 11. The differences are in the barrier shapes.
The results presented in the Figure reveal a long time tail in the
experimental distribution which is not there in the numerical
results obtained from the diffusion equation. Inspection of
Fig. 3 of ref. 11 shows excellent agreement between theory

Fig. 1 Plot of model potentials used to study the transition path time
distribution. The potential energy U(x̃) is given in units of kBT and the
distance x̃ is in units of L, as explained in the text.

Fig. 2 The dependence of the mean transition path time and the asso-
ciated standard deviation on the (reduced) distance a between the transi-
tion path endpoints for different barrier shapes. Circles represent the mean
time and squares denote the standard deviation. Reduced time units are
used throughout. Note that these averaged quantities are rather insensitive
to the shape of the potential barrier.
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and experiment. What happened? Underlying this discrepancy
is the difference between free and absorbing boundary condi-
tions. The excellent agreement found in ref. 11 was obtained
with an analytic expression based on free boundary conditions.
Such conditions allow for trajectories to cross the endpoints
and come back to them, leading to an increase in the transition
path time. This is absent when the boundary conditions are
absorbing. Thus, one should expect the free boundary condi-
tion theory to overestimate long time contributions, and this is
striking when considering the results shown in Fig. 3. The free
energy parabolic barrier obtained in ref. 11 does not account for
the long time tail. Neither do the other functional forms
investigated here. The anharmonicity of the potential at a fixed
transition path barrier height does not account for the long
time tail observed in the experimentally measured distribution.
It has been suggested that a flattening of the barrier top would
increase the time to cross the barrier4 and thus account for the
long time tail. However, as may be inferred from the distribu-
tions shown in Fig. 3, flattening of the barrier, as one goes from
a parabolic to a hexic barrier, fails to significantly increase the
mean time and does not account for the long time tail mea-
sured experimentally.

Perhaps though the long time tail is just an artifact of the
fitting of theory to experiment? Instead of fitting a free bound-
ary condition theory, one might get a good fit by using the
(nonanalytical) results of the simulation with absorbing bound-
ary conditions. This is studied in Fig. 4 using a parabolic
barrier. The measured distributions are functions of two para-
meters, a barrier height and frequency which are intertwined
when the distance between the end points is fixed (see eqn (4))
and the diffusion coefficient D. Reducing the barrier frequency
would lead to a longer time but would also reduce the barrier
height, moving the maximum of the distribution to lower
times. It is also apparent from Fig. 4 that although a reduction
of barrier height may affect the long time tail of the distribution
to some extent, it is not sufficient to explain the experimental

result. Similarly, reduction of the diffusion coefficient from
D = 1 (6� 104 L2 nm2 s�1) to D = 0.5 (3� 104 L2 nm2 s�1) leads to
a longer time tail. However, the maximum of the distribution
also shifts to longer times in disagreement with the experi-
mental results. Hence, the observed long time tail challenges us
to find an explanation for it.

In a recent study, transition path times were investigated in
presence of an asymmetric barrier.28 To follow up on this
suggestion, we varied the degree of asymmetry in the barrier
shape to observe its effect on producing the long time tail in the
transition path time distribution. The asymmetric barrier
potential form we used is defined (using the same reduced
parameters as before) as

bU ~xð Þ ¼ �bUtp
1

1þ ~xmð Þ2
~x� ~xmð Þ2
2~x� b� ~xmð Þ b� ~xmð Þ

�

�a � ~x � b
b � ~x � a

� (11)

where the location of the maximum of the potential barrier is

written as ~xm ¼ �
1� bð Þ2

4
. The potential consists of parabolic

and linear regimes. The asymmetry parameter b, indicates the
decrease of the extent of the parabolic regime and the con-
comitant increase in the asymmetry of the barrier. As before, we
kept the transition path barrier height fixed at bUtp = 1.

The results are shown in Fig. 5. It is quite evident that
although the asymmetry may change somewhat the long time
part of the distribution it is not sufficient to account for the
experimentally measured long time tail.

3 Possible origin of the experimentally
measured long time tails

To account for the long time tail of the distribution it would
seem from the results of the previous section that a simple bell
shaped barrier is insufficient. Intuitively, inserting a well

Fig. 3 Comparison of the normalized (to unity) transition path time
distributions at reduced transition path barrier height bUtp = 1. Distribu-
tions obtained with three different symmetric barrier functional forms are
compared with the experimentally measured distribution of a DNA
hairpin.11

Fig. 4 Parabolic barrier based transition path time distributions with
absorbing boundary conditions and different barrier heights and diffusion
coefficients are compared with the experimentally measured distribution
of a DNA hairpin.11
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around the barrier top should lead to some trapping and thus
could lead to a long time tail. To explore this, we consider in
this section the transition path time distributions for two such
model potential barriers as shown in (Fig. 6): (a) a cusped well
inside a cusped barrier (b) a piece-wise quadratic potential. The
potentials are constructed so as to give the same well depths,
barrier heights and endpoint locations.

The long time tail is mainly affected by two parameters – the
extent of the well region and its depth. Increasing each of them
will increase the time needed to cross the transition region. To
fit the theoretical transition path time distribution one must
vary both parameters as they also affect the short time
dynamics. Fig. 7 shows the (quadratic) dependence of the mean
transition path time on the well depth at a fixed transition path
barrier height. One notes that the mean time for the piece-wise
quadratic potential grows faster with the well depth as com-
pared to the cusped potential and that the differences may be

sufficiently large to be discernible experimentally by varying the
location of the endpoints of the transition paths.

In Fig. 8 we show how the transition path time distributions
vary with the well depth and compare them with the experi-
mental distribution for the DNA hairpin. The left panel shows
cusped potential results, the right panel is obtained with the
piece-wise parabolic potential. The best fits with the experi-
mentally measured distribution for the DNA hairpin are found
for bUwell = �2.9 for the cusped potential and bUwell = �2.3 for
the piece-wise parabolic potential. The transition path barrier
heights for both potentials are bUtp = 2.9. The best fit to the
experimental data is obtained by locating the well edges at the
(reduced) distances of �0.75 and 0.75. The respective mean
(reduced) times are 1.5 and 1.58 in agreement with the experi-
mentally measured mean time of 1.62 � 0.12.11

A comparison of the best fit of the theoretical transition time
path distributions with the experimentally measured distribu-
tion for the Prp protein is given in Fig. 9. In this case, the end
points of the wells are �0.85 and the well depth is bUwell = �2.6
for the cusped potential and bUwell = �1.9 for the piece-wise
parabolic potential. The transition path barrier height is
bUtp = 2.6 for both potentials. The corresponding (reduced)
mean times of 1.54 and 1.5 are in agreement with the experi-
mentally measured values of 1.5 � 0.3.11

From Fig. 8 and 9, one notes that the fit with the experi-
mental distribution occurs at a smaller well depth for the piece-
wise quadratic barrier as compared to the cusped potential. At
present, the experimental data which is available only for one
distance between the end points of the transition path does not
suffice for distinguishing between the two potentials. There is
an advantage to considering the cusped potential since analy-
tical expressions have been derived for the mean transition
path times.40,41 On the other hand, a smooth potential is more
‘‘physical’’. In any case, the experimental long time tails seem
to indicate the existence of at least one well between the
two end points of the experimentally measured transition
path times.

Fig. 5 Comparison of the normalized transition path time distributions for
asymmetric barriers with a reduced barrier height bUtp = 1. Three different
asymmetric potentials (shown in the inset) were studied, the resulting
transition path time distributions are compared with the (normalized to
unity) experimental distribution measured for the DNA hairpin.

Fig. 6 Plots of two different potentials with a single well in the barrier
region. Shown are the model cusped and piece-wise quadratic potentials
used in the simulations. The reduced transition path barrier height and well
depth is the same for both potentials.

Fig. 7 Well depth dependence of the mean transition path time for
cusped and piece-wise quadratic barriers. The reduced barrier height is
fixed and same as Fig. 6 that is bUtp = 2.9.
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We also note that the transition path barrier height we need
to fit the experimental data is B3kBT, much larger than
previously fitted values based on a bell shaped barrier of
B1kBT. Given that the overall free energy barrier for the
unfolded to folded transition is B10kBT and that the experi-
mental points of the transition path covered half the distance
between the minima of the folded and unfolded structures, one
would tend to conclude that the present estimate of the transi-
tion path barrier height is more realistic.

4 Discussion

The central goal of the present study was to understand what
practical information one can obtain from measured transition
path time distributions. The measurement of the transition

path time distribution is an impressive achievement, however
the study presented here shows that the amount of information
that one may glean from such measurements at the present
time is limited. The mean transition path time is, as might have
been expected, an increasing function of the distance between
the endpoints of transition paths. Measurement of the mean
transition path time as a function of the distance between the
endpoints should then reveal something about the free energy
surface between the endpoints. However, as found in the
simulations presented here, it is rather difficult to distinguish
between different functional bell shaped forms. The present
experimental uncertainty in the data does not allow for a
unique identification.

The study presented in this paper is based on numerical
solution of the diffusion equation. This readily allows for obtain-
ing the transition path time distribution using absorbing bound-
ary conditions. The differences between the two boundary
conditions are small when considering high transition path
barriers (bUtp c 1). However, initially, the experimental data
indicated that the barriers are of the order unity, so that differ-
ences between the time dependence of the two boundary condi-
tions become significant. Free boundary conditions allow for
longer time trajectories. The experimental data are obtained using
absorbing boundaries and so should be analysed accordingly. We
showed that such an analysis reveals a long time contribution to
the transition path time distribution which cannot be accounted
for on basis of a theory that assumes only a single bell shaped free
energy curve between the two end-points.

This long time tail of the experimental distribution turns out
to be most informative. We suggested that it may indicate the
existence of a ‘‘trap’’ along the reaction coordinate, which
keeps the molecules for a longer time in the transition path
region. We have modeled this trap in the form of a single well
in the transition region and this suffices for obtaining good
agreement between theory and experiment. Moreover, the
theoretical results suggest that experimental determination of
the mean transition path time as a function of the location of

Fig. 8 Comparison between the theoretical and experimental transition path time distributions for the DNA hairpin and (a) a well inside a cusped barrier
(b) a piece-wise quadratic barrier. Good agreement with the experimentally measured long time tails is found at bUwell = �2.9 for the cusped barrier form
and bUwell = �2.3 for the piece-wise quadratic potential.

Fig. 9 Comparison between the experimental transition path time dis-
tribution of a Prp protein (solid squares) and theoretical distributions
obtained using a cusped barrier with an intermediate well (solid, blue line)
and a piece wise parabolic barrier and intermediate well (dahsed, red line).
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the end points could lead to distinguishing between functional
forms for the free energy surface as well as pinpointing the
well depth.

One may suggest that such a ‘‘trap’’ need not be a well in the
free energy surface but could result from multidimensional
effects. As noted in ref. 32 the coefficient of variation (C) of the
distribution, defined as

C ¼ STP

tTPh i (12)

may be used to determine whether multi-dimensionality is at
play. The definitions of standard deviation STP and mean
transition path time tTP are described earlier (eqn (8)–(10)). In
case of one dimensional diffusive dynamics the coefficient
must be less than unity. From the experimental data we find
that the coefficients of variation for the DNA hairpin and Prp
protein are 0.82 and 0.71 respectively. Hence, we conclude that
at least for these proteins, one dimensional diffusive models
should be sufficient.

One may consider other explanations for the long time tails
such as memory effects. However, thus far, there has been no
comparison with experimental data which accounts for the
long time tails to justify the claim that the origin is memory.
Indeed, we note that including memory in a generalized
Langevin equation tends to make the dynamics more conser-
vative (rather than diffusive) and so would shorten the transi-
tion time. Using a power law spectral density with coefficient
less than unity would increase the transition time.18,20,22 How-
ever, this is artificial, one needs to justify the usage of such a
power law. In contrast, description of the ‘‘trap’’ as a potential
well is ‘‘physical’’ in origin, there is no real reason to postulate
that the free energy surface is structure-less.

Recent studies28 show that barrier asymmetry may lead to an
increase in the transition path time. We have tested this
assumption using asymmetric barriers with different combina-
tions of parabolic and linear potentials and found that even an
extreme asymmetric barrier shape, does not account quantita-
tively for the long time tail. A recent study of transition times
with rugged barriers has also not accounted for the long time
tails.29

Finally, we note that our suggestion that the long time tail
indicates the existence of a trap in the intermediate region, in
the form of a well is not ‘‘revolutionary’’. Previous experiments
have indicated the existence of one or multiple wells along the
reaction coordinate.36,37,42 What is the physics and chemistry of
such wells? This is difficult to answer and calls for much more
extensive modelling of the unfolded to folded transition free
energy surface.

In summary, based on the diffusion equation study pre-
sented here, we conclude that at present the experimental
results may be interpreted as indicating the existence of a
‘‘trap’’ in the transition path region. This trap may be modeled
successfully using a single well whose depth and range controls
the long time tail. From the experimental data we concluded
that the well depth is B2.5kBT. Adding the well leads to an
increase in the estimate of the transition path barrier height to

B3kBT, which is larger than the original estimate of only a
B1kBT barrier height and more ‘‘reasonable’’ considering that
the transition path length is half of the distance between the
folded and unfolded molecules.

The present work also indicates the limitations of the
experimental data measured thus far. It provides insight into
the free energy surface and its structure, but not very detailed.
Experimental uncertainties are too large for determination of
the precise shape of the potential. We believe that these results
should spur further experimental and numerical studies which
could help in uncovering what should be the generic model and
free energy surface for protein folding and unfolding and their
associated transition path time distributions.
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