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Two-dimensional Cahn–Hilliard simulations for
coarsening kinetics of spinodal decomposition in
binary mixtures

Björn König, a Olivier J. J. Ronsin a and Jens Harting *ab

The evolution of the microstructure due to spinodal decomposition in phase separated mixtures has a

strong impact on the final material properties. In the late stage of coarsening, the system is

characterized by the growth of a single characteristic length scale L B Cta. To understand the

structure–property relationship, the knowledge of the coarsening exponent a and the coarsening rate

constant C is mandatory. Since the existing literature is not entirely consistent, we perform phase field

simulations based on the Cahn–Hilliard equation. We restrict ourselves to binary mixtures using a

symmetric Flory–Huggins free energy and a constant composition-independent mobility term and show

that the coarsening for off-critical mixtures is slower than the expected t1/3-growth. Instead, we find a to

be dependent on the mixture composition and associate this with the observed morphologies. Finally,

we propose a model to describe the complete coarsening kinetics including the rate constant C.

1 Introduction

When a binary mixture like a polymer solution is quenched in
the thermodynamically unstable region of its phase diagram,
the system undergoes phase separation via spinodal decom-
postion (SD). The period until the phases separate and reach
their equilibrium concentrations is called ‘‘early stage’’ of the
demixing. The time needed for phase separation, denoted t0 in
the following, is material specific and can vary over decades.
Then, the system further evolves towards the thermodynamic
equilibrium by coarsening of the separated phases, whereby the
energetic contribution due to the interfacial tension between the
separated domains decreases progressively.1–3 The characteristic
length scale L(t) of the system therefore increases over time.
Directly after the phase separation, during the so-called ‘‘inter-
mediate stage’’, the coarsening behavior is more sophisticated
and there is no theory for it. The ‘‘late stage’’ of the evolution, at
longer times, has been widely investigated and theoretically
described. Ostwald4 and later Lifshitz, Slyozov and Wagner5,6

formalized a theory (commonly known as LSW-theory) for
diffusional coarsening of spherical precipitates for the limiting
case of zero volume fraction. They predicted that the domains
grow with time t as L B t1/3, the larger domains growing at the

expense of the smaller ones. In general, such a power law can be
written as

L(t)1/a � L(t0)1/a = C(t � t0). (1)

Here, L(t0) = L0 is the characteristic length of the phase
separated system at t0, a will be called in what follows the
‘‘coarsening exponent’’ and C the ‘‘coarsening rate constant’’.

The properties of a material blend are greatly affected by its
morphology. Coarsening of the morphology is therefore
expected to have a significant impact on the material properties.
Hence, coarsening is a long lasting subject of interest, mostly
investigated together with SD in binary systems with experimental
methods,7–10 numerical simulations,11–16 analytical models1,17,18

and still an active area of research.19–24 Being able to predict the
actual time-dependent average domain size or characteristic
length scale L(t) is crucial for understanding the morphology–
property relationship. In particular, as indicated by eqn (1), the
exact knowledge of the coarsening exponent a is therefore of vast
importance.

A specific example is the formation of the photoactive layer
in organic solar cells. Due to the polymeric nature of the donor
materials, phase separation via SD and subsequent coarsening
is likely to happen and is assumed to play an important role.
During processing, both photo-active materials are dissolved in
solution and deposited on a substrate. In the drying process
and with the associated concentration increase in the solution,
the mixture may become immiscible and undergo phase
separation. Whether SD is beneficial25–28 or undesired and
a source of low efficiency of the solar cell29,30 is still unclear.
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In any case, the size and morphology of the microstructure is
crucial for both efficiency and stability of the photoactive layer.31

A widely used model for phase separation due to SD and
subsequent coarsening is the Cahn–Hilliard equation.48,49 It is
a classical diffusion equation, but where the driving force for
the system evolution is the gradient of the exchange chemical
potential, which includes not only mixing terms but also
surface tension terms in order to handle separated phases.

In a binary blend like the ones investigated in this article,
the system is described by the time- and space-dependent
volume fraction field j of one of the two materials, while the
other one is given by 1 � j. The initial volume fraction is
denoted by j0. For polymeric solutions, the Gibbs free energy of
mixing is often expressed using the Flory–Huggins equation.50

It allows to take into account different molar volumes, often
denoted as degree of polymerization Ni of the ith-mixture
component, as well as different interaction parameters between
each pair of materials. Equal degrees of polymerization result in
a phase diagram which is symmetric about j0 = 0.5 as depicted
in Fig. 1(a), denoted as a symmetric blend or symmetric material
system. Differences in Ni lead to a strongly asymmetric phase
diagram as illustrated in Fig. 1(b). Besides the molar volumes
and the initial volume fraction or initial composition of the
mixture j0, a binary blend is characterized by the interaction
parameter w which describes the degree of incompatibility of the
materials. Focusing on the unstable region of the phase
diagram, the degree of incompatibility will be called quench
depth in this paper. Almost pure phases are characteristic for
deep quenches. The mixture composition with the lowest value of
w which will lead to SD is defined as the critical composition,
while other mixture compositions are denoted as off-critical. For a
symmetric blend, Fig. 1(a), a mixture with equal volume fractions
(denoted in this article as a 50/50-mixture or a mixture with initial
composition of j0 = 0.5) constitutes the critical mixture.

An essential property in the Cahn–Hilliard model is the mobility,
which describes how fast the system reacts to the thermodynamic
driving force and is characterized by the mobility coefficient L.
Beyond the simplest assumption of a composition-independent

constant value for L, there exist many other composition-
dependent mobility models in the literature.14,15,22

A lot of research has already been done on simulations of
the Cahn–Hilliard equation in 2D using different setups.
Table 1 is a selection that summarizes to the best of our
knowledge the key references for coarsening kinetics using
2D numerical simulations of the Cahn–Hilliard equation under
the assumption of a symmetric phase diagram and a constant
composition-independent mobility L. It can be seen that the
coarsening exponent a for the critical composition is found very
robust to be 1/3, while the results for a for off-critical mixtures
are inconsistent. Additionally, the coarsening kinetics under
the assumption of composition-dependent mobility functions
have been reported. Using a parabolic or double-degenerate
mobility, ref. 14 and 15 report a j0-independent a equal to 1/4.
For a one-sided mobility, the authors of ref. 14 obtain a = 1/3.3,
while in ref. 15 a is reported to be j0-dependent and found 1/3
(25/75 and 50/50) and 1/4 (75/25). For this mobility and j0 = 0.5,
Andrews et al.22 report a time-dependent coarsening rate
constant C = C(t).

While symmetric or nearly symmetric phase diagrams are
often encountered in metallic alloys, polymeric solutions are
typically characterized by highly asymmetric phase diagrams.
For these systems, some recent articles51–54 reveal novel details
for the microstructure formation in the early stages of SD.

Fig. 1 (a) Symmetric phase diagram for N1 = N2 = 1 and (b) asymmetric phase diagram for N1 = 100 and N2 = 1. The spinodal line is calculated according
to eqn (5).

Table 1 Dependencies of the coarsening exponent a using a symmetric
phase diagram and a constant mobility L – literature excerpt

j0 Quench depth Coarsening exponent a

0.5 Deep 1/314,15,22,32–43

0.45 Deep 0.3344

0.4 Deep 1/4,43 0.29,44 0.3045

0.4 Shallow 0.2145

0.35 Deep 1/346

0.3 Deep 1/3,14 0.32,39 0.2944

0.25 Deep 1/315

0.22 Deep 1/320

0.21 Deep 1/347

0.05 Deep 1/347
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However, the literature on coarsening kinetics is scarce in
comparison to the symmetric case.16,55 Besides the presented
studies on coarsening due to diffusion which is the topic of this
article, we note that also hydrodynamic interactions influence
the coarsening kinetics,36,56 which is seen in binary fluid
mixtures57,58 and polymer solutions.59–61

Despite the numerous already available theoretical studies
listed above, we believe that a systematic and complete over-
view of the coarsening kinetics is still missing. A systematic
investigation should basically differentiate between the effect
of quenching conditions (j0 and w) and the effect of the
assumption for the mobility term L, both for symmetric as
well as asymmetric material systems.

In this work, we perform large scale simulations of the
Cahn–Hilliard equation in 2D and systematically investigate
the coarsening kinetics of SD. Section 2 describes the used
phase field framework in detail. In Section 3, we investigate the
early stages of SD and check the validity of the well-known
scaling laws for the time until demixing t0, and the corres-
ponding initial average domain size of the phase separated
structure L0, over a broad range of parameters. In Section 4, we
investigate the coarsening behavior during the late stages of the
phase separation, focusing on a symmetric material system
(N1 = N2 = 1) and a constant, composition-independent mobility
coefficient L. There, we investigate how the coarsening kinetics
may vary with the quench depth and the blend composition.
Finally, we give a short summary of our findings and conclude
in Section 5.

2 Simulation model and
implementation

The kinetic evolution of the system towards its thermodynamic
equilibrium is simulated with the phase-field framework
proposed in our previous papers.62, 63

As a starting point, we describe the system with the help of
its free energy functional which defines its thermodynamic
properties. Without loss of generality, the free energy
functional reads

Gtot ¼
ð
V

Gloc þ Gnonloc
� �

dV; (2)

where V is the system volume, Gloc is the local free energy
density and Gnonloc the non-local contribution due to the field
gradients. The local part of the free energy corresponds to the
Flory–Huggins theory of mixing50 and an additional purely
numerical contribution

Gloc ¼ RT

v0

j lnðjÞ
N1

þ ð1� jÞ lnð1� jÞ
N2

� �

þjð1� jÞwþ k
1

j
þ 1

1� j

� �
:

(3)

In the equation above, j is the volume fraction of the first
material, R is the gas constant, T the temperature, and v0 the
molar volume of the lattice site in the Flory–Huggins theory.

The molar volume of the material i is given by vi = Niv0, while w
is the Flory–Huggins interaction parameter. The first term in
eqn (3) corresponds to the entropy of mixing, the second one to
the enthalpic interactions and the last one is a purely numeric
correction which supports numerical stability, especially for
high values of Nw for which the binodal concentrations can be
very close to 0 and 1.

The non-local part of the free energy functional describes
the contributions of the interfacial tension with

Gnonloc ¼ 1

2
kðrjÞ2; (4)

where k is the surface tension parameter.
The phase diagram can be computed from the local free

energy. As an example, the phase diagram for a symmetric
material system with N1 = N2 = 1 is given in Fig. 1(a), while a
phase diagram where one material has a much higher molar
volume than the other one (N1 = 100, N2 = 1) is shown in
Fig. 1(b). The spinodal line (red full line) defines the instability
region of the blend, above which it is unstable and undergoes
spontaneous phase separation due to SD which occurs simulta-
neously throughout the material. In the region between the
binodal and the spinodal line, the system is metastable and
demix via nucleation and growth. This phase separation
mechanism starts locally when an energy barrier is overcome,
typically by the presence of nuclei. The equation of the spinodal
line ws is given by64

ws ¼
1

2

1

N1j
þ 1

N2ð1� jÞ

� �
: (5)

The composition of the phases after demixing are given by
the binodal line (blue dashed line). The binodal concentrations
can be computed by the equality of the chemical potential in
both phases for both materials (common tangent construction65).
This can be solved analytically in the symmetric case but only
numerically in the asymmetric case.

The kinetic equation for the volume fraction j, which is a
conserved quantity, is based on the formalism initially
proposed by Cahn and Hilliard:48,49

@j
@t
¼ v0

RT
r Lrmexð Þ (6)

This can be understood as a continuity equation, the fluid
flux being proportional to the gradient of the exchange
chemical potential density mex, which is the driving force for
the system evolution. L is the mobility coefficient related to the
diffusional properties of both materials. The exchange chemical
potential mex is calculated from the free energy functional in the
following way:

mex ¼ @G
@j
�r @G

@ðrjÞ (7)

The first term corresponds to the chemical potential,
whereas the second contribution takes into account the
potential due to concentration gradients. The Cahn–Hilliard
equation ensures that the system progressively minimizes its
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free energy relative to the volume fraction, i.e. it relaxes towards
its thermodynamic equilibrium.

The importance of the mobility L for the kinetic evolution of
the blend, and especially its dependence on the composition
variable j has already been intensively investigated by many
authors, as stated in Section 1. In Cahn’s original assumption,
the flux is simply proportional to the gradient of the general-
ized exchange chemical potential through a constant mobility
coefficient. However, the mobility has to depend on the local
mixture composition in order to ensure the incompressibility
constraint together with the Gibbs–Duhem relationship.
Several theories have been proposed to derive correct
expressions for the coupled fluxes in multinary mixtures,
among which the ‘‘slow mode theory’’66 and the ‘‘fast-mode
theory’’67 are the most successful. Their names come from the
fact that the mutual diffusion coefficient derived from the
Cahn–Hilliard equation in a binary system is controlled by
the slowest component in the ‘‘slow-mode theory’’, while it is
controlled by the fastest component in the ‘‘fast-mode theory’’.
For a binary system, the mobilities for the fast mode theory LFM

and for the slow mode theory LSM respectively read

LFM = j(1 � j)2N1D1 + j2(1 � j)N2D2, (8)

LSM ¼
jð1� jÞN1D1N2D2

jN1D1 þ ð1� jÞN2D2
: (9)

In eqn (8) and (9), D1 and D2 are the self-diffusion coefficients
of both materials, which in general also depend themselves on the
composition of the mixture. Various phenomenological models
exist in the literature in order to describe the composition
dependence of the diffusion coefficients, among others the
equation initially proposed by Vignes and the one proposed by
Liu, Bardow and Vlugt (LBV).68 For both of these models, the
composition-dependent diffusion coefficients can be calculated
with the help of the self-diffusion coefficients in the pure
materials, with Dij being the self-diffusion coefficient of material
i in a matrix of 100% material j. Hence, for a binary mixture, only
four self-diffusion coefficients (D11, D12, D21, D22) need to be
supplied and D1 and D2 are given as D1(j) = f (D11, D12, j)
and D2(j) = f (D22, D21, j). For the binary case, the LBV-
assumption reads

D1 ¼
1

j
D11
þ ð1� jÞ

D12

; (10)

while the Vignes-model is given by

D1 = Dj
11D(1�j)

12 . (11)

The same holds true for D2 with D21 and D22. Furthermore, a
linear weight of D11 and D12 can also be used,

D1 = D11j + D12(1 �j). (12)

This renders the final expression of the mobility L complicated
in the general case. However, if we consider the case of a symmetric
material system (N1 = N2 = 1) and assume that the system can be
described by one single, constant composition-independent

self-diffusion coefficient D, both the fast-mode and the slow-
mode model reduce to the same expression L = Dj(1 � j) which
is often referred to as the ‘‘double degenerate’’ mobility in the
literature. This mobility is used as a model for surface diffusion
driven coarsening.14,15 It emphasizes the diffusion in the interface
regions between the bulk phases. Nevertheless, one needs to keep
in mind that these simplifications are not suitable to simulate
polymeric material systems which are characterized by highly
dynamic asymmetries.

The Cahn–Hilliard eqn (6) is written in the split form,69

discretized with finite volumes, and solved using an implicit
backward Euler finite difference scheme. To this end, the local
part of the free energy is linearized consistently. The code is
parallelized and the linear system is solved using PETSc70–72

with an iterative solver (GMRES method together with a bloc
Jacobi preconditioner73). We make use of the unconditional
stability of the Euler backward scheme to achieve large time
steps. Hereby, we use an adaptive time stepping strategy similar
to the one described by Wodo and Ganapathysubramanian,74

based on the number of iterations required for the convergence
of the solver. We perform 2D simulations with periodic bound-
ary conditions in both directions. The phase separation is
initiated with the help of a small initial perturbation to the
homogeneous volume fraction field. Note that we also could
have used the Cahn–Hilliard–Cook equation,75 but several
works showed that thermal noise has an impact on the early
stages but no to very little impact on the coarsening
process.34,35,37,76,77 The grid resolution is adapted to each
parameter set in order to discretize the interface between
separated phases with at least five grid points. With the chosen
parameters, the interface thickness lies typically between 5 nm
and 50 nm so that the grid spacing lies between 1 nm and 8 nm.
It has been verified that all simulations are numerically
converged in both time and space.

3 Early stage behavior

From the linear analysis of the Cahn–Hilliard equation the time
needed for the SD to take place t0, and the initial characteristic
size L0 of the separated phases can be calculated as23, 78

t0 ¼ a
v0

RT

k

Lðj0Þ w� wsð Þ2
(13)

and

L0 ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v0k
RT w� wsð Þ

r
: (14)

Here, a is an arbitrary constant which depends on the defini-
tion taken for t0. In this work, t0 is determined as the time
required for the first phase to reach the equilibrium binodal
composition within an error of 1%. As a measure for the
average domain size or the characteristic length scale L(t), we
calculate the 2D-structure factor from the Fourier transform of
the volume fraction field. We obtain the probability distribution
p(q, t) of q-vectors by integration over all directions. Taking the
inverse of the mean value of q over this distribution gives the
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characteristic length scale as

LðtÞ ¼ 2p=
ð
qpðq; tÞdq

� �
: (15)

Both theoretical predictions for t0 and L0 given by eqn (13)
and (14) are compared to numerous simulations where we vary
the parameters over a broad range according to Table 2.
Thereby, we also use sophisticated mobility functions given
by eqn (8) and 9 in combination with composition-dependent
self-diffusion coefficients (eqn (10)–(12)) which themselves
differ by decades. The results, shown in Fig. 2 and 3, show an
excellent agreement with the predictions and validate our
numerical implementation. These results are also useful for
the evaluation of the late stage coarsening, since t0 and L0 are
required in order to determine L(t) according to eqn (1). In
addition, the form of our equations for t0 and L0 allows to directly
identify the impact of parameter variations. As illustrated in Fig. 2
and 3, t0 and L0 may change by orders of magnitude. For a
quantitative simulation of realistic material systems, this
emphasizes the importance of the correct choice of the simulation
parameters as well as the mobility assumption.

4 Late stage coarsening kinetics

In this section, we investigate the late stage coarsening kinetics
of a binary symmetric material system for various quenching
conditions. The mobility L is assumed to be constant and
independent of j. The used simulation parameters are
compiled in Table 3. We characterize the coarsening kinetics
by fitting the characteristic length scale L(t) obtained from the
simulations according to eqn (15), with the growth law, eqn (1).
It is our aim to identify the coarsening exponent a and the
coarsening rate constant C. We perform 2D simulations with a
grid size of 1024 � 1024 elements. The large grid size ensures
that the late stage coarsening lasts for at least two decades of
physical time with a significant number of phase-separated
domains. This is necessary for a precise evaluation of a and C.
The tested compositions and quench depths are presented in
Fig. 4. We vary the composition j at fixed interaction parameter
w, the interaction parameter w at fixed composition j, and both
together at fixed quench depth w� ws. Altogether, we investigate
60 different conditions covering a wide range of the unstable
region.

The morphological evolution for j0 = 0.25, 0.4, 0.45 and 0.5
at constant quench depth w � ws = 2 (asterisk markers in Fig. 4)

Table 2 Simulation parameters for investigation of the early stage
behavior in Section 3

Parameter Value per unit

T 300 K
n0 10�3 m3 mol�1

ri 1000 kg m�3

k 10�5 J m�3

N1 1–100
N2 1
w 0.6–10
ki 10�8–10�12 J m�1

Dij 10�9–10�16 m2 s�1

L See text

Fig. 2 Simulated time until phase separation t0 versus expected time from
eqn (13). We determine the prefactor a to be 9.7.

Fig. 3 Simulated initial characteristic size L0 versus expected size from
eqn (14).

Table 3 Simulation parameters for investigation of the late stage
coarsening kinetics in Section 4

Parameter Value per unit

T 300 K
n0 10�3 m3 mol�1

ri 1000 kg m�3

k 10�5J m�3

N1 = N2 1
w See Fig. 4
ki 2 � 10�10J m�1

D 10�10m2 s�1

L 10�10m2 s�1 (=D)
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is shown in Fig. 5. The snapshots represent the volume fraction
of the second material, from 0 (blue) to 1 (yellow), at different
times after phase separation: the snapshots in the first column
are taken approximately after one decade of late-stage coarsening
(4 � 10�5 s), while the snapshots in the second and third column
are at two respectively three decades later.

For the critical mixture, j0 = 0.5, we observe the typical
highly interconnected, bi-continuous morphology (Fig. 5(j)–(l))
which persists until the end of the simulation. For both off-
critical compositions j0 = 0.25 and 0.4 (Fig. 5(a)–(c) and (d)–(f)),
the main characteristic is a droplet-in-matrix structure. For j0 =
0.25, all particles or droplets are close to spherical during the
whole coarsening process. In contrast, for j0 = 0.4 some of the
droplets have a sausage-like shape at the first stage of the
coarsening (Fig. 5(d)). Still, at the end of the simulated coarsening,
some droplets deviate from sphericity and have slightly ellipsoidal
shapes. The microstructure for the j0 = 0.45-mixture in the
first coarsening stage (Fig. 5(g)) contains mainly bi-continuous
or worm-like domains. During further coarsening, the bi-
continuous and worm-like structure elements gradually transform
into an ellipsoidal-shaped dominated morphology (Fig. 5(i)). Note
that even after three decades of late-stage coarsening (last column
of Fig. 5), the simulation boxes are still much larger than the
domain size, ensuring good statistics for the evaluation of the
coarsening kinetics.

Fig. 6 shows the evolution of the characteristic length scale
L(t) for the four morphologies presented in Fig. 5 during the
late stage of the coarsening. For j0 = 0.25, 0.4 and 0.5, L
increases according to power laws up to the latest simulated
times so that the data can be nicely fitted with eqn (1).
The obtained value for the coarsening exponent a is slightly
sensitive to the time domain selected for the fit, because the fit
is performed over a time period that is not well defined.
Moreover, a can slightly differ between two different simulations
performed with exactly the same parameters. In order to evaluate
the precision on the measurement of a, we not only vary the time
domain used for the fit (start and end time), but also perform 10

successive simulations of the same system (j0 = 0.3, w = 4).
Altogether, we estimate the standard deviation to be roughly s =
0.0075. On top, we cross-checked the obtained coarsening
exponents a shown in Fig. 6 with the effective growth exponent
as proposed by Huse33 and get the same values.

As it can be seen from Fig. 6, the critical mixture coarsens
with a coarsening exponent a = 1/3. This result is in line with
the literature as stated in Section 1 in Table 1. We note that the
typical bi-continuous morphology is far away from the LSW-
assumption but we confirm the LSW-exponent of a = 1/3 for the
critical composition. For the very off-critical system j0 = 0.25,
we find the coarsening exponent to be a = 0.3. For the slightly
off-critical composition j0 = 0.4, the coarsening exponent is as
small as a = 0.26, significantly below the initially expected value
of 1/3. This evidence for late-stage coarsening occurring slower
than t1/3 for off-critical mixture compositions has also been
obtained by Garcke et al.,43 by Rogers and Desai44 and by Brown
and Chakrabarti,45 although newer studies report a = 1/3 for the
off-critical compositions j0 = 0.25 and 0.3.14,15

The comparison of the morphologies (Fig. 5) and of
the coarsening kinetics (Fig. 6) suggests an influence of the
morphology on the coarsening exponent. The highest value of a
is found for the bi-continuous morphology (j0 = 0.5, a = 1/3)
while the coarsening is slightly slower for the spherical droplet
structure (j0 = 0.25, a = 0.3). The ellipsoidal-shaped droplet
structure produces the slowest coarsening kinetics (j0 = 0.4, a =
0.26). This hypothesis is supported by the more complex
coarsening kinetics of the j0 = 0.45 blend: for j0 = 0.45, a
good fit to eqn (1) is not possible. We find that the evolution of
L(t) is characterized by a transition between two different
coarsening exponents. At the beginning of the late-stage
coarsening (until approximately 1 � 10�4 s) the morphology
is almost bi-continuous or showing worm-like droplets
(Fig. 5(g)), and the structure coarsens with a = 0.314, which
is very close to the value of 1/3 obtained for the fully bi-
continuous morphology (j0 = 0.5, Fig. 5(j)–(l)). At the end of
the coarsening (from approximately 1 � 10�4 s to the end of the
simulation), the morphology is more and more dominated by
ellipsoidal-shaped domains (Fig. 5(i)) and the structure finally
coarsens with a = 0.264. This is similar to the j0 = 0.4 blend
(Fig. 5(f)) for which we obtain a = 0.259.

The complete overview of the coarsening exponents a
obtained for the quenching conditions marked in Fig. 4 is
given in Fig. 7. In all simulations with j0 varying from 0.1 to
0.4, and for j0 = 0.5, the morphology coarsens following a
power law. On the one hand, at fixed composition, we are not
able to observe a significant dependence (within two times the
standard deviation) of the coarsening exponent on the quench
depth. The red crosses in Fig. 7 are the mean values of the
obtained coarsening exponent a for a specific j for all the
tested quench depths. On the other hand, as already discussed,
there is a strong dependence of a on j0. We find that the
exponent reaches its maximum value a = 1/3 for j0 = 0.5, and its
minimum value for j0 = 0.4 whereby a E 0.26. For j0 smaller
than 0.4, a increases again, reaching an asymptotic value
around 0.3. The bi-continuous morphology (j0 = 0.5) seems

Fig. 4 Tested quenching conditions in the spinodal region for the late
stage coarsening kinetics. The results for the asterisk-marked conditions
are presented in Fig. 5 and 6.
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Fig. 5 Resulting morphologies for the asterisk-marked quench points in Fig. 4 for j0 = 0.25 ((a)–(c)), j0 = 0.40 ((d)–(f)), j0 = 0.45 ((g)–(i)) and j0 = 0.5
((j)–(l)). The 1st column corresponds to 4 � 10�5 s, the 2nd column to 4 � 10�4 s and the 3rd one to 4 � 10�3 s. For j0 = 0.25 to 0.45, the majority
concentration of the mixture constitutes the yellow matrix phase.
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to evolve faster than the spherical droplet structure (j0 = 0.1 to
0.25), while the ellipsoidal-shaped droplet structure (j0 = 0.3 to
0.4) produces the smallest values of a. For j0 = 0.45 and for j0 =
0.475, a fit to eqn (1) with a single exponent is not possible and
we hence exclude these quenching conditions from Fig. 7. For
these compositions, the morphology transitions from almost
bi-continuous to ellipsoidal droplets, associated with a significant
decrease of the coarsening exponent a.

In addition, we also evaluate a based on the free energy
decrease of the system: similar to the domain sizes, the energy
is expected to decrease following a power law. We therefore
evaluate and fit the decrease of the interfacial energy for all
simulations reported in Fig. 7 and find again composition-
dependent coarsening exponents. Interestingly, the a-values
obtained with this method are systematically about 0.02 higher

than the a-values obtained from the evaluation using the
structure factor. For j0 = 0.1, we obtain a mean value for a of
0.32 which is closer to the LSW-prediction of t1/3 than the value
we found using the characteristic length scale method. For
compositions up to j0 = 0.25, corresponding to morphologies
made of spherical, isolated droplets, the time evolution of the
energy therefore nicely matches the LSW-prediction. To the
best of our knowledge, the question of growth exponents for
off-critical compositions has not been resolved, even in recent
studies.14,15,20 These papers claim a = 1/3 for off-critical
compositions below j0 = 0.3 and they evaluate a using the decay
of the interfacial energy. For such compositions and with this
evaluation method we find a-values around 0.32. Therefore, we
have the feeling that our results are not contradictory to previous
results, but provide more precise insights.

In order to fully understand the coarsening kinetics given by
eqn (1), we finally need to focus on how the constant C depends
on the model parameters. In particular, since the coarsening
exponent a does not always have the same value, we also expect
C to be a-dependent. In the following, we propose an equation
for C and check its validity with the help of three arguments.

The first argument is a scaling argument. In our phase-field
framework, the equations are written and solved in a dimen-
sionless form using Ĝloc = Gloc/m0, Ĝnonloc = Gnonloc/(m0lsc

2) for
the energies, l̂ = l/lsc for the lengths, t̂ = t/tsc for the times and

L̂ = L/Dsc for the mobilities, with the scaling factors defined as

m0 = RT/v0, lsc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ð2m0Þ

p
, and tsc = k/(2m0Dsc). Dsc has the unit

of a diffusion coefficient and, since we consider a simple model
with constant mobility, can be chosen for instance as Dsc = L.
Naturally, the equation for the coarsening kinetics can be
written in the non-dimensionalized form, similar to eqn (1):

L̂(t)1/a � L̂(t0)1/a = Ĉ(t̂ � t̂0), (16)

where L̂ = L/lsc is the dimensionless characteristic length and t̂ =
t/tsc, t̂0 = t0/tsc are the dimensionless characteristic times. Using
the definition of tsc and lsc, this leads to

LðtÞ1=a � Lðt0Þ1=a ¼ ĈDsc
k
2m0

� � 1
2a�1
ðt� t0Þ: (17)

As a second argument, we propose that the adimensional

constant Ĉ may vary as Ĉ ¼ c
1
a

L̂ŝ
Djbino

, where c is a fitting

prefactor, L̂ the dimensionless mobility, ŝ the dimensionless
surface tension and Djbino the volume fraction difference
between the two separated phases: on the one hand, the

dependence on L̂, ŝ and Djbino is simply inspired by the
classical models based on the LSW theory. On the other hand,
Ĉ has also to depend on a. Following the idea developed in the
previous section that the variation of the coarsening exponent a
may only be dependent on the morphology of the blend and
neither on the mobility, nor on the quench depth and/or
surface tension, we assume that the a dependency only applies

to the proportionality factor as c
1
a, which leads to the proposed

equation for Ĉ.

Fig. 6 Characteristic length scales L as a function of time t for j0= 0.5
(blue plus signs), j0 = 0.45 (ochre crosses), j0 = 0.4 (magenta squares) and
j0 = 0.25 (red points) corresponding to Fig. 5 and power law reference
lines ta. Note that we multiplied L(t) for j0 = 0.50, 0.40 and 0.25 by
arbitrary constants for a better visualization.

Fig. 7 Summary of the obtained coarsening exponents a as a function of
the initial mixture composition j0 for different quench depths. The red
stars indicate the mean values of the obtained exponents.
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The third argument is the calculation of the surface tension
of a diffuse interface using the van der Waals equation

s ¼ k
Ð dj

dx

� �2

dx, which leads to the scaling ŝ ¼ s=
ffiffiffiffiffiffiffiffi
km0
p

. Using

this in the equation proposed above for Ĉ and inserting it in
eqn (17), we finally obtain for the scaled coarsening rate constant

C ¼ c
1
affiffiffi
2
p Ls

m0Djbino

k
2m0

� �1�3a
2a
: (18)

Note that with these hypotheses, the unit of the constant is

m1/a s�1 as expected and that for a = 1/3 the LSW law C �

Ls
m0Djbino

is recovered.

In order to compare this equation with the C-values
obtained from the fit to eqn (1), we not only need the binodal
composition which can be picked up from the phase diagram,
but also the value of the surface tension. To this end, we
calculate the one dimensional equilibrium interface profiles
between two separated domains, for various parameter sets,
varying all the parameters of the Flory–Huggins equation, and
calculate the associated surface tension with the van der Waals
formula. We are able to fit the surface tension nicely (see Fig. 8)
for any binary system with

s ¼ 0:375
ffiffiffiffiffiffiffiffi
km0
p

Djbino
1:5ðw� ws;absÞ2=3: (19)

The comparison between the coarsening constants obtained
from the fit of the time-dependent characteristic length scale
on the one side, and eqn (18) on the other side, is shown in
Fig. 9. Once again, the data for which the late stage cannot be
fitted with a power law (namely j0 = 0.45 and j0 = 0.475) are not
taken into account, but apart from that, all simulations
reported in Fig. 7 are also used for Fig. 9. Despite of some
significant deviations, the measured coarsening rate constant
can be very nicely predicted with eqn (18) with a value of c =
5.31, for all initial volume fractions j0 and quench depths.

At the end, all the parameters used in eqn (1) (t0, L0, C, a) are
known for systems investigated here (symmetric blends with
constant mobilities in two dimensions). This means that the
coarsening kinetics can be predicted without the need of any
further simulation using eqn (13), (14), (19), (18) and the a
values from Fig. 7.

5 Conclusion

In this paper, we simulated the spinodal decomposition and
subsequent coarsening of immiscible binary blends in 2D,
using conserved Cahn–Hilliard dynamics together with the
Flory–Huggins free energy of mixing.

First, we simulated the early stages of SD for a broad
range of parameters, including asymmetric blends and highly
asymmetric, composition-dependent mobility functions. We
could check that the time required for phase separation and
the initial characteristic size matches the theoretical predictions.

Second, we investigated the late stage coarsening dynamics
of a symmetric blend with a constant composition-independent
mobility. In fact, at the beginning of our study, considering
early papers and the LSW-theory, we expected to find a = 1/3 for
every quench point in the unstable region of the phase
diagram. But a closer look at the literature including recent
papers showed that the situation is more complex than that. We
therefore decided to conduct exhaustive investigations: the
quench depth and blend composition were varied systematically.
As expected, we found that the growth of the characteristic
length scale follows a power law. We found no systematic
and clear dependence of a on the quench depth. However,
surprisingly, the coarsening exponent a was found to be
composition-dependent, starting from a = 0.30 for strongly off-
critical mixtures, with a minimum of about 0.26 for 40 : 60
blends and reaching a maximum of 1/3 for the critical mixture.

We hypothesize that the morphology of the phase-separated
mixture might be the reason for these variations of the coarsening
kinetics: When the asymmetry in composition decreases

Fig. 8 Surface tension obtained from the simulations versus values cal-
culated with eqn (19).

Fig. 9 Coarsening rate constants C obtained from the simulations versus
values calculated with eqn (18).
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(i.e. we get closer to 50/50 starting from 10/90), we expect more
and more droplets deviating from sphericity and we hypothe-
size that these changes of the morphology lead to lower
a-values, up to j0 = 0.4. On the other hand the bi-continuous
structure (symmetric blend) seems to be associated with the
highest a-value (1/3). For j0 values in between (j0 = 0.45 and
0.475) the structure is at the beginning almost bi-continuous
and accordingly a relatively high (close to the value for the
bi-continuous network). But with time the structure breaks
down in very aspheric droplets. This is correlated with a
strong decrease of a (close to the minimum value measured
for j0 = 0.4).

In addition to the data for a, we proposed a model (eqn (18))
to predict the coarsening rate constant C. All these results
finally allow the prediction of the late-stage coarsening kinetics
using eqn (1) for symmetric blends under the assumption
of a constant mobility L, without the need of additional
simulations.

We think that our simulations of large systems combined
with long simulated times provide very precise results as
compared to previous works. We therefore hope that our results
are of valuable interest for a broad audience to re-stimulate
discussion across the community. For the future, we definitely
see the need to provide a quantitative structural measurement
or characterization of the obtained morphologies. This would
be highly beneficial to check our hypothesis of a morphology-
dependent coarsening exponent a. We would like to emphasize
that for now, this hyphothesis only relies on a qualitative
observation of the morphologies. Therefore, we plan to quanti-
tatively analyze the obtained morphologies regarding their
interfacial shape distribution, mean curvature and other
structure metrics according to ref. 19 and 22. This also includes
the characterization using Minkowski descriptors as proposed
by Manzanarez et al.16,79 Furthermore, we plan to investigate
asymmetric material systems in near future, as well as systems
with more sophisticated mobility functions in order to extend,
confirm and enrich the results on the coarsening behavior of
binary blends.
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