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Regression and clustering algorithms for AgCu
nanoalloys: from mixing energy predictions
to structure recognition†

Cesare Roncaglia, a Daniele Rapettia and Riccardo Ferrando *b

The lowest-energy structures of AgCu nanoalloys are searched for by global optimization algorithms for

sizes 100 and 200 atoms depending on composition. Even though the AgCu system is very weakly

miscible in macroscopic samples, the mixing energy for these nanoalloys turns out to be clearly

negative for both sizes, a result which is attributed to the stabilization of non-crystalline Cu@Ag core–

shell structures at the nanoscale. The mixing energy is a quantity nowadays unknown in its functional

form, so that its prediction may take advantage of machine learning techniques. A support vector

regressor is then implemented to successfully predict the mixing energy of AgCu nanoalloys of both

sizes. Moreover, with the help of unsupervised learning algorithms, it is shown that the automatic classi-

fication of such nanoalloys into different physically meaningful structural families is indeed possible.

Finally, thanks to the harmonic superposition approximation, the temperature-dependent probabilities of

such structural families are calculated.

1 Introduction

Since the understanding of their wide range of applications,
ranging from catalysis1,2 to data storage,3 plasmonics,4

biomedicine,5 water purification6 and others, nanoparticles
(NPs) have been studied rather extensively in recent years. For
this reason, both experimental and theoretical efforts have
been made in order to understand the physical and chemical
properties of such systems.7 In particular, the obstacles inher-
ent to the theoretical study of a system of a finite number of
atoms are often tackled with the help of computer simulations
(e.g. global optimization techniques8 and molecular dynamics
simulations9), which are nowadays an essential partner of
experiments.

Only in the past few years, also Machine Learning has been
proposed as an effective tool to investigate and solve some
problems related to the modeling of nanoparticles,10 such as
energy landscape exploration11,12 and dynamic predictions via
force field reconstruction,13 but also binding energy14 and free
energy15 predictions, and atom classification.16 In a very broad
general depiction, machine learning algorithms can be divided

in two large classes: supervised and unsupervised learning
algorithms. The first class deals with data sets consisting of
both input and output data, and tries to establish a relation
between these sets for fitting or classification purposes. The
second class deals with unlabelled data, i.e. only input data,
and tries to work out a specific task such as clustering the data
into separate sets, feature selection or dimensionality
reduction.

Here in particular we decided to implement both supervised
and unsupervised learning algorithms, showing indeed their
ability to capture different interesting properties of our data set.
It is in fact known that a regression algorithm is capable of
detecting subtle relationships between input and output data,
whereas a clustering algorithm can identify subgroups of an
ensemble without any prior knowledge. Our data sets were
collected by global optimization searches of the lowest-energy
structures of AgCu nanoalloys of sizes N = 100 and N = 200
atoms, for different compositions. Machine learning algo-
rithms were then trained in order to make predictions of the
mixing energy, a quantity not known in its functional form, and
also to find structural families without any previous classifica-
tion. Finally, we calculated probabilities for such different
structural families as a function of temperature by means of
the Harmonic Superposition Approximation (HSA).17–19

AgCu nanoalloys are important for a different number of
remarkable reasons. In general, the bi-metallic nature of
nanoalloys allows to enrich their range of applicability in real
life situations, since the chemical ordering of equilibrium and
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out of equilibrium structures will induce different desirable
properties, missing most of the times in their single metal
counterparts. For example, AgCu nanoalloys have shown inter-
esting plasmonic,20 electrical,21 antibacterial22 and catalytic23

properties, but also applications in corrosion resistance24 and
solar cells.25 The interest in the theoretical modeling of such
nanoalloys is therefore motivated by this impressive variety of
experimental results.

AgCu is a weakly miscible system in bulk samples,26 with
positive (endothermic) mixing energy. However, global optimi-
zation studies of small nanoalloys (of 34 and 38 atoms)27

showed that the mixing energy at the nanoscale is negative in
the whole composition range. It is therefore interesting to
check whether this behaviour persists at larger sizes such as
those considered in this article (100 and 200 atoms).

The material is organized as follows. The second section
includes a brief explanation of the theoretical methods, includ-
ing Machine Learning (ML) and global optimizations algo-
rithms, as well as more specific topics such as Common
Neighbor Analysis (CNA) and Harmonic Superposition Approxi-
mation (HSA). The third section is entirely dedicated to the
results of the applications of such methods to AgCu nanoalloys
of 100 and 200 atoms. Finally in the fourth and last section, the
conclusions can be found.

A note on terminology. In order to avoid confusion, aggre-
gates of atoms will be referred to as nanoparticles or nano-
alloys. On the other hand, the term cluster will be used to
denote a set of nanoparticle structures which are grouped
together by a clustering algorithm working in the space of
suitable order parameters (i.e. of structural descriptors).

2 Models and methods
2.1 Atomistic force field

Interactions between NPs were modelled by an atomistic
potential, in the form proposed by Gupta28 and by Rosato
et al.,29 which can be derived from the second moment
approximation to the tight-binding model.30 The potential
energy E is the sum of one-atom contributions Ej containing a
bonding (Eb

j ) and a repulsive part (Er
j):

E ¼
X
j

Ej ¼
X
j

Eb
j þ Er

j

� �
; (1)

where

Eb
j ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
iaj

xsw2 exp �2qsw
rij

r0sw
� 1

� �� �s
; (2)

and

Er
j ¼

X
iaj

Asw exp �psw
rij

r0sw
� 1

� �� �
: (3)

rij is the distance between atoms i and j. s(w) refers to the
chemical species of the atom i( j). If s = w, r0

sw is the nearest-
neighbor distance in the corresponding bulk lattice, while for
s a w, r0

sw is taken as the arithmetic mean of the distances of

pure metals. Cutoff distances on the interactions are imposed
as follows. The exponentials in eqn (2) and (3) are replaced by
fifth-order polynomials, of the form a3(r � rc2)3 + a4(r � rc2)4 +
a5(r � rc2)5, between distances rc1 and rc2, with a3, a4, a5 fitted in
each case to obtain a function which is always continuous, with
first and second derivative for all distances, and goes to zero at
rc2. The parameters of the potential were taken from ref. 31 and
are reported in Table 1.

This interaction potential has been used previously to model
the structures of AgCu nanoalloys and compared to Density
Functional Theory (DFT) calculations and experimental
results,32–35 obtaining quite good agreement with DFT data
on the behaviour of the composition-dependent excess energy
and on the structures of lowest-energy magic polyicosahedra of
sizes 34, 38 and 45,32 on the energetics of the placement of Cu
impurities in Ag icosahedra and truncated octahedra (see ref. 7,
Tables 5.1 and 5.3), on the relative stability of Mackay, anti-
Mackay and chiral Cu@Ag icosahedral structures (see ref. 33).
Moreover, the agreement between the predictions of this model
and the experimentally observed structures is quite good34 as
discussed in ref. 35. Therefore we believe that this model,
although approximate, is able to catch the relevant structural
aspects of AgCu nanoalloys, with the advantage of allowing
such a thorough exploration of the nanoalloy energy landscape
that would be unfeasible by DFT calculations.

2.2 Global optimization and data collection

Each data set consisted of nanoparticle structures obtained by
global optimization searches. Therefore, all structures consid-
ered in the following correspond to local minima in the energy
landscape, and, where specified, to global minima (that are the
lowest-energy local minima). These searches were made by the
Basin Hopping (BH) algorithm,36 using our own code.37–39 For
each composition, three independent simulations of 200 000
BH steps each were made, using different seeds and para-
meters. Generally speaking, each of these three simulations
had different proportions for Brownian, exchange, shake and
bonds moves.37,38 Two simulations over three were using a
single Monte Carlo walker (standard BH algorithm), whereas
the third simulation used three different walkers running in
parallel (parallel excited walker algorithm37). The use of differ-
ent global optimization algorithms usually allows a more
thorough exploration of the energy landscape.37

The mixing energy Emix
7 was used to analyze the energetic

stability of the nanoalloys depending on composition. Emix is
defined as follows

Emixðm; nÞ ¼ Eðm; nÞ � m

N
EðN; 0Þ � n

N
Eð0;NÞ (4)

Table 1 Parameters of the interaction potential. From ref. 31

p q A (eV) x (eV) r0 (Å) rc1 (Å) rc2 (Å)

Ag–Ag 10.85 3.18 0.1031 1.1895 2.89 4.08707719 5.00562683
Cu–Cu 10.55 2.43 0.0894 1.2799 2.56 3.62038672 4.43405007
Ag–Cu 10.70 2.805 0.0977 1.2275 2.725 4.08707719 4.43405007
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where E(m, n) is the binding energy of a nanoalloy with m
silver atoms, and n = N � m copper atoms, N being the total
number of atoms. The mixing energy vanishes for pure
nanoparticles, i.e. when m = 0, n = N and vice versa. When
Emix(m, n) o 0, then

NE(m, n) o mE(N, 0) + nE(0, N) (5)

that is, a mixture of m pure NPs of the first element plus n of the
second element is higher in energy than N nanoalloys of such
composition.

Each nanoparticle structure was described with the aid of
two other parameters, coming from the Common Neighbor
Analysis40 (CNA). For each pair of nearest-neighbor atoms, the
CNA defines a signature consisting of a triplet of integer
numbers rst:
� r – the number of common nearest neighbors of the pair.
� s – the number of bonds between those r atoms.
� t – the length of the longest chain of bonds that can be

made out of the s bonds present.
For a given nanoalloy and signature, we define its signature

order parameter as the number of nearest-neighbor pairs
presenting such signature divided by the total number of
nearest-neighbor pairs in the nanoalloy. Some typical signa-
tures are shown in Fig. 1. In particular, here we decided to use
first a two-dimensional description based on the (555, 422) pair
of signatures, and the to compare the results to those obtained
by means of different choices of the variables.

2.3 Machine learning models

In order to find a suitable approximation of the mixing
energy, regression models were trained and tested. For a
classification of nanoalloys into structural families, unsuper-
vised learning algorithms were also implemented. Both tasks
were achieved thanks to the open source software Scikit-
Learn.41

2.3.1 Regression. Support Vector Machines42–44 (SVMs) are
very powerful tools, and given their flexibility they can adapt to
a very large variety of data sets. In addition, they benefit from
the property of continuity, which is not shared among other
powerful models such as, for example, decision trees and
random forests. The general formulation of the regression
problem for SVMs (in this case the model is referred to as
Support Vector Regressor, SVR), can be stated as follow.45 Given

a training set of n pairs of data (x1, y1),. . .,(xn, yn), the algorithm
solves46 the following problem:

argmax
ai ;a
�
i

�1
2

Xn
i;j¼1

a�i � ai
	 


ða�j � ajÞkðxi; xjÞ
"

�e
Xn
i¼1
ða�i þ aiÞ þ

Xn
i¼1
ðai � a�i Þyi

# (6)

subject to

Pn
i¼1

a�i � ai
	 


¼ 0

0 � ai; a�i � C

8<
:

where e and C are two positive hyperparameters and k(xi, xj) is a
kernel function. The parameters that have to be found by the
algorithm are ai and a�i for each i. Here we used the radial basis

function (RBF) kernel, that is k(xi, xj) = e�g||xi�xj||2

. The constant
g is the third positive hyperparameter. Given a set of hyperpara-

meters and a solution to the minimization problem ai; a�i
� �n

i¼1,

the functional relation between x and y can be expressed as

f ðxÞ ¼
Xn
i¼1

ai � a�i
	 


k xi; xð Þ þ b (7)

where b is a constant calculated during the minimization
process. To avoid overfitting,47 hyperparameters are tuned after
V-fold cross validation. Finally the model capability is evaluated
on the test set (x1, y1),. . .,(xm, ym), using the R2 metric

R2 ¼ 1�

Pm
i¼1

yi � f ðxiÞð Þ2

Pm
i¼1

yi � �yð Þ2
(8)

where %y is the average of all yi in the test set. The score takes
values in the range (�N, 1], where 1 means a perfect model.

2.3.2 Clustering. Unsupervised learning algorithms group
a set of unlabelled points in space. Here we implemented
K-means42,48 and Gaussian mixture model42,49,50 (GMM), in a
two dimensional space description given by the (555, 422) CNA
signatures. These signatures have been chosen because they
single out local fivefold symmetry points and stacking faults in
the fcc lattice, respectively. The K-means algorithm solves
iteratively the minimization problem of finding the Voronoi
tessellation of the data set, according to

min
m1;...mK

Xn
i¼1

min
j¼1;...;K

xi �mj

 2 (9)

where K is the number of clusters, n is the number of points xi,
and mj are the centers of each cluster. The number of clusters is
not known a priori, so that a score based on that number must
be provided to evaluate the quality of the result. Here we used
the silhouette score,51 which is the mean of all the silhouette
coefficients assigned to each point in the set:

si ¼
bi � ai

maxðai; biÞ
(10)

Fig. 1 Some CNA signatures. 555 signature is typical of atom pairs along
5-fold symmetry axes, such as those of icosahedra and decahedra. 421
signature is that of a perfect FCC crystal fragment, whereas 422 signature
is typical of FCC fragments with local HCP zones (stacking faults, twin
planes).
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where ai is the mean distance to the other instances in the same
cluster of xi, and bi is the smallest mean distance to the other
instances in each cluster that does not contain xi. The optimal
value of K is the one that maximizes the silhouette score, whose
range is [�1, 1]. GMM is instead a probabilistic model: it
assumes all points to be generated by K Gaussian distributions
with unknown weights and parameters. The solution is pro-
vided by the Expectation–Maximization (EM) algorithm, which
iteratively maximizes the expectation over the current para-
meters of the log-likelihood of the mixture model. By assump-
tion, all clusters can have ellipsoidal shape, which is a
generalization of K-means ‘‘hard’’ clustering. Again, since the
number of mixture components (i.e. the number of clusters) is
not known a priori, there must be an objective method to
deduce it. Here we used the Bayesian Information
Criterion42,51 (BIC), which is defined as

BIC = log(n)p � 2 log L̂ (11)

where n is the number of points, p the number of para-
meters and L̂ is the maximized value of the likelihood
function. The optimal value of K is the one that minimizes
the BIC.

2.4 Harmonic superposition approximation (HSA)

Probabilities for nanoparticles as a function of temperature
were calculated thanks to the Harmonic Superposition
Approximation.17,18 Given a pool of nmin structures that locally
minimize the potential energy surface for a fixed number
of atoms N, this framework allows to calculate the probability
of each structure. For a local minimum s with potential
energy Es, it is assumed that the partition function can be
decomposed into translational, rotational and
vibrational terms:

Zs ¼
1

hs
Ztr

s Z
rot
s Zvib

s e�bEs (12)

where hs is the order of symmetry group of the local minimum
s and b = 1/kBT, where T is the temperature of the canonical
ensemble considered. In particular we have that:

Ztr
s ¼ V

MkBT

2p�h2

� �3=2

(13)

is the translational term, where V is the volume of the box
containing the nanoparticle, M the total mass;

Zrot
s ¼

2pkBT �Is
�h2

� �3=2

(14)

is the rotational term, where %Is is the average moment of inertia
of local minimum s: %Is = (Ixx

s Iyy
s Izz

s )1/3 and Ixx
s , Iyy

s and Izz
s are the

principal moments of inertia;

Zvib
s ¼

Y3N�6
i¼1

1

2 sinh b�hos;i=2
	 
 (15)

is the vibrational term in the harmonic approximation, where
os,i is the i-th non zero normal mode of the local minimum s.

The probability as a function of temperature of the local
minimum s in the ensemble is then given by

ps ¼
ZsPnmin

s¼1
Zs

(16)

Eqn (16) gives the relative probability for a minimum s in a pool
of nmin isomers as a function of temperature. In fact clustering
algorithms (see Section 2.3.2) separate structures into different
structural motifs, so that their temperature dependent prob-
ability can be calculated by the HSA, as done in Section 3.4.

3 Results

In Sections 3.1 and 3.2 we report the results of both regression
and clustering algorithms applied to the global minima found
by our global optimization searches for sizes N = 100, and
N = 200. For N = 100, the data set consists of the global minima
of AgmCun for all compositions, i.e. for m = 0, 1, 2,. . .,100. For
size 200, where calculations are more cumbersome, the data set
consists of the global minima of AgmCun with even m, i.e. m = 0,
2, 4,. . ..,200. The global minima were searched for by the BH
algorithm, which has proven its efficiency in the optimization
of AgCu nanoalloy structures.33,52–54 For both N = 100 and 200
we provide the results for the regression of the mixing energy,
as given in eqn (4), as well as for the clustering of the data sets
in different structural families. Such structural families are
then described in terms of their main geometrical features and
chemical ordering.

In Section 3.3, we discuss different possible choices of the
order parameters for the application of the clustering
algorithms. Finally, in Section 3.4, we consider a specific
composition, Ag64Cu36. For that composition we consider a
set of low-energy local minima collected by our BH searches, we
use the clustering algorithm to separate these structures into
families, and we calculate the temperature-dependent prob-
ability of the families by means of the HSA.

3.1 N = 100

The mixing energy, as a function of the number of silver atoms
m is shown in Fig. 2. The mixing energy is negative in the whole
composition range. Its profile is evidently rather complicated,
with different stationary points.

For a selected set of compositions, we checked the behavior
of the mixing energy by DFT calculations. The DFT results
(reported in the ESI†) are in good agreement with those of the
Gupta potential, confirming the overall behavior of the mixing
energy, and even giving somewhat more negative values. The
negative values of the mixing energy in nanoalloys such as
AgCu, AgNi, AgCo, AuCo and others was attributed to the
efficient stress relaxation achieved by core@shell structures in
which the element with lower surface energy and larger atomic
size is segregating at the surface.35 The DFT data confirm this
result and show that, at least for AgCu, the electronic effects not
included in the Gupta model, such as directional terms in
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bonding between atoms or charge transfer, are likely to be of
minor importance.

For this size, the mixing energy is calculated for every
possible composition, so that in principle there is a complete
knowledge about this function. However, for larger nanoalloys
(as we shall see later) it can be difficult and rather expensive to
compute the mixing energy for every possible composition, since
it requires a full global optimization for each composition, so that
in principle it is useful to have a method capable of making
predictions where they are needed, i.e. on ‘‘unseen’’ data.

To make such predictions, we trained and tested a SVR
splitting randomly the data set into an 80% training set and a
20% test set, using the number of silver atoms m as the only
variable. In order to avoid overfitting, hyperparameters were
tuned from the following ensemble, which spans different
orders of magnitudes, after 5-fold cross validation:

g:½0:001; 0:005; 0:01; 0:05; 0:1; 0:5; 1; 3; 5; 8; 10�

C:½0:001; 0:005; 0:01; 0:05; 0:1; 0:5; 1; 5; 10; 50; 100; 500; 1000�

e:½0:001; 0:005; 0:01; 0:05; 0:1; 0:5; 1; 5; 10�

8>>><
>>>:

The best triplet was found to be composed by g = 0.01, C = 50
and e = 0.01. Given this result, the model was then trained on
the full training set (we remember that during cross validation
a fifth of it was set a part for each validation), and tested on the
test set, giving the following scores:

Rtraining
2 = 0.999825 Rtest

2 = 0.999657

that are indeed very high. Other details regarding the SVR
model (e.g. parameters in eqn (7)) can be found in the ESI.†

The performance of the model on the entire data set is shown
in Fig. 2B. The same data set was then split in 50% training set
and 50% test set. For this setting we found g = 0.005, C = 1000
and e = 0.005. The two scores are again both very high:

Rtraining
2 = 0.999875 Rtest

2 = 0.999468

As it can be seen in the ESI,† the two results are very similar in
terms of predictions, even though hyperparameters are quite
different.

When the data set is represented in the two dimensional
space given by the 422 and 555 CNA signatures, all nanoalloys
automatically separate into different groups. However, it is still
not clear at this stage how many are there, as shown in Fig. 3A.
After K-means is implemented, and the silhouette score is
plotted as a function of the number of clusters K, one obtains
the plot given in Fig. 4A. The optimal number of clusters,
according to this criterion, is then K = 7. The Voronoi tessella-
tion, along with each cluster center, is shown in Fig. 3B. A
representative structure for each family can be found in Fig. 4B.
Further details and images are given in the ESI.† Here we give a
description of the different structural families found, specify-
ing the number of silver atoms m.
� (1) m = 0–4, m = 100

Fig. 2 (A) Mixing energies calculated after global optimization. (B) SVR
(20% test) predictions for every composition, along with mixing energies
calculated from global optimization.

Fig. 3 (A) Data set representation in the two dimensional space of 422
and 555 order parameters. For each nanoalloy, we calculated its 422 and
555 order parameters as the fractions of nearest-neighbor pairs presenting
such signatures. (B) Voronoi tessellation and cluster centers (means), for
K = 7, when N = 100.
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These are the only six structures with Marks decahedral55

symmetry.
� (2) m = 79–83
Five asymmetric icosahedral structures.
� (3) m = 59–66
These eight nanoalloys have a 55-atom perfect Mackay

icosahedron covered by an incomplete Mackay crust, which is
slightly distorted and presents a small rotation.
� (4) m = 5–34, m = 84–99
These forty six structures, which compose the largest cluster,

have icosahedral symmetry. They are basically composed of a
55-atom perfect Mackay icosahedron covered with an incom-
plete Mackay icosahedral shell (which is part of the surface of
the 147-atom icosahedron). However, even if they share this
common feature, there are two subgroups that can be identi-
fied. The first subgroup is that of m = 5–34, where the silver
atoms are at the nanoalloy surface, typically occupying icosahe-
dral vertices and the external shell. The second subgroup can
be identified with the remaining nanoalloys. Those structures
have all of their copper atoms in the core, typically forming part
of the 13-atom perfect icosahedron.
� (5) m = 67–78
These twelve structures are polyicosahedra32 resulting from

three joined 55-atom icosahedra sharing some atoms. The third
icosahedron is incomplete because of an insufficient total
number of atoms.
� (6) m = 54–58
These five structures are again core–shell as those in group 4.

However their crust is of anti-Mackay type.33 Moreover, they have

part of such crust removed at the boundary and some silver atoms
are placed at the fivefold vertices. We remark that this small
deviation (their 422 signature differs 0.0262 from the seventh
group) was detected by the clustering algorithm.
� (7) m = 35–53
All nineteen these structures are similar for their icosahe-

dral symmetry to those already described in group 4 and 6,
however they have the 55 perfect Mackay icosahedron covered
with a partial anti-Mackay crust to form a ball-and-cup
structure.56 Perfect symmetry is achieved when m = 45.

With very few exceptions, the global minima of 100-atom
particles belong to some type of icosahedral family. Exceptions
are found at a few extreme Cu-rich compositions and for pure
Ag, where the best structures are decahedral. All structures with
the lowest mixing energy are icosahedral, and the best ones
(belonging to clusters 3, 6 and 7) present a 55-atom Mackay
icosahedron covered either by a Mackay or an anti-Mackay
incomplete shell. These results show that icosahedral and
polyicosahedral structures take advantage from stress relaxa-
tion in Cu@Ag structures much more efficiently than
decahedral ones.

We note also that the transition between neighboring clus-
ters of structures often corresponds to a change in slope or to
an inflexion point in the mixing energy curve (see the ESI,†
Fig. S2).

3.2 N = 200

The mixing energy profile, as a function of m (the number of
silver atoms), along side with the SVR fit is shown in Fig. 5. The
behaviour is similar to the first case, that is rather complicated.
Mixing energy values are again negative, with very few excep-
tions that are found in the extreme Ag-rich limit, where there
are some slightly positive values. The model was trained on the
80% of the data, and tested on the remaining 20%. The same
set of hyperparameters for the case N = 100 was considered
during 5-fold cross validation. The best triplet was found to be
given by g = 0.001, C = 50 and e = 0.01. As before, the model was
finally trained on the full training set, and tested on the test set,
with the following scores:

Rtraining
2 = 0.999013 Rtest

2 = 0.997736

Fig. 4 (A) Silhouette score as a function of K for the case N = 100.
(B) Seven representative structures, one for each family. Labels are referred
to Fig. 3B. The seven structures have 2, 82, 62, 23, 72, 56 and 45 silver
atoms respectively.

Fig. 5 Mixing energy profile for AgCu nanoalloys with N = 200 atoms in
total, and SVR fit for the case of 80–20 split.
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Other details regarding the SVR best model can be found in the
ESI.† Similarly to the case N = 100, the data set was then split in
50% training set and 50% test set. For this setting the best
triplet found is g = 0.005, C = 10 and e = 0.001. The two scores
are again both very high:

Rtraining
2 = 0.999591 Rtest

2 = 0.998537

The model performance can be found in the ESI.†
The representation of these nanoalloys in the same two

dimensional space described by the 422 and 55 CNA signatures
is given in Fig. 6A.

When K-means is implemented, and the silhouette score is
plotted as a function of the number of clusters K, one obtains
the plot given in Fig. 7A. The optimal number of clusters,
according to this criterion, is then K = 5. The Voronoi tessella-
tion, along with each cluster center, is shown in Fig. 6B. A
representative structure for each family is shown in Fig. 7B.
Further details and images are given in the ESI.† The different
structural families can be described as follows
� (1) m = 0–30, m = 196–200
Marks decahedra. In Cu-rich decahedra, Ag atoms fill the

vertices first, then they start filling (100) facets. In Ag-rich
decahedra, the few Cu are atoms placed in the fivefold axis.
� (2) m = 104–108
Core–shell FCC–HCP fragments.

� (3) m = 160–174
Core–shell asymmetric icosahedra.
� (4) m = 32–54, m = 102, m = 110–152, m = 176–194
Incomplete core–shell structures, with a Cu icosahedron of

N = 147 atoms covered by a Mackay Ag crust. Ag atoms initially
fill the vertices, and later the edges. Finally they become part of
the surface of the core 147 icosahedron. Again as in the case
with N = 100, this is the largest cluster of structures.
� (5) m = 56–100, m = 154–158
As group (4), but with an anti-Mackay crust.
Also for size 200, a vast majority of global minima is of

icosahedral structure. The exceptions are the decahedra found
for Ag-rich and Cu-rich compositions and few FCC–HCP struc-
tures at intermediate compositions. These results confirm the
key role of stress relaxation in determining the most stable
structures also at this larger size of 200 atoms.

3.3 Alternative choices for the clustering of structures

Here we analyze how clustering into structural families is
sensitive to the choice of the nanoparticle descriptors, i.e. of
our 555, 422 and 421 variables. This analysis was made by
K-means, which was applied to different choices of variables
besides the (522, 422) choice used so far.

Fig. 6 (A) Data set representation in the two dimensional space of 422
and 555 order parameters. For each nanoalloy, we calculated its signature
422 and 555 order parameters as the fractions of nearest-neighbor pairs
presenting such signatures. (B) Voronoi tessellation and cluster centers
(means), for K = 5, when N = 200.

Fig. 7 (A) Silhouette score as a function of K for the case N = 200. (B) Five
representative structures, one for each family. Labels are referred to
Fig. 6B. The five structures have 10, 106, 168, 42 and 80 silver atoms
respectively.
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First of all, we applied the clustering algorithms in the three-
dimensional (3D) space of (555, 422, 421) signatures. Then we
applied clustering in the spaces of two signatures at a time:
(555, 421) and (422, 421) besides (555, 422), and finally to 1D
spaces of one signature at a time, i.e. (555), (422) and (421)
separately. We compared all clustering choices finding the
following results:

– For size 100, only the pair (555, 422) was able to reproduce
exactly the same clustering as the 3D description, while
(555, 421) and (422, 421) were giving somewhat different
clusters. On the other hand, the clustering obtained by 1D
descriptions was significantly different.

– For size 200, only the pair (422, 421) was able to reproduce
the same clustering as the 3D description. At variance with the
(555, 422) description, (422, 421) gave six clusters instead of
five, due to the splitting of cluster 4 of Section 3.2 into two new
clusters corresponding to Cu-rich and Ag-rich parts. These two
parts differ by a small distortion of the Ag crust in the Ag-rich
part which eliminates the few 421 signatures that are present in
Cu-rich nanoparticles.

From these results it turns out that (555, 422) and (422, 421)
are the best choices to capture the physically relevant clusters of
the full 3D description. However we note that the (422, 421) pair
would be unable to separate well nanoparticles with fivefold
symmetries and nanoparticles with extended hcp domains or
several stacking faults. The latter were not present in our
samples of global minima for sizes 100 and 200, but they may
appear in samples including also higher energy isomers. For
this reason we prefer the (555, 422) pair as the most useful 2D
description. We note that this procedure of selecting the mini-
mal set of variables for clustering of structures can be general-
ized to multi-dimensional cases including many CNA signatures
and also other variables. Work in this direction is in progress.

3.4 Analysis of N = 100, m = 64, n = 36

Here we consider a specific composition for N = 100, Ag64Cu36,
which is in the composition range with the lowest mixing
energy. Here we consider all structures collected in the output
of our three BH searches. This does not correspond to the much
larger set of all visited structures during optimization, because
these structures were collected by dividing the space of the 422
signature into small intervals of width 0.01 for the first two
simulations and 0.002 for the third and looking for the lowest-
energy structure for each interval. In total, our pool consists of
309 structures. In the usual (555, 422) 2D space given by the
CNA signatures, the structures are arranged as shown in
Fig. 8A. Given the nature of such representation (evidently
more complicated than the previous two cases), we used the
Gaussian mixture model in order to find a separation into
structural families, because the Gaussian mixture model allows
clusters to have ellipsoidal shapes (a more general and flexible
hypothesis with respect to the hard tessellation found by
K-means). The BIC and silhouette scores are then plotted as a
function of the number of mixture components, K, in Fig. 9(A)
and (B). The minimum of the BIC scores dictates that the
optimal separation happens when the number of components

is seven. This optimal number is confirmed by the silhouette
score which shows a local maximum at K = 7. However we must

Fig. 8 (A) Data set representation in the two dimensional space of 422
and 555 order parameters. (B) Gaussian mixture model plot with centers
and contours for K = 7 distributions.

Fig. 9 (A) BIC and (B) silhouette scores for both full and reduced data sets.
In (A) the curve for the reduced data set has the y-axis range given on the
right part of the plot.
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recall that the silhouette score is less and less representative as the
elongation of clusters increases. Apparently then, there is a clear
distinction between seven different structural families. However,
after manual inspection, one finds out that the first three clusters on
the left (i.e. the orange, purple and red one) comprehend a large
variety of amorphous structures, making very difficult the distinc-
tion between them, even for human eye. The reason behind this is
that the pool of structures is composed of various local minima,
among which a large part (in fact the majority) is very high in energy
with respect to the global minimum, and thus represents a sort of
noise of non-relevant structures. A simple way to overcome this
obstacle is to put an energy cutoff.

If we consider only structures which differ at most 0.5 eV
from the global minimum, we obtain another representation of
such nanoalloys, as shown in Fig. 10A.

With such restriction, the amount of structures reduces to
90. BIC and silhouette score suggest (as expected) four clusters
to be the optimal subdivision of the reduced data set, as shown
in Fig. 9(A) and (B). A representative structure for each family is
instead depicted in Fig. 11.

When the HSA is implemented, the probability for these
four structural families as a function of temperature can be
calculated, as shown in Fig. 12. Specifically, the relative prob-
ability P of family F is given by

P ¼

P
i2F

pi

Pnmin

s¼1
pi

(17)

where the sum in the numerator is restricted to the minima
belonging to family F, while the sum in the denominator
extends to the minima of all families considered in the calcula-
tion. The probabilities pi of individual minima are given by
eqn (16). In this way we can compute the probability for each
motif as a function of temperature. The black curve in Fig. 12
suggests that the icosahedron with Mackay crust is the most
favorite structural family (i.e. the most probable) in the relevant
interval of temperature from 0 to 500 K (after which AgCu
nanoalloys start melting their surface), coherently with the
previous discussion on the structural properties of global
minima at all compositions for AgCu nanoalloys with N = 100
atoms in total. Icosahedra with anti-Mackay crust are ranked
second (purple curve), whereas mixed crust (yellow) and poly-
icosahedra (red) are ranked respectively third and fourth.

Fig. 10 (A) Data set representation in the two dimensional space of 422
and 555 order parameters, when the cutoff for energy is applied.
(B) Gaussian mixture model plot with centers and contours for K = 4
distributions.

Fig. 11 Representative structures for the four clusters of Fig. 10B. Top left
is an icosahedron with a Mackay crust (black cluster), top right is an
icosahedron with mixed Mackay and anti-Mackay crust (yellow cluster),
bottom left is an icosahedron with full anti-Mackay crust (purple cluster)
and finally bottom right is a polyicosahedron (red cluster).

Fig. 12 Probability P of the different structural families as a function of
temperature in the range 200–600 K. P is calculated by eqn (17). The
curves refer to icosahedra with Mackay crust (black), icosahedra with
mixed Mackay and anti-Mackay crust (yellow), icosahedra with full anti-
Mackay crust (purple) and polyicosahedra (red). The colors correspond to
those of the clusters of Fig. 10B, while representative structures are given
in Fig. 11.
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4 Conclusions

In this article, the lowest-energy structures of AgCu nanoalloys
of sizes N = 100 and 200 were searched for by the Basin
Hopping global optimization algorithm. For N = 100, all com-
positions were considered, whereas for N = 200 we optimized
one composition over two. These searches revealed a rich
variety of structural motifs and a non-parabolic behaviour of
the mixing energy.

The mixing energy was found to be negative, for all compo-
sitions at size 100 and for the vast majority of compositions of
size 200, with very few slightly positive values in the extreme
Ag-rich limit. We attribute the negative values of the mixing
energy to the possibility of forming non-crystalline structures
with core shell Cu@Ag chemical ordering, which is the optimal
chemical ordering due to the larger size and lower surface
energy of Ag compared to Cu. This chemical ordering, which is
possible at the nanoscale with no counterpart in the bulk limit,
allows an efficient stress relaxation which helps in stabilizing
nanoalloy structures with respect to elemental nano-
particles.32,35 In fact, the structures with the lowest mixing
energy are found in the composition range where the inner part
and the surface layer are almost completely made of Cu and Ag
atoms, respectively. The most efficient stress relaxation is
achieved by structures of the icosahedral or polyicosahedral
families, even for sizes, such as 100 and 200, that are far from
icosahedral magic numbers. The stabilization of icosahedra by
stress relaxation was already found for nanoparticles of sizes
below 50 atoms, in several systems (AgCo, AgNi, AgCu and
others).27,32,35 Here we have shown that stress relaxation is still
very effective in stabilizing icosahedral structures at signifi-
cantly larger sizes, and for wide composition intervals.

The global optimization data were used as a benchmark for
the use of machine-learning techniques with the aim of answer-
ing to the following questions:

1. Is it possible to accurately fit the mixing energy by a
suitable expression?

2. Is it possible to automatically group the nanoalloy struc-
tures into physically meaningful families?

As regards question 1, our calculations showed that the SVR
algorithm is able to produce very accurate fits, for both N = 100
and N = 200. These results indicate that the same procedure is
likely to produce accurate functions for interpolating the mix-
ing energy also in cases in which the search of the global
minima for all compositions might be very cumbersome (think
for example about nanoalloys of sizes 500 or 1000), so that
interpolating on the basis of the results of a limited set of
compositions may be quite useful. We note also that the
interpolation procedure by the SVR method includes a cross-
validation of the result of the fitting that allows to determine
the reliability of the fit itself.

As regards question 2, thanks to the clustering algorithms,
we successfully divided each data set in distinct groups, thus
underlying the variety of structural families present in AgCu
nanoalloys of size N = 100 and N = 200 atoms. In particular we
found that even without a previous manual classification of

such nanoalloys, it is still possible to recover a physically
meaningful as well as detailed separation into different clusters
of structures. This result was achieved also thanks to the clever
description given by the CNA signatures, which made possible
the success of the two algorithms used, in a two dimensional
space. We remark the importance of our choice of using
unsupervised learning algorithms, for it would be surely possi-
ble to train a supervised classification model on a manually
labelled data set, but more time consuming and, at some point,
subjective. In order to cluster the data sets of the global minima
for N = 100 and 200, we used K-means which produced a hard
partition (Voronoi tessellation) of the two dimensional space of
the two order parameters relative to 422 and 555 signatures.
The classification obtained by the (555, 422) pair was compared
also to those obtained by using other CNA sets of variables,
discussing how the classification depended on the choice of
the set.

A different algorithm, the Gaussian mixture model, was
instead used to perform the same task on a slightly more
complicated case, that is the one offered by the two dimen-
sional representation of some of the local minima found in the
global minimization of Ag64Cu36. Here the superior flexibility of
such algorithm with respect to K-means was crucial to find a
good separation into clusters.

The usefulness of the clustering of the minima of Ag64Cu36

was then demonstrated by calculating the equilibrium prob-
abilities of the different structural families depending on
temperature. Finally, we note that the approaches developed
in this work do not rely on any specific feature of the AgCu
system, so that they can be easily used to treat other nanoalloys.
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51 A. Géron, Hands-On Machine Learning with Scikit-Learn,

Keras, and Tensorflow, O’Reilly, 2019.
52 D. Nelli and R. Ferrando, Nanoscale, 2019, 11, 13040–13050.
53 M. Settem, J. Alloys Compd., 2020, 844, 155816.
54 M. Settem and A. K. Kanjarla, Comput. Mater. Sci., 2020,

184, 109822.
55 L. D. Marks, Rep. Prog. Phys., 1994, 57, 603–649.
56 S. Nunez and R. L. Johnston, J. Phys. Chem. C, 2010, 114,

13255–13266.

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
O

ct
ob

er
 2

02
1.

 D
ow

nl
oa

de
d 

on
 7

/3
1/

20
25

 7
:0

1:
42

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1cp02143e



