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We use mechanical unfolding of single DNA hairpins with modified
bases to accurately assess intra- and intermolecular forces in
nucleic acids. As expected, the modification stabilizes the hybri-
dized hairpin, but we also observe intriguing stacking interactions
in the unfolded hairpin. Our study highlights the benefit of using
base-modified nucleic acids in force-spectroscopy.

Understanding DNA structure and stability is vital as it changes
during fundamental biological processes, such as replication, tran-
scription, repair and chromatin organization."” The stability of
nucleic acids mainly depends on base-pair stacking and hydrogen
bonding.>”® Thus, the stability of nucleic acids can be altered and
characterized by substituting the natural bases with modified
nucleobases that affect these interactions. Synthetically prepared
modified nucleobases are generally designed to enable comple-
mentary base-pairing and to give minimal perturbation to the
native structure.® An interesting subgroup of these is the fluor-
escent base analogues, which have emerged as a tool to investigate
structure, dynamics and functions of nucleic acids and their
interactions, mostly in bulk experiments.”" The fluorescent tri-
cyclic cytosine analogue tC (Fig. 1A) forms three hydrogen bonds
with guanine, but is expected to slightly change the stacking
interactions due to its extended aromatic system compared to
normal cytosine.">™* Hence, tC incorporation at one or more places
in a sequence provides a way to, with base-pair resolution, inves-
tigate how such small changes affect the properties of nucleic acids.

Nucleic acid properties are conventionally studied using bulk
techniques, like thermal melting, calorimetry and various UV/
Vis-absorption techniques.>*> In recent years, force spectroscopy
has emerged as a technique to study the properties of nucleic acids
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at the single-molecule level."*** As an example, nearest neighbour
base-pair energies in DNA have been measured with 0.1 keal mol *
accuracy.”>** Moreover, base modifications and mismatches were
recently studied using force spectroscopy.”>> The literature on
using synthetic base analogues in single-molecule experiments is
very limited,*** but we envision that it will be a powerful tool for
studying structure and dynamics of nucleic acids. Here, we combine
optical tweezers and thermal melting to study how structural
stability, (un)folding thermodynamics and intermolecular forces

are affected by substitution of C with tC.
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Fig. 1 Experimental setup and stability of DNA hairpins. (A) Structure of
tC; red represents additional part compared to cytosine. (B) Schematic
representation of the optical tweezers. Inset shows the hairpins used with
tC modification(s) in different positions in red. (C) Five force-distance
cycles for an unmodified and a three-tC hairpin (3-tC) with unfolding (red)
and folding curves (blue) and the corresponding rupture force histograms.
The black horizontal lines indicate the median force.
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We used optical tweezers to manipulate single DNA hairpins by
pulling on their ends via duplex handles, attached to two micron-
sized beads, and applied forces in the pN range with nm resolution.
One bead was optically trapped, while the other was attached to a
micropipette by suction. The DNA hairpin was (un)folded by
moving the optical trap that changed the distance between the
position of the trap and the bead in the micropipette (1), thereby
applying a mechanical force (Fig. 1B). The DNA hairpins were
synthesized by incorporating tCs at various positions (Table S1,
ESIt). The unmodified DNA hairpin is shown in Fig. 1B (inset) and
tC-modifications (at positions 2, 7, and 11), corresponding to 1-tC
(11), 2-tC (7, 11) and 3+C (2, 7, 11), are shown in red. In the abasic
site hairpin (Abasic) an abasic site replaces G opposite to tC in
position 11. As observed in the force-distance curves (FDC, Fig. 1C
and Fig. S1, ESIt), the DNA hairpins unfolded (F,, red) and folded
(Fy, blue) via a single-step transition. F, and F; were extracted using
custom-made MATLAB codes and the force histograms are shown
in Fig. 1C and Fig. S1, ESL¥

Circular dichroism in the region between 200 and 300 nm
shows a significant similarity among all hairpins, confirming
that the tC-modifications do not perturb the native structure of
the DNA hairpins (Fig. S24A, ESIT). Fig. 2 and Table 1 show how
F, and F¢ changed upon incorporation of tC (at 1 M NacCl). F,
increases significantly (statistical analysis in ESI,¥ Tables S2
and S3) with tC-incorporations (1-tC, 2-tC, 3-tC) compared to
the unmodified hairpin (Table S2, ESIt); one tC insertion
resulted in a ~1 pN increase and 3-tC was the most stable
hairpin. An increasing trend in F, with the number of tCs was
also observed from the linear fit (Fig. S3A, ESIt) and supported
by Pearson’s correlation coefficient:** 0.91, and r value: 0.85
(though the F, values are within the error bars). Additionally,
the increase in F, between 1-tC and 3-tC was found to be
significant (Table S2, ESIT) indicating that the stabilizing effect
was qualitatively additive with the number of tCs. Contrast-
ingly, the change in Fr was negligible with tC incorporation
(Fig. 2 and Table S3, ESIt). The Abasic hairpin showed a
significant decrease in both F, and F;. Whereas the increase
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Fig. 2 Mechanical and thermal stabilities of tC-modified DNA hairpins.
Changes in unfolding (AF,, red) and folding force (AF;, blue), free energy
(AAG, purple) from mechanical (1 M NaCl) and melting temperature
(AT, black, 5 mM NaCl) measurements comparing tC-modified and
unmodified hairpins.
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Table 1 Parameters from optical tweezers and bulk thermal measure-
ments on hairpins at 1 M and 5 mM NaCl

DNA hairpin ~ n° FP(PN)  FP(pN)  AG (ksT) Twm? (°C)
Unmodified 854  18.0 (4) 13.4(4) 57(1) 69.7 (7)
1-tC 840  18.8(3) 13.6 (4) 59(1) 72.7 (6)
2-tC 990  19.0 (3) 13.5(4) 58(2) 73.7 (7)
3-tC 790  19.1(3) 13.7 (3) 61 (1) 76.4 (7)°
Abasic 643  16.5 (4) 12.6 (3)  53(1) 65.0 (5)
2-tC(opp) 679  18.8 (4) 13.7 (4) 58(1) 71.0 (5)
2-tC(stack) 792 17.9 (4) 12.6 (4) 52(1) 75.8 (6)

¢ Number of (un)folding cycles (n) obtained from different bead pairs
(N), 8 < N < 10 in optical tweezers experiment (1 M NacCl). * Unfolding
(Fy) and folding (F) force are reported as median + standard error of
median. © Free energy (AG) calculated using Crook’s fluctuation theo-
rem (Fig. S4, ESI) and mean + standard error of mean. ¢ Melting
temperature from UV-absorbance thermal experiments reported as
mean + standard deviation from two experiments. ¢ The T;,, measure-
ments for 3-tC was performed using a different instrument and its ATy,
(see Fig. 2) is calculated using the Ty, value for the unmodified hairpin
in the same instrument (71.2 °C, i.e. 1.5 °C above the measurement on
unmodified in other instrument, 69.7 °C). The values reported in
parentheses refer to the error associated with the last significant figure.

in F, when incorporating tC could be explained by enhanced base-
stacking propensity of the extended tC base compared to C, the
negligible change in Ft is intriguing. We hypothesize that this is
because the major contribution in Fr is the number of hydrogen
bonds, which is preserved with tC substitution. The free energy
(AG) was calculated from the FDC using Crook’s fluctuation
theorem (Fig. S4, ESIT).>**® The calculated AG for the unmodified
hairpin (57(1) kgT) agreed well with the mfold-predicted®®*” AG
(56kgT). tC incorporation increased the free energy up to ~ 3kgT
(Fig. 2), rendering more stable hairpins, with the 3-tC hairpin
showing the highest stability. The stabilization was again qualita-
tively additive (statistical analysis in Fig. S3B, ESIt). The Abasic
hairpin, as expected, was destabilized by ~ 4kgT.

The increased stability observed in the unfolding experi-
ments agreed with thermal melting experiment at 5 mM NaCl
(Material and methods, Fig. 2 and Fig. S2B, ESI{). The melting
temperature (Ty,) increased gradually and was 5.2 °C higher for
the 3-tC (o-curve fit of melting indicate a virtually clean two-
state model, Fig. S2C, ESIt) compared to the unmodified hair-
pin. The Abasic hairpin was, as expected, less stable than the
unmodified hairpin (—4.7 °C). Overall, the hairpin showed a
similar trend in the mechanical and thermal measurements,
where the stabilization with number of tC-incorporations was
qualitatively additive. Again, we suggest that this stabilization
is predominantly due to increased base-stacking interactions.

Next, we were interested in investigating how an extended
base analogue like tC interacts with itself and the consequences
that has on hairpin stability. Hence, hairpins with tCs on
opposite strands (2-tC(opp), modified at positions 7 and 39)
or with two tCs stacking on top of each other in the same strand
(2-tC(stack), modified at position 10 and 11) were synthesized
(Fig. 3A and Fig. S1, ESIt). The increase in F, of the 2-tC(opp)
was similar to the 1-tC and 2-tC hairpins (vide supra) while F¢
again was very similar to the unmodified hairpin (Tables S2 and
S3, ESIt). The increase in AT, for 2-tC(opp) was smaller as
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Fig. 3 Mechanical and thermal stabilities of tC-modified hairpins. (A) DNA hairpins 2-tC(opp) and 2-tC(stack) with tC modifications. (B and C) Changes in
unfolding force (AF,, red), folding force (AF;, blue), free energy (AAG, purple) at 1 M NaCl and melting temperature (AT, black) at 5 mM NaCl for
2-tC(opp) and 2-tC(stack) (B) and both experiments at 50 mM NaCl for 1-tC and 2-tC(stack) (C) compared to the unmodified hairpin. (D) Calculated
change in free energy (AG) with temperature for unmodified, 1-tC and 2-tC(stack) hairpins. Vertical line represents the temperature where optical

tweezers experiments were conducted and shaded region corresponds to the melting temperatures of the hairpins.

compared to other tC-modified constructs. This is likely due to
the contributions from neighboring bases, as reported before.>®

Interestingly, 2-tC(stack) behaves very differently; F, was
similar compared to the unmodified hairpin, whereas Fr was
significantly lower (Tables S2 and S3, ESIt). This observation
agrees with the free energies calculated (Table 1). Interestingly,
the destabilization of the 2-tC(stack) was not observed in the T},
measurements, where 2-tC(stack) showed an increase in Tj,
(+6.1 °C) compared to the unmodified hairpin; the largest
increase for any of the hairpins studied.

The different behavior of 2-tC(stack) in optical tweezers and
melting experiments compared to the control is interesting to
understand in detail. An important discrepancy between these
experiments is that they were performed at different NaCl
concentrations (1 M and 5 mM, respectively). Therefore, we
repeated both experiments at an intermediate ionic strength
(50 mM) for the unmodified, 1-tC and 2-tC(stack) hairpins
(Fig. 3C, Table 2 and Fig. S5, ESIT). The results were similar
to Fig. 2 and 3B for both the modified hairpins, demonstrating
that differences were not an effect of the ionic strength.

The data at 50 mM NaCl was used to determine the
enthalpy (AH) and entropy (AS) by combining AG from the
mechanical measurements at 23.5 °C and Ty, from the melting
experiments (where AG = 0), using AG = AH — TAS (Materials
and methods, ESIf). The values for the unmodified hairpin
(—AH: 160(5) keal mol ", —AS: 454(17) cal K~ ' mol ") agreed with
mfold-predicted values (— AH: 164 keal mol ™", —AS: 464 cal K" mol ).

Both AH and AS were similar (within errors) for 1-tC and the
unmodified hairpin but decreased by ~20% for 2-tC(stack)
(Table 2). The computed AH and AS were used to interpolate
AG between the two experimental temperatures (Fig. 3D). 1-tC
Showed a slightly higher AG compared to the unmodified hairpin
over the entire temperature range. On the other hand, AG for 2-
tC(stack) showed a significantly different temperature depen-
dence, where AG was higher at the hairpin-melting temperature
range and lower at the temperature where the mechanical mea-
surements were conducted. This explains why 2-tC(stack) behaved
differently in the mechanical measurements compared to the
melting experiments. A possible explanation for this large differ-
ence is stabilization of the single-stranded form of the 2-tC(stack)
hairpin by stacking of the two tC bases at low temperatures. Such
stacking likely gives rise to a combination of single-stranded semi-
folded structures®*° with (1) locally less conformational freedom
(S lower) and, (2) increased n-stacking interactions between bases
(H lower) at, and in close proximity to, the two tCs, which in turn
decreases the free energy gain for duplex formation. The enthalpy
and entropy for the other tC-modified hairpins can be computed
indirectly by correcting AG from 1 M to 50 mM or 5 mM and
combining with T, data at 50 mM or 5 mM (Tables S4, S5
and Fig. S6, ESIt). These results confirm the conclusions at
50 mM NacCl.

To summarize our findings, (a) isolated tC bases increase
the thermal and mechanical stability of DNA hairpins and the
stability depends on the number of tCs, and (b) stacking of two

Table 2 Parameters from optical tweezers and bulk thermal measurements on hairpins at 50 mM NaCl

DNA hairpins n® F.? (pN) F (pN) AG* (kgT) T (°C) —AH®® (kcal mol ™) —AS“* (cal K™ mol™)
Unmodified 651 14.6 (3) 9.6 (4) 43 (1) 79.0 (5) 160 (5) 454 (17)
1-C 844 15.6 (3) 9.9 (4) 44 (1) 82.2 (7) 158 (5) 444 (15)
2-tC(stack) 812 14.4 (4) 8.4 (3) 37 (1) 84.9 (8) 126 (5) 351 (16)

% Number of un(folding) cycles (1) obtained from different bead pairs (N), 8 < N < 10. ? Unfolding (F,) and folding (Fy) force reported as
median + error of median. ¢ Calculated free energy (AG), enthalpy (AH) and entropy (AS) represented as mean + standard error of mean. ¢ Melting
temperature (Ty,) from UV-absorbance thermal experiments reported as mean + standard deviation from two experiments. ° Enthalpy and entropy
calculated by combining AG (mechanical measurements) and T}, (thermal measurements) as described in Materials and methods. The values
reported in the parentheses refer to the error associated with the last significant figure.
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adjacents tCs stabilizes the single-stranded form relative to
adjacent natural bases. The combination of thermal and
mechanical measurements was necessary to resolve the
underlying reason for this and identified a different tempera-
ture dependence of AG for the hairpin with stacked tCs.
Combining optical tweezers with base analogues allows con-
venient, and with base-pair precision, local modification of the
stability, structure and dynamics of nucleic acids. This strategy
can be extended to understand how local modification of
properties affect important biological processes, such as repli-
cation, transcription, and repair, as well as studies of processes
involving RNA and RNA-protein interactions. Moreover, by
combining base analogues and force microscopy we have
pointed out the direction towards interbase single-molecule
FRET for nucleic acids in optical tweezers experiments with
fluorescence readout. We have previously shown this to be a
promising technique to study structure and dynamics of
nucleic acids in bulk**™** and with the improved photophysics
of fluorescent base analogues recently reported, for example pA
and 2CNgA,*>*** we suggest that interbase-FRET in optical
tweezers will soon become an important tool in single-molecule
studies.
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