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Crucial impact of exchange between layers on
temperature programmed desorption†

Tobias Dickbreder, * Ralf Bechstein and Angelika Kühnle

Desorption of molecules from surfaces constitutes an elementary process that is fundamental in both

natural and application-oriented fields, including dewetting, weathering and catalysis. A powerful

method to investigate desorption processes is temperature-programmed desorption (TPD), which offers

the potential to provide mechanistic insights into the desorption kinetics. Using TPD, the desorption

order, the energy barrier as well as the entropy change upon desorption can be accessed. In the past,

several analysis methods have been developed for TPD data. These methods have in common that they

rely on the Polanyi–Wigner equation, which requires proposing a desorption mechanism with a single

(or at least dominating) desorption path. For real systems, however, several coupled desorption paths

can be easily envisioned, which cannot be disentangled. Here, we analyse the influence of exchange

between the first and the second adsorbate layer on the desorption process. We present a kinetic

model, in which molecules can desorb directly from the first layer or change into the second layer and

desorb from there. Interestingly, considering this additional desorption pathway alters the desorption

spectrum considerably, even if the transient second-layer occupation remains as small as 4 � 10�6

monolayers. We show that the impact of this layer exchange can be described by a modified Polanyi–

Wigner equation. Our study demonstrates that layer exchange can crucially impact the TPD data.

1 Introduction

Desorption processes are omnipresent both in nature and tech-
nology. For example, desorption of molecules from solid surfaces
governs dewetting and weathering in the environment.1 Likewise,
desorption processes are fundamental in many industrial pro-
cesses, including, e.g., catalysis.2 Consequently, the desorption of
molecules from solid surfaces has been studied intensively to gain
a detailed understanding of the involved elementary steps.3–15 A
powerful technique for investigating desorption is temperature-
programmed desorption (TPD).16,17 To perform a TPD experi-
ment, molecules are deposited onto a cold sample kept in
ultrahigh vacuum. Subsequently, the sample is heated with a
given heating rate and the desorbing molecules are detected using
a mass spectrometer. Despite being conceptually rather simple,
the resulting desorption spectra are often challenging to
analyse.18 Several analysis methods have been developed in the
past. Starting from the simple relationship published by Redhead
in 1962,19 the analysis procedures became increasingly elaborate

when considering the leading edge analysis (also referred to as
Habenschaden–Küppers method)20 and the complete analysis
(also referred to as King’s method or Taylor–Weinberg
method).16,21 While these methods differ in the way the data
are treated, they all rely on the Polanyi–Wigner equation (see
eqn (1)), in which the rate of desorbing atoms or molecules rd per
number of adsorption sites Nad is given by a pre-exponential factor
n, the coverage y, the desorption order n, and an exponential term
that includes the desorption energy barrier DEd, the temperature
T, and Boltzmann’s constant kB. A simple expression for the pre-
exponential factor is given by the transition state theory as shown
in eqn (2), where DSd is the entropy difference between the
transition state and the adsorbed state, and h is Planck’s constant.

rd

Nad
¼ �dy

dt
¼ n exp �DEd

kBT

� �
yn (1)

n ¼ kBT

h
exp

DSd

kB

� �
(2)

Based on the Polanyi–Wigner equation, the kinetic para-
meters of the desorption process, namely DEd, DSd and n, can
be obtained. At this point, it is important to note that the
Polanyi–Wigner equation only considers a single desorption
path. Applying the above-mentioned analysis methods to a TPD
measurement, thus, assumes that the investigated desorption
process is a single process or – in case of several steps – that one
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step is dominating over the others. Whether this assumption is
justified or not will surely require to consider the properties of the
specific system of interest. However, in real systems desorption
often involves coupled desorption pathways. For example, even if
single-crystal surfaces are considered, an exchange between var-
ious adsorption positions like step edges, kink sites, and defects is
possible. Moreover, molecules can jump from the first to the
second layer and adopt adsorption positions in the second layer.
Since adsorbates can typically form more than one layer, layer
exchange is a rather common phenomenon. This leads to coupled
desorption pathways if the barrier for molecules to jump into the
second layer is comparable to (or smaller than) the desorption
barrier. Such coupled desorption pathways can be addressed by a
kinetic model as has been shown in various other cases in
literature.12–15,22–31 Here, we evaluate the impact of this layer
exchange on TPD data analysis using a generic kinetic model.
To this end, we model the desorbing molecules (or atoms) on a
support surface. The elementary processes such as desorption
from the first (second) layer as well as layer exchange from the
first (second) to the second (first) layer are described by their
respective rate constants. Depending on the balance between the
desorption barriers and the barriers for layer exchange, three
different cases can be identified. If the barriers for layer exchange
are (a) significantly higher than the barriers for desorption, the
layer exchange is kinetically hindered. In this case, two indepen-
dent desorption processes occur, manifesting in two desorption
peaks that can be treated separately with the Polanyi–Wigner
equation. Note, however, that in this case the common method to
determine the coverage by observing the appearance of the
second-layer peak fails. If the barriers for layer exchange are (b)
similar to the barriers for desorption, the analysis of the kinetics
becomes difficult as layer exchange sets in at the same tempera-
ture as desorption occurs. If the barriers for layer exchange are (c)
small compared to the barriers for desorption, layer occupation is
in quasi-equilibrium throughout the desorption process. In this
case, second-layer occupation becomes important even for cov-
erages as small as 4 � 10�6 monolayers (ML). The resulting TPD
spectra differ significantly from a TPD curve as expected based on
the Polanyi–Wigner equation. We show that this situation cannot
be described correctly based on the Polanyi–Wigner equation.
Instead, a correction is required that can be expressed by a simple
modification of the Polanyi–Wigner equation.

The paper is organized as follows. In the next section, we
describe the concept of the kinetic model. In Section 3 we
present the results of the model and discuss consequences of
the layer exchange and second-layer occupation on the TPD
data analysis. We show that a modified Polanyi–Wigner equa-
tion can be derived that accounts for the effect of the layer
exchange. We will conclude with the finding that exchange
between layers can crucially impact TPD data.

2 Kinetic layer model for desorption

To shed light on how the exchange of molecules (or atoms)
between the first and second layer influences the desorption

process we develop a kinetic rate model based on a model
geometry and the relevant elementary processes. In our model,
adsorbed molecules (or atoms) referred to as particles can
occupy a regular array of adsorption sites. This array consists
of two layers of adsorption sites on the surface, whereas
adsorption sites in the second layer can be occupied only if
all adjacent adsorption sites in the layer underneath are
occupied. We do not consider particles on top of unoccupied
adsorption sites as these are assumed to be in an transition
state rather than at a stable adsorption site. The number of
occupied adsorption sites underneath a stable second layer
adsorption site is determined by the lattice geometry – e.g.,
three for hexagonal layers – so the results of our model depend
on the particles layer geometry. Here, we focus on the general
influence of layer exchange on desorption and, therefore, we
present our model for a rather simple particle-layer geometry,
where the particles in the first layer create one-dimensional
chains and the particles in the second layer reside directly on
top of a particle in the first layer as shown in Fig. 1. Despite its
simplicity, this geometry yields the same qualitative results as a
more complex particle-layer geometry shown in the ESI.† More-
over, we assume that particles are not interacting with other
particles within their layer, i.e., we exclude lateral interactions.
In terms of processes, our model accounts for three different
types of processes, which are diffusion of particles within their
layer (i), exchange of particles between layers – from first to
second (ii) and from second to first layer (iii) – as well as
desorption from the first (iv) and from the second layer (v). The
modelled geometry and processes are presented schematically
in Fig. 1.

Diffusion

Concerning diffusion (i), we assume the diffusion of particles
within their layer to be in equilibrium in the temperature range
relevant for desorption. This is motivated by the consideration
that for layer exchange or desorption it is necessary that most
or all bonds between adsorbate and surface are broken as the
adsorption geometry and surface–particle distance drastically
change during these processes. For in-layer diffusion, in con-
trast, some bonds might stay intact or gradually change,
because the particle remains in a similar adsorption state

Fig. 1 Schematic representation of the simple chain geometry and ele-
mentary processes. The displayed processes are diffusion (i), layer
exchange from the first to the second (ii) and from the second to the first
layer (iii) as well as desorption from the first (iv) and second (v) layer.
Occupied adsorption sites are displayed as filled spheres, while unoccu-
pied adsorption sites are shown as empty spheres.
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during the whole process. Consequently, we expect in-layer
diffusion to have a smaller energy barrier and be significantly
faster than layer exchange or desorption for a wide range of
adsorbate/substrate systems. In case of diffusion equilibrium,
particles are placed randomly on the surface in systems without
lateral interactions. This random particle placement enables us
to use simple stochastic methods to describe the particle
distribution. As an example, the occupation probability for an
adsorption site in the first layer is equal to the first layer
coverage y1 independent of the adsorption environment.

Layer exchange

As part of this model, particles can change from the first to the
second layer and vice versa if there is a vacant adsorption site in
the other layer as shown in Fig. 1. To derive the corresponding
net layer exchange rate rle=Nad as required for kinetic model-
ling, it is necessary to consider all possible configurations
suitable for a layer exchange and calculate the corresponding
probabilities. For the here discussed simple chain geometry the
precursor state of layer exchange from the first to the second
layer (ii) are two adjacent particles in the first layer with no
particles on top as shown in Fig. 1(ii). As every particle in the
second layer is placed directly on top of a molecule in the first
layer, the fraction of free molecules in the first layer is equiva-
lent to the difference of the first and second layer coverages
y1 � y2. If we also pay attention to the fact that every particle
has two neighbouring adsorption sites, the reaction rate of
layer exchange from the first to the second layer reads as
2kle,1-2(y1 � y2)2, where kle,1-2 is the corresponding rate
constant. The layer exchange from the second to the first layer
is shown in Fig. 1(iii). A particle in the second layer (probability y2)
can jump into the first layer if an adjacent adsorption site in the
first layer is empty (probability (1 � y1)). As every particle has
two adjacent adsorption sites, the exchange rate from the
second to the first layer is given by 2kle,2-1(1 � y1)y2, where
kle,2-1 is the rate constant for layer exchange from the second
to the first layer. When both layer exchange rates are combined,
the net layer exchange rate for the first layer reads as eqn (3).

rle

Nad
¼ �2kle;1!2ðy1 � y2Þ2 þ 2kle;2!1ð1� y1Þy2 (3)

Desorption

The kinetics of desorption is modelled with a first-order
approach for the first and second layer, respectively, which is
consistent with our model not including any dissociation or
recombination processes. However, the particles in the first
layer can only desorb if they are not hindered by particles on
top of them. Therefore the first layer desorption rate rd;1

�
Nad is

not proportional to y1, but to the fraction of free particles in the
first layer. As discussed before, the fraction of free particles in
the first layer is equivalent to the difference of the first and
second layer coverages y1 � y2. Consequently, the desorption
rate from the first layer rd;1

�
Nad is given by eqn (4), where kd,1 is

the corresponding rate constant. In contrast, particles in the

second layer can always desorb freely and the second layer
desorption rate rd;2

�
Nad can be written with the second layer

desorption rate constant kd,2 as eqn (5).

rd;1

Nad
¼ kd;1ðy1 � y2Þ (4)

rd;2

Nad
¼ kd;2y2 (5)

The total desorption rate rd=Nad is the sum of the individual
layers’ desorption rates and reads as eqn (6).

rd

Nad
¼ �dy

dt
¼ kd;1ðy1 � y2Þ þ kd;2y2 (6)

Now, we can combine the expressions for the net layer
exchange rate (eqn (3)) and the desorption rates (eqn (4) and (5))
to obtain differential equations for the first- and second-layer
coverage, respectively (eqn (7) and (8)).‡

dy1
dt
¼ � 2kle;1!2ðy1 � y2Þ2 þ 2kle;2!1ð1� y1Þy2

� kd;1ðy1 � y2Þ (7)

dy2
dt
¼ 2kle;1!2ðy1 � y2Þ2 � 2kle;2!1ð1� y1Þy2 � kd;2y2 (8)

This set of two coupled differential equations describes how
the model system evolves with time in terms of layer exchange
and desorption in case of diffusion equilibrium. Hence, we can
use these equations to calculate the coverages of the first and
second layer during a simulated TPD experiment numerically.
The desorption rate can be calculated with eqn (6).

Additionally, our model requires the knowledge of the
elementary steps’ kinetic rate constants as well as their tem-
perature dependence to calculate desorption spectra (see
eqn (7) and (8)). Here, we assume that the rate constants kx

(x denotes the process, e.g., x = d for desorption) are given by
transition state theory according to eqn (9). The quantities DEx

and DSx are the corresponding potential energy barriers and
entropy changes between the initial and transition states.

kx ¼
kBT

h
exp

DSx

kB
� DEx

kBT

� �
(9)

The Gibbs free energy barrier DGx of a process in relation to
the kinetic parameters DEx and DSx is given by the Gibbs–
Helmholtz-eqn (10). Here, it is important to note that eqn (10)
assumes that energy and enthalpy are identical for condensed
phases.33

DGx = DEx � TDSx (10)

Our model includes one kinetic rate constant for every
elementary step considered explicitly, i.e., for every process
discussed here except for diffusion, because diffusion is con-
sidered to be in equilibrium. As we describe each of these rate

‡ From these two equations it can be seen that the Curtin–Hammett principle
does not apply here as these equations deviate from first-order kinetics required
in the Curtin–Hammett principle.32
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constants with two parameters DEx and DSx in terms of transi-
tion state theory, this makes a total of eight independent model
parameters. For applications of our model, however, it can be
desirable to minimize the number of model parameters,
because it simplifies both the fit of our model to experimental
data and the interpretation of our model. Hence, we consider
the following strictly optional assumptions, which can be used
in order to reduce the number of independent model para-
meters. The layer exchange can be interpreted as one process,
but in two directions, so we assume that the layer exchange
takes place over the same transition state independent from the
initial state of the molecule. For desorption, it is reported in
literature that the desorption process is reversible with a
negligible energy barrier for many cases of molecular
adsorption.34 In this case the interaction between adsorbate
and surface is negligible in the transition state,34 so we assume
that desorption from the first and second layer share one
transition state. Considering these assumptions and the energy
balance between the involved processes, the kinetic rate con-
stants of layer exchange and desorption are related by eqn (11).
This reduces the number of independent model parameters
from eight to six.

kd;1

kd;2
¼ kle;1!2

kle;2!1
(11)

3 Results and discussion

In the following, we use our model to elucidate the influence of
layer exchange between the first and second layer on the
desorption process. To this end, we consider a case where the
rates of layer exchange are significantly higher than the rates of
the competing desorption processes, i.e., layer exchange from
the first (second) to the second (first) layer is significantly faster
than desorption from the first (second) layer. This high differ-
ence in rates between layer exchange and desorption leads to a
state, where layer exchange is at quasi-equilibrium on the
timescale of desorption. Hence, we refer to this case as quasi-
equilibrium layer exchange.

In terms of Gibbs free energy, the case of quasi-equilibrium
layer exchange corresponds to a significantly smaller barrier of
layer exchange from the first to the second layer DGle,1-2 than
desorption from the first layer DGd,1. Moreover, the barrier of
layer exchange from the second to the first layer DGle,2-1 needs
to be significantly smaller than the barrier of desorption from
the second layer DGd,2. This situation is shown schematically in
Fig. 2. However, under the already-made assumptions it is
sufficient to consider either DGle,2-1 { DGd,2 or DGle,1-2 {
DGd,1.§

Here, we focus on systems, where DGle,2-1 { DGd,2, because
we expect this to be relevant for a wide variety of real adsorbate–

substrate systems. For desorption it is necessary to break all
existing bonds of a particle as the particle is removed from the
surface. In contrast, for layer exchange the moving particle can
still interact with adjacent particles and the surface, e.g., via
hydrogen bonds or dispersion interactions. These interactions
can stabilize the particle in the transition state of layer
exchange compared to desorption, which is why we expect that
the activation barrier for layer exchange is often significantly
smaller than for desorption. Consequently, the case of quasi-
equilibrium layer exchange is especially relevant for the analy-
sis of TPD experiments. Additionally, this is the case where
layer exchange is the most relevant for the kinetics of
desorption, because the rate of layer exchange is high com-
pared to the rate of desorption. Thus, the case of quasi-
equilibrium layer exchange can reveal the maximum impact
of layer exchange on the kinetics of desorption.

In general, however, there are three cases for the relations
between the rates of layer exchange and desorption: (a)
desorption is significantly faster than layer exchange, (b) the
rates of layer exchange and desorption are of the same order as
well as (c) layer exchange is significantly faster than desorption.
Thus, our model also yields the two other cases of (a)
kinetically-hindered layer exchange and (b) balance between
layer exchange and desorption in addition to the case of (c)
quasi-equilibrium layer exchange. In the following, we first
describe the characteristics of desorption spectra in cases (a)
and (b). After that, we discuss case (c) and provide a strategy for
the analysis of TPD data in case of quasi-equilibrium layer
exchange. Guided by the situation found in many real
systems,4,11,35–40 we consider a model system in which the first
layer binds more strongly to the substrate than the second layer
to the first for all three cases. Moreover, we consider well
separated peaks for desorption from the first layer and second
layer as this enables us to differentiate between the effects of
layer exchange on desorption from the first layer and
desorption from the second layer, respectively. An interactive

Fig. 2 Schematic Gibbs free energy diagram for the experimentally rele-
vant case of quasi-equilibrium layer exchange (DGle,2-1 { DGd,2). In this
scheme the Gibbs free energy landscape is characterised by the barriers
for desorption from the first and second layer DGd,1 and DGd,2 respectively,
and the barrier for layer exchange from the second to the first layer
DGle,2-1. The free energy difference between the first and second layer,
DG12, is displayed in green.

§ We already assume that eqn (11) holds true and, thus, DGle,1-2 � DGd,1 =
DGle,2-1 � DGd,2. As both differences between the barriers of layer exchange and
desorption are equivalent either both or neither are sufficiently high.
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visualisation of simulated desorption spectra can be found
online (https://doi.org/10.4119/unibi/2955951). Additional
simulations for the two cases of kinetically-hindered layer
exchange and balance between layer exchange can be found
in the ESI.†

(a) Kinetically-hindered layer exchange

Layer exchange is significantly slower than desorption if the
Gibbs free energy barrier for layer exchange is significantly
higher than for the competing desorption processes (DGle,2-1

c DGd,2). Hence, layer exchange is negligible on the timescale
of desorption and the desorption spectrum is solely governed
by desorption. As a consequence, the desorption spectrum can
be described with a separate Polanyi–Wigner term for each
peak. However, in this case the desorption spectrum depends
on the initial coverages in the first and second layer as particles
cannot change their layer after dosing. This can lead to prob-
lems with the determination of the desorption spectrum corres-
ponding to an initial coverage of 1.0 ML as the second layer
desorption peak appears before the first layer is completely
filled.

Only in this case, the integral over the first (second) layer
desorption signal corresponds to the respective initial coverage
in the first (second) layer. The individual desorption signals can
be analysed with standard Polanyi–Wigner based analysis
methods each.16,20,21

(b) Balance between layer exchange and desorption

In this case the rates of layer exchange and desorption are of
the same order, which corresponds to similar energy barriers
for both processes (DGle,2-1 E DGd,2). Therefore, neither layer
exchange nor desorption alone govern the desorption spectrum
but the balance between both processes is crucial for the
kinetics of desorption.

Especially, desorption from the first layer can take place via
two different desorption paths: particles can either desorb
directly from the first layer or hop on top of other particles
prior to desorption. The presence of these two desorption paths
causes a larger peak width and flatter leading edge than
observed for a comparable first-order desorption peak. Conse-
quently, a Polanyi–Wigner approach according to eqn (1) can-
not describe the kinetics of desorption in this case. Instead,
we need to consider the full kinetics of layer exchange
and desorption as given by eqn (6)–(8). In the analysis of
TPD data, this could, e.g., be realised by optimisation of the
model parameters and initial layer coverages to match the
experimental data.

Moreover, the similar barriers for layer exchange and
desorption cause that layer exchange from the second to the
first layer and desorption from the second layer to be activated
in a similar temperature range. Hence, the appearance of the
desorption spectrum depends on the initial coverages in the
first and second layer like in case (a). However, in this case the
initial coverage distribution also influences the observed
kinetics of the second-layer desorption peak. For a partial
first-layer and second-layer occupation as obtained by dosing

the shape of the second-layer desorption peak is determined by
layer exchange from the second to the first layer and desorption
from the second layer. This causes a shift in the desorption
maxima to higher temperatures with increasing coverage. In
contrast, the second-layer desorption signal is solely deter-
mined by desorption for a layer-by-layer initial coverage dis-
tribution as obtained by annealing. This simpler desorption
kinetics is caused by the fact that layer exchange from the
second to the first layer cannot take place if the first layer is
completely occupied. Additionally, this simpler desorption
kinetics is advantageous for the analysis of experimental TPD
data as it enables the use of standard Polanyi–Wigner based
analysis methods for second-layer desorption.

(c) Quasi-equilibrium layer exchange

In case of quasi-equilibrium layer exchange, layer exchange is
much faster than the competing desorption processes in both
layers, because the energy barriers for layer exchange are
significantly smaller than for desorption (see Fig. 2). Hence,
layer exchange is in a state of quasi-equilibrium on the time-
scale of desorption, i.e., the net layer exchange rate (eqn (3)) is
approximately zero.

Next, we discuss the case of quasi-equilibrium layer
exchange on the example of simulated TPD data shown in
Fig. 3. To ensure that the simulated TPD data presented here
are relevant for real systems as well, we based our simulation
on kinetic parameters of desorption similar as those reported
for TPD experiments in literature.3–9,38–49 Specifically, we chose
kinetic parameters of DEd,1 = 1.0 eV and DSd,1 = 10kB for
desorption from the first layer, which are in the typical range
for the desorption of molecularly adsorbed molecules from
metals or metal oxides.3,4,8,40 Concerning desorption from the
second layer, we consider a system where the particles in the
second layer bind much weaker to the first layer than the first
layer to the substrate. Hence, we chose an energy barrier of
DEd,2 = 0.5 eV for desorption from the second layer,
which corresponds to a significant binding energy difference
of DE1,2 = 0.5 eV between the first and second layer within the
already-made assumptions. As the particles in the second layer
are bound significantly weaker than in the first layer, we
assume that they are more mobile as well. Thus, we consider
a significantly smaller entropy difference between the adsorbed
and transition state than for desorption from the first layer. We
chose an entropy change of DSd,2 = 2kB.

Concerning the numerical simulation, we also need to
consider the different timescales of layer exchange and
desorption in case of quasi-equilibrium layer exchange. Due
to the high difference in rates of layer exchange and desorption,
the accurate numerical treatment of layer exchange requires a
very small time step on the timescale of desorption. Therefore,
the simulation of desorption spectra based on the model
differential equations (eqn (7) and (8)) is inefficient. Instead,
we integrated eqn (6) as a differential equation of the total
coverage with a fourth order Runge–Kutta algorithm. For this
treatment it is necessary to know the first-layer and second-
layer coverages as functions of the total coverage. We calculated
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these layer coverages from the total coverage and the equili-
brium condition for layer exchange (rle E 0) numerically with a
Newton–Raphson algorithm. This strategy yields excellent
results for sufficiently small energy barriers of layer exchange,
while still being numerically efficient. Details of the numerical
simulation procedure are described in the ESI.†

In Fig. 3 we present the desorption spectrum and corres-
ponding coverages gained from our kinetic two-layer model for
an initial coverage of 1.0 ML. The modelled desorption spec-
trum (violet curve) in Fig. 3(a) shows a single asymmetric peak
with a larger peak width, lower maximum desorption rate and
more pronounced low-temperature rise than the first-order
process displayed for comparison (grey curve). It is evident that
a first-order Polanyi–Wigner approach according to eqn (1)
cannot describe the modelled desorption spectrum and, thus
the modelled kinetics of desorption.

To understand the origin of the larger peak width and flatter
low-temperature rise of the modelled desorption spectrum, we
analyse the contributions of first and second layer desorption
to the total desorption signal (red and blue curves in Fig. 3(a)).
This analysis reveals a significant contribution of second-layer
desorption to the spectrum, even though only a very small
fraction of particles (E4 � 10�6 ML) resides in the second layer
over the full temperature range (see Fig. 3(b)). We conclude that
this contribution originates from a two-step desorption path

where particles hop on top of other particles prior to desorption.
As this desorption path depends on both, desorption and layer
exchange, layer exchange is pivotal for understanding the
kinetics of desorption. Consequently, it is necessary to identify
whether or not layer exchange needs to be considered in the
analysis of TPD data. Otherwise it is impossible to ensure
correct results.

Next, we present a simple strategy whereby desorption via
hop on top can be included in the Polanyi–Wigner based
analysis of TPD data. Fig. 3 reveals, that only a very small
fraction of particles resides in the second layer (y2 { y1) when
desorption from the first layer takes place. The reason for this
is that we investigate a system with a high free energy differ-
ence between the first and second layer DG12 (see Fig. 2), so the
second layer is thermodynamically highly unfavourable.
Indeed, the second-layer coverage is generally much smaller
than the coverage in the first layer during desorption from the
first layer if the free energy difference between the layers is
sufficiently high. Hence, we can approximate y1 � y2 E y1 and
y E y1. Using these assumption in eqn (3), we derive for the
quasi-equilibrium case (rle¼ 0) eqn (12) for the approximate
coverage in the second layer.

y2 �
kle;1!2

kle;2!1

y2

1� y
(12)

Insertion of the approximate second-layer coverage (eqn (12))
and the relation between the rate constants (eqn (11)) in the total
desorption rate (eqn (6)) yields eqn (13) as an the approximate
total desorption rate. The given approximation reveals that in the
limit of small second layer coverage (and quasi-equilibrium layer
exchange) the desorption rate depends on two contributions. The
first term (kd,1y) corresponds to the expected first-order Polanyi–
Wigner description of desorption from the first layer. The second
term (kd,1y

2/(1 � y)) describes second-layer desorption via the
hop on top desorption mechanism.

rd

Nad
� kd;1 yþ y2

1� y

� �
(13)

Interestingly, the ratio between these two contributions to
the submonolayer desorption rate does not depend on the free
energy difference between the layers, as long as this energy
difference is sufficiently high (i.e., a small fraction of particles
resides in the second layer). However, the relative contribution
of desorption via hop on top increases with coverage. For small
coverages nearly all particles desorb directly from the first layer
(y 4 y2/(1 �y)) as there are only very little adsorption sites in
the second layer. With increasing coverage the number of
adsorption sites in the second layer increases and more parti-
cles desorb via hop on top. For coverages greater than 0.5 ML
more particles desorb via hop on top than directly from the first
layer (y o y2/(1 �y)). Consequently, the total contribution of
desorption via hop on top increases with increasing initial
coverage.¶

Fig. 3 Comparison of simulated desorption spectra (a) and total coverage
as a function temperature (b) for a two-layer system with quasi-
equilibrium layer exchange according to our model (violet) and a first
order Polanyi–Wigner process with the same kinetic parameters as used
for desorption from the first layer (grey). For the two-layer model the
contributions of desorption from the first (red) and second (blue) layer are
shown in (a) and the corresponding coverages in (b). An approximate
desorption spectrum according to eqn (13) is displayed in black. It coin-
cides with the model desorption spectrum in violet within the accuracy of
this figure. The TPD data was calculated with the kinetic parameters for
desorption given in the text.

¶ We provide additional information on the coverage and geometry dependence
of desorption via hop on top in the ESI.†
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A further comparison of eqn (13) with the Polanyi–Wigner
eqn (1) shows that both equations only differ in the coverage
function, which is yn for the Polanyi–Wigner-equation and
yþ y2

�
1� yð Þ for our model. Therefore we expect that most

standard analysis procedures for TPD data like leading edge20

or complete analysis16,21 work with eqn (13) as well.
For other geometries we find similar expressions for the

desorption rate, where the second contribution in eqn (13)
varies with the expected number of adsorption positions in the
second layer. We describe this in detail in the ESI.†

Concerning the accuracy of eqn (13), Fig. 3(a) shows that the
desorption spectrum calculated with eqn (13) (black) is iden-
tical with the not-approximated model desorption spectrum
(violet) within the figure’s accuracy. We conclude that eqn (13)
is an excellent approximation for the rather complex model
equations (eqn (7) and (8)) within the temperature range, where
desorption from the first layer takes place. It requires, however,
that the system is in a quasi-equilibrium state for layer
exchange and the energy difference between the layers is
sufficiently high (i.e. only a small fraction of molecules resides
in the second layer).

So far, we discussed the three different cases for our model
and outlined possible analysis strategies for each case. For real
systems, however, the applicable case is generally not known
before the analysis. Within the framework of our model, one
strategy to overcome this problem is to classify the investigated
system based on characteristic features of the desorption
spectrum. We discussed before that the appearance of the
second-layer desorption signal before the first-layer desorption
signal is saturated is an indicator for a kinetic-hindrance of
layer exchange. In contrast, a significantly broader first-layer
desorption peak with a flatter low temperature rise indicates
that layer exchange influences the desorption spectrum. Based
on these information we conclude that a systems which shows
the former (latter) but not the latter (former) most likely
belongs to case (a) (case (c)) and can be analysed as such.
Experimental desorption spectra showing indications for both,
a (partly) hindered layer exchange and the influence of layer
exchange on the desorption signals, can be classified and
analysed as case (b). Here, it is important to note that systems
with, e.g., lateral interactions or additional adsorption sites
might show desorption spectra with similar features. These
alternative origins need to be considered as well.

4 Conclusions

A kinetic model is presented to analyse the influence of layer
exchange on the desorption process as studied using TPD. We
show that layer exchange can significantly alter the shape of the
TPD curve, even if the second-layer occupation remains as
small as 4 � 10�6 ML. For a critical analysis, the balance
between the desorption barriers from the two layers and the
barriers of layer exchange between the first (second) and the
second (first) layer needs to be considered. For the experimen-
tally relevant case of small barriers for layer exchange as

compared to desorption, the TPD spectrum shows a single
peak that cannot be correctly described by the Polanyi–Wigner
equation. Instead, a modified equation can be derived that
accounts for desorption via a hop on top mechanism.
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23 H. Conrad, G. Ertl, J. Küppers and E. Latta, Surf. Sci., 1977,

65, 245–260.
24 T. G. Gambu, R. K. Abrahams and E. van Steen, Catalysts,

2019, 9, 310.
25 H. J. Kreuzer, Langmuir, 1992, 8, 774–781.
26 A. Paul, C. J. Jenks and B. E. Bent, Surf. Sci., 1992, 261,

233–242.
27 S. Payne, J. Zhang and H. Kreuzer, Surf. Sci., 1998, 396,

369–387.
28 M. Pineda and M. Stamatakis, J. Chem. Phys., 2017,

147, 024105.
29 R. S. Smith, J. Matthiesen, J. Knox and B. D. Kay, J. Phys.

Chem. A, 2011, 115, 5908–5917.
30 T. Wagner, H. Karacuban and R. Möller, Surf. Sci., 2009, 603,
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J. Pavelec, I. Sokolović, M. Müllner, M. Setvin, M. Schmid,
U. Diebold, P. Blaha and G. S. Parkinson, ACS Energy Lett.,
2019, 4, 390–396.

45 D. J. Lavrich, S. M. Wetterer, S. L. Bernasek and G. Scoles,
J. Phys. Chem. B, 1998, 102, 3456–3465.

46 H. H. Kan, R. J. Colmyer, A. Asthagiri and J. F. Weaver,
J. Phys. Chem. C, 2009, 113, 1495–1506.

47 M. J. T. C. van der Niet, A. den Dunnen, L. B. F. Juurlink and
M. T. M. Koper, J. Chem. Phys., 2010, 132, 174705.

48 M. A. van Spronsen, K.-J. Weststrate, A. den Dunnen,
M. E. van Reijzen, C. Hahn and L. B. F. Juurlink, J. Phys.
Chem. C, 2016, 120, 8693–8703.

49 P. Lackner, J. Hulva, E.-M. Koeck, W. Mayr-Schmoelzer,
J. I. J. Choi, S. Penner, U. Diebold, F. Mittendorfer,
J. Redinger, B. Kloetzer, G. S. Parkinson and M. Schmid,
J. Mater. Chem. A, 2018, 6, 17587–17601.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
A

ug
us

t 2
02

1.
 D

ow
nl

oa
de

d 
on

 7
/2

8/
20

25
 8

:2
3:

52
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1cp01924d



