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Designing excitonic circuits for the
Deutsch–Jozsa algorithm: mitigating fidelity loss
by merging gate operations†

Maria A. Castellanos and Adam P. Willard *

In this manuscript, we examine design strategies for the development of excitonic circuits that are

capable of performing simple 2-qubit multi-step quantum algorithms. Specifically, we compare two

different strategies for designing dye-based systems that prescribe exciton evolution encoding a

particular quantum algorithm. A serial strategy implements the computation as a step-by-step series of

circuits, with each carrying out a single operation of the quantum algorithm, and a combined strategy

implements the entire computation in a single circuit. We apply these two approaches to the

well-studied Deutsch–Jozsa algorithm and evaluate circuit fidelity in an idealized system under a model

harmonic bath, and also for a bath that is parameterized to reflect the thermal fluctuations of an explicit

molecular environment. We find that the combined strategy tends to yield higher fidelity and that the har-

monic bath approximation leads to lower fidelity than a model molecular bath. These results imply that the

programming of excitonic circuits for quantum computation should favor hard-coded modules that

incorporate multiple algorithmic steps and should represent the molecular nature of the circuit environment.

1 Introduction

Excitonic circuits comprised of precisely arranged sets of
electronically coupled dye molecules can be designed to
manipulate the evolution of an exciton wavefunction so that
it performs elementary quantum computations.1 The ability to
design these circuits for specific computations and optimize
them for improved fidelity and synthetic convenience is key to
the development of quantum technologies based on the
circuits. However, circuit optimization is complicated due to
ambiguity in design strategy, because there are generally
numerous different circuit geometries capable of performing
a given computation. In this manuscript, we compare two
different strategies for designing excitonic circuits that carry
out a simple 2-qubit algorithm, with the goal of exploring
how suitable these systems are for rudimentary quantum
information applications. We find that the strategy of hard-
coding the entire algorithm into a single circuit has potential to
yield significantly higher fidelity than a modular strategy, for
which the algorithm is implemented as a sequence of universal
quantum gate operations. This finding thus exposes significant
practical barriers to the scalability and programmability of
excitonic circuits for more complicated quantum algorithms.

An excitonic circuit is a network of moieties – typically,
organic chromophores – that are each capable of supporting
an exciton, i.e., a coulombically bound excited electron–hole
pair. The network of couplings between these moieties
determines the delocalization and dynamics of the exciton
wavefunction and can thus potentially be tailored to control
certain aspects of exciton dynamics. The ubiquitous example
from biology is in photosynthesis, where excitonic circuits have
evolved to mediate the efficient transfer of photon energy to
reaction centers.2–4 Excitonic circuits also have been
synthesized by positioning dye molecules in rigid scaffolds of
DNA5–8 or proteins.9,10 By enabling nanoscale control of energy
flow, excitonic circuits have the potential to play a role in the
development of novel molecular scale electronic technologies.

One potential application of excitonic circuitry is quantum
computing. Excitons carry information about quantum phase,
coherence, and entanglement that can be systematically
manipulated within appropriately designed systems.8,11–14

These quantum dynamical properties can be tuned to encode
specific quantum transformations, or sequences of transformations.
In previous work, we demonstrated the design of excitonic
circuits for the universal quantum gate operations.1 Here,
we extend this work to the design of a simple multi-step
2-qubit quantum algorithm – the 2-qubit Deutsch–Jozsa algo-
rithm – where there are multiple approaches to circuit design.
Our results highlight that computational fidelity can depend
significantly on the chosen design strategy.
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By leveraging properties of coherence and entanglement,
quantum computing has the potential to dramatically out-perform
classical computing in certain important tasks such as crypto-
graphy, quantum search, quantum simulation and quantum
walks.15–19 Any quantum computation can be expressed as a
sequence of individual gate operations (e.g., NOT, p/8, HADA-
MARD, CNOT) carried out on a array of input qubits.20,21 Qubits
can be constructed from two-state quantum systems, such as
spin-1/2 particles or nuclei. Gate operations, which transform
the state of these systems by manipulating phase and creating
superpositions or entanglements, can be expressed as unitary
operators acting on one or more qubits. An operation carried out
on a register of n qubits can thus be formalized as a 2n � 2n unitary
operator transforming an input qubit array to an output qubit array.

In our approach, the state of a qubit array is indicated by the
occupation state of an exciton in a system of multiple separate dye
molecules. For instance, a single qubit is described by an exciton
in a system of two dye molecules (A and B), with the 0 or 1 qubit
states corresponding to the exciton fully localized on molecule A
or molecule B, respectively. We encode the unitary operations
acting over a qubit state in the time evolution of the system
Hamiltonian, controlling the coupling through precise geometric
positioning of the dye molecules, as described in more detail in
ref. 1 and summarized in Section 3.1 below. The evolution of an
exciton within a specifically designed system of dye molecules
over a particular time interval therefore corresponds to the change
in state of the associated qubit array.

In the next section, we review the Deutsch–Jozsa algorithm.
Then, in Section 3, we describe how this algorithm can be
implemented with excitonic circuits. We present excitonic
circuits based on two different design strategies – serial and
combined – and in Section 4 we evaluate the fidelity of these
hypothetical circuits under the influence of a harmonic bath.
In Section 5 we propose a specific atomistic realization of these
circuits and evaluate their performance with a more realistic
bath model. Finally, in Section 6 we conclude by discussing the

practical implications of our results in the context of more
complicated quantum computations.

2 The Deutsch–Jozsa algorithm

The Deutsch–Jozsa (D–J) algorithm is one of the simplest
algorithms for which a quantum computer outperforms a
classical one.22 The algorithm distinguishes the identity of a
black-box ‘oracle gate’ that transforms an input binary array of
n bits, e.g., (0,1,1,0,. . .,1) to a single binary output value, i.e.,
0 or 1. The two possible identities of this oracle gate are
‘constant’, in which the output is always the same (i.e., always
1 or always 0, regardless of the input), and ‘balanced’, in which
the output is 0 for half of the input states and 1 for the other
half. To unambiguously determine the identity of an unknown
oracle gate requires multiple queries with classical computation
(at least 2n�1 + 1), but only requires a single query with quantum
computation.23 This algorithm has been implemented in several
physical systems, such as nuclear spins,24 ion traps,25 and
superconductors26 as a way to demonstrate their feasibility as
potential quantum computing platforms.

Fig. 1A depicts the quantum circuit diagram for identifying a
n = 1 oracle gate, f. The quantum algorithm, which requires two
qubits, involves performing Hadamard operations carried out
on one or both qubits after and before evaluating the oracle
gate, respectively. Specifically, the first set of Hadamard operations
transform the input state, |Cii = |0i|1i into a superposition state,

i.e., |Ci1 = |+i|�i, where �j i ¼ 0j i � 1j ið Þ=
ffiffiffi
2
p

. The action of the
oracle gate is to perform a phase kick-back operation on the second
qubit, Uf: |xi|yi- |xi|y " f (x)i = (�1)f (x)|xi|yi. When N = 2, f (x)
can take 1 of 4 possible values: f (x) = 0 or f (x) = 1, when constant,
and f (x) = x or f (x) = NOTx, when balanced. After the third step, the
final state of the qubit register will then be |CiF =�|0i|�i or |CiF =
�|1i|�i if the oracle gate is constant or balanced, respectively.
A single measurement over the ancilla qubit (i.e. qubit 1) at the

Fig. 1 (A) Quantum circuit diagram representing the Deutsch–Jozsa algorithm. (B) Schematic representation of the 2-qubit excitonic circuit geometry
for the serial strategy. This circuit transforms an input exciton state, r0, into an output state, rF, via three steps. Dye molecules are represented by ovals
and the molecular species is indicated by shading. Non-zero coupling is indicated by red arrows. The top and bottom branches in the middle step
correspond to the constant and balanced cases, respectively. (C) Schematic excitonic circuit geometry for the combined strategy for the constant (left)
and balanced (right) algorithms. The balanced algorithm includes dye molecules (circles) that are excited via circularly polarized photons.
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conclusion of the algorithm therefore reveals the identity of the
‘‘black box’’ oracle function.

3 Implementing the Deutsch–Jozsa
algorithm with excitonic circuits

In this section we describe two general strategies for representing a
simple quantum algorithm as an excitonic circuit of precisely arranged
dye molecules. The first is a serial strategy, where each quantum gate
operation is carried out sequentially. The second is a combined
strategy, where the entire algorithm is carried out by a single circuit.

3.1 Mapping the D–J algorithm onto the Frenkel Hamiltonian

We propose excitonic circuits for the D–J algorithm following the
procedure described in ref. 1. Our approach to excitonic circuit
design for an n-qubit quantum computation maps the N� N unitary
operator for the computation, where N = 2n, to the Frenkel Hamilto-
nian of a system of N dye molecules. This mapping is given by,

Ĥcomp �
i�h

t
ln Ûcomp (1)

where Ûcomp is the unitary operator and Ĥcomp is the corres-
ponding Frenkel Hamiltonian. When the system defined by

Ĥcomp, i.e., a single exciton on N dye molecules, is evolved for

time t, the change in the exciton wavefunction thus encodes the
result of the computation defined by Ûcomp. The design of an
excitonic circuit for a given quantum computation therefore
involves specifying the identities and relative positions of dye

molecules that yield a Hamiltonian equivalent to Ĥcomp.
There are many possible strategies for designing an excitonic

circuit for the multi-step D–J algorithm. For instance, the
algorithm can be equivalently represented by either a sequence
of three 2-qubit unitary operations (i.e., Û1, then Û2, then Û3), one
for each step in the circuit diagram of Fig. 1A, or a single unitary
operation that combines all three steps (i.e., Ûprod = Û3Û2Û1).
These two limiting strategies, as illustrated in Fig. 1B and C,
yield either four distinct circuits in the serial case (one for each
of the first and third steps and one for each of the balanced and
constant oracle gates) or two distinct circuits in the combined
case (one for the balanced case and one for the constant case).
The unitary operators and corresponding system Frenkel
Hamiltonians for the serial and combined strategies of excitonic
circuit design are contained in Table 1, as derived from eqn (1).

3.1.1 Excitonic circuits for the serial computation. A serial
implementation of the D–J algorithm requires a coordinated
series of exciton evolutions and transfers between different
circuits. First, a specific exciton state is initialized on a system

described by Ĥ1, which is then evolved for time t1 and

Table 1 The unitary transformations corresponding to the universal quantum logic gates and the corresponding system Hamiltonians as mapped.
All Hamiltonian couplings are presented relative to the difference in excitation energy between a pair of dyes, Deab = ea � eb

Operation Unitary operator Hamiltonian

First step

Û1 ¼
1

2

1 1 1 1
1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

0
BB@

1
CCA Ĥ1 ¼

p�h

4t1

ea Deab=2 Deab=2 Deab=2
Deab=2 eb Deab=2 �Deab=2
Deab=2 Deab=2 eb �Deab=2
Deab=2 �Deab=2 �Deab=2 ea

0
BB@

1
CCA

Oracle

Û
con

2 ¼

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA Ĥ

con

2 ¼

ea 0 0 0
0 ea 0 0
0 0 ea 0
0 0 0 ea

0
BB@

1
CCA

Û
bal

2 ¼

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

0
BB@

1
CCA Ĥ

bal

2 ¼
p�h

2tb2

ea 0 0 0
0 ea 0 0
0 0 eb Deab
0 0 Deab eb

0
BB@

1
CCA

Third step

Û3 ¼
1ffiffiffi
2
p

1 0 1 0
0 1 0 1
1 0 �1 0
0 1 0 �1

0
BB@

1
CCA Ĥ3 ¼

p�h

4t3

ea 0 Deab=2 0
0 ea 0 Deab=2

Deab=2 0 eb 0
0 Deab=2 0 eb

0
BB@

1
CCA

Combined, constant

Û
con

prod ¼
1ffiffiffi
2
p

1 1 0 0
1 �1 0 0
0 0 1 1
0 0 1 �1

0
BB@

1
CCA Ĥ

con

prod ¼
p�h

4tcon

ea Deab=2 0 0
Deab=2 eb 0 0

0 0 ea Deab=2
0 0 Deab=2 eb

0
BB@

1
CCA

Combined, balanced

Û
bal

prod ¼
1ffiffiffi
2
p

1 0 0 1
1 0 0 �1
0 1 1 0
0 �1 1 0

0
BB@

1
CCA

Ĥ
bal

prod ¼
p�h

8tbal

ea
Deab
4
ð2þ

ffiffiffi
2
p

iÞ Deab
2
ð1�

ffiffiffi
2
p
Þ Deab

4
ð2�

ffiffiffi
2
p

iÞ
Deab
4
ð2�

ffiffiffi
2
p

iÞ eb
Deab
4
ð2þ

ffiffiffi
2
p

iÞ �Deab
2
ð1þ

ffiffiffi
2
p
Þ

Deab
2
ð1�

ffiffiffi
2
p
Þ Deab

4
ð2�

ffiffiffi
2
p

iÞ ea
Deab
4
ð2þ

ffiffiffi
2
p

iÞ
Deab
4
ð2þ

ffiffiffi
2
p

iÞ �Deab
2
ð1þ

ffiffiffi
2
p
Þ Deab

4
ð2�

ffiffiffi
2
p

iÞ eb

0
BBBBBBBB@

1
CCCCCCCCA
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transferred to another system described by Ĥ2. This exciton is
then evolved for time t2 and transferred to a third system

described by Ĥ3. The exciton is then allowed to evolve for time
t3 on system 3 before it is read out. Experimentally, a particular
initial state can be created by laser excitation of the ground
state of a specific dye or a combination of dyes. While the
exciton state in the last step can be detected through photon
emission. Specifically, the final state of an exciton after
coherent manipulations can be detected from single-photon
spontaneous emissions.27 On the other hand, an excitation can
be transferred between two organic circuits using Förster
Resonance Energy Transfer (FRET).28 However, there exist no
robust implementation that can manage to transfer the state of
the exciton precisely between two circuits, at least without
previous knowledge of the instantaneous state at ti.
Furthermore, because initialization and detection in the present
system cannot occur without errors, the proposed serial circuit is
purely hypothetical and its fidelity can only represent an upper
bound on the system if implemented in practice. Therefore, for
the sake of systematically isolating the effects of circuit design,
we neglect fidelity loss from initialization, exciton transfer, and
detection, assuming they all occur without error and with 100%
fidelity.

The form of the Frenkel Hamiltonians for each step of the
D–J implies the relative excitation energies and positions of a
set of four dye molecules (A, B, C, and D). The excitonic circuit

implied by Ĥ1 (Table 1) corresponds to two pairs of homodimers
that are all coupled with equivalent magnitudes as determined
by the excitation energy difference between the two dye species.
The coupling leads to delocalization in the exciton basis and a
corresponding superposition state in the qubit basis. Differences
in excitation energy between the dye molecules leads to the
accumulation of a relative phase shift over time t1.

The excitonic circuits implied by Ĥ
con

2 and Ĥ
bal

2 are straight-
forward to interpret. The constant operation corresponds to an
identity matrix, and therefore is implied by a circuit of 4 identical
and uncoupled dyes and an arbitrary value of t. On the other

hand, Ĥ
bal

2 (equivalent to a CNOT operation) is represented by
two different pairs of homodimers, one uncoupled and one
coupled.

The excitonic circuit implied by Ĥ3 is an uncoupled pair of
identical coupled heterodimers (Fig. 1). This system concentrates
the delocalized exciton population in one of two entangled states,
depending on the output state of the exciton from the constant or
balanced oracle circuit. Specifically, over time t3 the population is
funneled into one pair of dyes (A and B) if the oracle function is
constant, or into the other (C and D) if it is balanced.

3.1.2 Excitonic circuits for the combined computation. The
combined strategy utilizes a single excitonic circuit to execute
the action of the combined unitary operators Ûcon

prod = Û3Ûcon
2 Û1

and Ûbal
prod = Û3Ûbal

2 Û1, thereby eliminating the need to transfer
exciton states between multiple separate circuits. The excitonic

circuit implied by Ĥ
con

prod is an uncoupled pair of coupled

heterodimers. Notably, this circuit is effectively identical to

that of the circuit for Ĥ3. This similarity implies that the

specific operation of the constant oracle operator is essentially
trivial and simply drops out of the combined unitary operator,
leading to a significant simplification of the resulting excitonic
circuit.

Finally, Ĥ
bal

prod implies a circuit of two pairs of homodimers,
with all dyes coupled to each other. Notably, the system
features imaginary-valued couplings. Imaginary coupling can
occur between two dyes if each one is electronically excited
using a different polarization of light. For example, if one dye is
initialized using linearly polarized light with unequal x–y
amplitudes and the other dye is excited with circularly
polarized light. This arrangement can be achieved, for instance,
with a metalloporphyrin and cyanine dye pair. Circularly
polarized light can induce a directional electronic current in
the porphyrin ring, that results in the formation of a degenerate
complex excitation,29 and to a complex-valued molecular
coupling upon interaction with a real non-degenerate excitation
from the cyananine pair.

4 Simulating the performance of
idealized excitonic circuits in model
environments

The Hamiltonians in Table 1 represent idealized systems that
in the absence of an environment (i.e., a closed quantum
system) will perform the given computation in time t with unit
fidelity. However, any practical application will include the
influence of a noisy environment. In this case, system–bath
interactions lead to dephasing and dissipation that can alter
the output and thus degrade fidelity.

In this section we simulate the influence of a model
environment on the fidelity of idealized D–J excitonic circuits.
We compare overall fidelity loss between idealized serial and
combined circuits. We assume that serial circuits lose no
fidelity between steps. Because fidelity losses due to dissipation
are expected to be negligible on the timescales of interest, we
only consider the effect of dephasing in the system dynamics.
We also assume that the input state of the wavefunction can be
precisely prepared and the output state can be precisely
detected at time t. With these assumptions, we can evaluate
fundamental differences in fidelity between circuits designed
with the serial and combined strategies. We describe the state
of the excitonic wavefunction in terms of a reduced density
matrix and simulate the evolution of that wavefunction using a
Redfield master equation under the secular approximation.30,31

We describe the system using a simple system–bath Hamiltonian,

Ĥ ¼ ĤS þ ĤB þ ĤS�B (2)

where ĤS ¼ Ĥcomp is the Frenkel Hamiltonian of one of the

excitonic circuits in Table 1, ĤB describes the thermal bath and

ĤS�B describes the system–bath coupling. We model the bath as
a collection of N (i.e., one for each dye molecule) independent
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harmonic oscillators,

ĤB ¼
XN
m

X
a

�h

2
Pm;a

2 þ om;a
2Qm;a

2
� �

; (3)

where the first summation is taken over the dye molecules, the
second summation is taken over oscillator frequencies, om,a, and
Qm,a and Pm,a denote the position and momentum of the
oscillator state. The Redfield equations are defined in terms of
time correlation functions of the system–bath coupling, which are
given by,

ĤS�B ¼
XN
m

Gm

X
a

cm;aQm;a; (4)

where Gm represents the electronic state of the mth dye molecule
and the coefficients cm,a describe the distribution of the system–
bath coupling across the different bath modes. Specifically, we
define Gm using a Linbladian operator with diagonal elements,

Gm ¼
ffiffiffiffiffi
gm
2

r
mj i mh j; (5)

where gm is the dephasing rate of the mth dye. The phonon modes
coordinates enter the Redfield equation through time-correlation
functions of the form,

wmðtÞ ¼
X
a

cm;a
2hQm;aðtÞQm;að0Þi

¼ �h

p

ð1
0

doJðoÞ cothðb�ho=2Þ cosot� i sinot½ �;
(6)

where wm(t) is calculated for each local bath m, b = 1/kBT and J(o)
is the spectral density. For this section, J(o) is taken to be a Ohmic
spectral density with a Lorentzian cutoff,32

JðoÞ ¼ 2lOc
o

oþ Oc
2
; (7)

where l is the reorganization energy of the bath and Oc the cutoff
frequency.

We choose bath parameters to model a condensed phase
chromophoric system at 300 K. Specifically, following ref. 33,
we set l = 100 cm�1 E 0.012 eV and Oc to be proportional to l
by 2l/(bOc

2) = 1.2.34 The dephasing time, tD = 1/g, was chosen
to be (3/4)t for all dyes in a given circuit, where t is the
transformation time for the mapped operation. We parameterize
the dye molecules in our circuit based on Cy3–oxypropyl and
Cy5–oxypropyl molecules. Specifically, we always assume that
dye A is a Cy3 species with excitation energy ea = 3.24 eV.
In circuits that require two dye species (i.e., A and B), we assume
the B dye species is Cy5 with eb = 2.85 eV. These values reflect the
first excited state energies as computed from time-dependent
density functional theory (TDDFT) with a 6-31G+(d) basis and
WB97XD DFT functional.

The resulting dynamics for the four studied systems,
namely, the serial and combined excitonic circuits, both for
the constant and balanced versions of the algorithm, are shown
in Fig. 2. The influence of system–bath interactions on the
fidelity of a given computation is encoded in the structure and

evolution of the reduced density matrix, r̂. This influence can
be illustrated by tracking a single element of r̂ in both a closed
and open system. In Fig. 2A, we plot the exciton population on
dye C throughout the sequence of transformations described

for the serial D–J algorithm in its constant version, namely Ĥ1,

Ĥ
con

2 and Ĥ3, while Fig. 2B depicts the dynamics for the
balanced version. We focus on this dye molecule because its
final population indicates the identity of the oracle gate.
Moreover, these populations are presented as segmented plots,
in order to illustrate how the populations are transferred
sequentially thorough the algorithm, at each transformation
time. The full population dynamics for the individual circuits
can be found in Fig. S1 (ESI†).

Phase loss in the open system (solid lines in Fig. 2) results in
a decrease in fidelity that grows with time. In the serial system,
shown in Fig. 2A and B, phase loss accumulates with
each subsequent step. It can be seen that dephasing is most
significant in the final step of the algorithm in both serial
systems. Indeed, the details of the system Hamiltonian set the
dephasing rates for each different excitonic circuit.

In contrast, the combined systems, shown in Fig. 2C and D,
require only a single step. In the constant system (Fig. 2C)
the system maintains high fidelity despite being prone to
dephasing due to the short computation time, tcon E 4 fs.
Notably, the balanced system requires a much longer
computation time (tbal E 13 fs) yet features negligible fidelity
loss. This observation implies that some circuits retain fidelity
much better than others and that design efforts may require a
trade-off between circuit complexity and fidelity retention.

In order to quantify how much of the information contained
in the final quantum state is lost due to fluctuations in the
bath, we define the fidelity of the open quantum state,

FðtÞ ¼ Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂ðopÞðtÞ1=2r̂ðclÞðtÞr̂ðopÞðtÞ1=2

q
; (8)

Fig. 2 Time-evolution of the populations of the D–J algorithm with a
model environment. The population for the Cy3(C) dye as the wavefunction
evolves through the first, second and last step, for (A) the constant and (B)
balanced version. The segmented dynamics illustrate the transference of
populations to subsequent steps, when the transformation time is reached
(vertical dotted lines). The populations for all four dyes for the single-step in
the combined approach, for (C) the constant and (D) the balanced version.
Here, t is indicated with a black dotted line. The populations for the closed
system are shown in dashed lines on each plot. For the combined constant
version, note that r̂22 and r̂33 are both constant in zero.
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which measures the similarity between the closed system
density matrix at time t, r̂(cl)(t), and that of the open system
under pre-defined environmental conditions, r̂(op)(t).
To account for uncertainty in the measurement associated with
any possible experimental set-up to be used to read the final
state, we assume r̂(op) cannot possibly be measured exactly at
t and, thus, we randomly choose a time tm from the range tm A
{t � Dt,t + Dt}, where Dt is the uncertainty in the measurement
(here chosen to be Dt = 0.2 fs), and average over the total
number of observations, M:

�FðtmÞ ¼
1

M

XM
m

Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂ðopÞðtmÞ1=2r̂ðclÞðtmÞr̂ðopÞðtmÞ1=2

q
: (9)

We use this equation to compute the fidelity of the open D–J
excitonic circuits. Under a serial approach, the fidelity
decreases as %F(t1) = 0.93 - %F(tc

2) = 0.74 - %F(t3) = 0.65 (with
tc

2 set to 2 fs), and %F(t1) = 0.93 - %F(tb
2) = 0.79 - %F(t3) = 0.69, from

the first to third step of the algorithm, for the constant and
balanced D–J, respectively. That is, the fidelity decreases
consistently with each step, such that there is significant uncer-
tainty in the identity of the oracle function upon measurement
on the state r̂3(t). On the other hand, the calculated fidelities for
the combined approach are significantly higher, %F(tcon) = 0.96
and %F(tbal) = 0.97. Notably, the lower fidelities of the serial
circuits do not include the effects of fidelity loss in the transfer
of excitons from one circuit to the next. We thus speculate
that the combined strategy for excitonic circuit design yields
calculations with much higher fidelity than a serial strategy.

The difference in fidelity between the two strategies can be
observed more clearly by comparing %F as a function of time for the
combined and serial approach, as shown in Fig. 3. These results
highlight that fidelity loss rates differ between steps in the serial
circuits and that certain steps can dominate overall fidelity loss.
For both cases considered here, the second step (associated with
the action of the oracle gates) is the most significant source of
fidelity loss. These results also highlight that fidelity loss rates are
significantly lower for the combined strategy than for the serial
strategy. These differences reflect the benefit of lowering the total
computational time, thereby reducing system–bath interactions,
but also reveal that some circuits are fundamentally better at
retaining exciton phase information than others.

5 Designing explicit molecular
representations of excitonic circuits

The systems implied by the idealized Hamiltonians of Table 1
are hypothetical in that they ignore the potential for steric
clashes and geometric frustration that may arise in a physical
multi-dye system. Thus, in this section we construct D–J
excitonic circuits by arranging four explicit dye molecules
in space and we evaluate the performance of the resulting
circuits.

We design an excitonic circuit constructed from all-atom
representations of Cy3 and Cy5 dyes. Cyanine dyes are often
used in synthetic dye-based systems due to their photostability,
high fluorescence efficiency, low Stokes shift, commercial
availability, and compatibility with common experimental
set-ups.7,35 Cyanine dyes provide a simple platform to assess
the potential effect of noisy environments in quantum operations
encoded in excitonic circuits. Moreover, the electronic coupling
within Cy3 dye pairs has been demonstrated to be tunable when
these dyes are scaffolded in DNA.36 We expect that a similar
analysis can be carried out in other exciton molecular systems,
perhaps less prone to noise than the constructs we employ here.

We narrow our focus to the constant version of the D–J
algorithm, noting that qualitative differences in fidelity
between the combined and serial approaches are expected to
hold in general. This choice provides simplicity in both the
form of the Hamiltonian for the constant oracle operator, a
scaled identity operator, and the fact that Ĥ

con

prod and Ĥ3 are
isomorphic and can thus be carried out on identical circuits.

Our approach is to first identify a geometric arrangement of
dye molecules whose interactions approximate a target Frenkel
Hamiltonian. We then apply soft constraints to these dye
molecules and simulate their dynamics in explicit solvent,
using electronic structure calculations to compute bath
parameters. With these parameters and the approximate
Hamiltonian, we simulate the evolution of the reduced density
matrix and analyze the associated computational Fidelity.

The resulting Hamiltonian evolution is thus a preliminary
assessment on the viability of excitonic circuits for the
implementation of quantum algorithms, that can more accu-
rately describe the expected fidelity than the model description
in Section 4.

Fig. 3 Fidelity of the serial and combined approaches as a function of time, for (A) the constant and (B) balanced circuits, respectively. Transformation
times t1, t1 + t2 and t1 + t2 + t3 = tserial are indicated by blue, orange and red dotted lines, respectively. In both panels, the time axis is scaled to the total
computational time of the serial approach. For the constant case tserial = 8.4 fs and tprod = 3.7 fs. For the balanced case tserial = 9.0 fs and tprod = 13.0 fs.
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5.1 Genetic algorithm for the design of excitonic circuits

In this subsection we describe the development of a genetic
algorithm for positioning atomistic representations of dye
molecules to yield specific target electronic coupling values.
In principle, it is possible to realize these spatial representations
by scaffolding the cyanine dyes in macromolecular scaffoldings,
although a significant level of error is expected. The method
presented here is intended to be a guide as to how to translate
the systems described in Section 3 into more realistic molecular
representations.

As determined by the Hamiltonians in Table 1 and illustrated
in Fig. 1, the circuits we aim to create contain two species of dye
molecules differing in their excitation energies. The specific dyes
that are chosen will set the value of e1 and e2 and therefore
determine the magnitude of coupling that is required to enable

the computation (i.e., off-diagonal elements in Ĥ). Coupling is a
sensitive function of intermolecular separation and orientation
so there are, in principle, numerous arrangements of a dye pair
that will yield the same coupling value. However, identifying the
positioning of a multi-dye system that simultaneously satisfy
multiple couplings can be a difficult task.

We undertake this task by performing a search of dye
positioning that is biased to favor configurations with a specific
set of intermolecular coupling values. For any specific configuration,
we compute each value of the intermolecular electronic
coupling in an atomistic basis via the point monopole approxi-
mation, which has been demonstrated to accurately represent
couplings between closely spaced organic dye molecules.37,38

Specifically, we define the coupling between molecules i and
j as,

Vij �
X
m;n

q
ðiÞ
m q
ð jÞ
m

jrðiÞm � r
ð jÞ
n j
; (10)

where q(i)
m is the transition charge density associated with atom

m on molecule i in its first excited state, and r(i)
m denotes the

position of that atom. We compute the values of q(i)
m by

performing a TDDFT calculation on the molecule in its ground
state configuration and localizing the transition density via a
Restrained Electrostatic Potential (RESP) fit.39

Identifying configurations of a 4-dye system described by a

given Ĥ requires simultaneously satisfying up to six coupling
values. We search for these configurations via a genetic
algorithm (GA) as follows: for a given set of dyes (e.g., two pairs
of Cy3 and Cy5 dyes) the position of one of the molecules is
fixed (e.g., dye A), while the positions of the remaining dyes
(e.g., dyes B, C and D) are varied. The GA is designed to find
the optimal arrangement of the 3 mobile dyes coordinates
such that the system’s coupling resembles that of the
desired Hamiltonian. Specifically, given the system is
initialized such that the center of mass of all 4 molecules is
located at the origin, the coordinates of dyes B, C and D are
modified by a series of translation-rotation operations of
the form,

(xf,yf,zf) = Rx(yx)Ry(yy)Rz(yz)[(x0,y0,z0) + (dx,dy,dz)], (11)

where the initial configuration of the dye, {x0,y0,z0} is first
translated by the displacement vector, (dx,dy,dz) and then
rotated around its three axis by angles (yx,yy,yz). A chromosome
is therefore defined by the displacement and rotation variables
for each of the non-fixed dyes (e.g., 18 genes in total for the
4-dye system). For each resulting spatial configuration, the
intermolecular coupling is calculated between each pair of dyes
with eqn (10), and the Hamiltonian of the trial system is
constructed. The fitness of each chromosome is determined
by comparing the resulting trial Hamiltonian, Ĥi;test, with the

desired one, Ĥi (from Table 1),

Gfit ¼ 1� 1

2
Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðĤi;testðtÞ � ĤiðtÞÞyðĤi;testðtÞ � ĤiðtÞÞ

q� �� �
:

(12)

We carry out the GA until the fitness function in eqn (12) has
been maximized.

For the Ĥ1 circuit, the genes comprise the possible rotation
and translation operations of eqn (11), keeping one of the Cy3
dyes fixed and imposing a steric constraint that the atoms of
any pair of dye molecules be separated by more than 2 Å. The
GA was run until convergence over a configuration space that
includes all dye displacements within a sphere in which Vij a 0,
and with all dye rotation angles ranging from �p/2 to p/2. Due
to the steric constraint and the need for large coupling values
(V E 0.1–0.2 eV), there is no guarantee of finding a nearly exact
solution with this approach. Fig. 4B depicts the geometry
calculated with this method, which has a fitness of G = 75%,
and a calculated fidelity of %F = 82.3%.

Finding an optimal geometry for Ĥ3 following this recipe is
a simple problem, since only a single coupling must be
satisfied. Here, only the Cy3–Cy5 pairs will be coupled, and
the coupling between the two possible pairs is exactly the same.
In fact, due to this simplicity, the circuit can be optimized
without the use of the GA. Fig. 4A shows the resulting geometric

configuration for Ĥ3, calculated using the described method.
This geometry yields a value of G = 99.5%.

5.2 Simulation methodology

In this subsection, we outline the process for characterizing the
system–bath interaction on an explicit dye system. Once the
optimal geometry for a specific transformation Hamiltonian is
identified, a series of classical and ab initio calculations can be
carried out to describe the effect of the bath fluctuations on the
system dynamics. This effect can be fully described in terms of
the excitation energy autocorrelation function. In the
present model only the first excited state is accessible, and
therefore the autocorrelation function is calculated for the
energy gap from the ground to excited state, e01. To compute
the correlation function, we first use classical MD to generate
ground state equilibrium dynamics of the dye system immersed
in bulk liquid water at 300 K. We then compute the excited
state energy, e01 for each dye separately at each step of the
MD simulation.40–43 Finally, we calculate the correlation
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function,

CðtÞ ¼ 1

Nt � i

XNt�i

k¼1
e01ðt 0kÞ � he01i
� �

e01ðt 0kþiÞ � he01i
� �

; (13)

where t 0i denotes the ith discrete MD timestep, Nt is the total
number of steps in the trajectory, t = dt � i, and dt = 4 fs is the
timestep increment in the MD simulations.

We assume each molecule is interacting with its own local
bath. Under the Kubo stochastic lineshape theory, the dephasing
function, characterizing the exponential decay on the system’s
phase, can be calculated from the energy gap correlation
function,44

DðtÞ ¼ exp � 1

�h2

ðt
0

dtðt� tÞCðtÞ
� �

: (14)

The dephasing time can likewise be calculated from integration
over the dephasing function, D(t),

tD ¼
2ffiffiffi
p
p
ð1
0

DðtÞdt: (15)

Therefore, following a similar argument as in Section 4,
eqn (14) and (15) can be used to describe the system operator,
Gm, for each one of the four dyes in the circuit, with gD = 1/tD.
Similarly, the energy gap correlation function, C(t), can also be
used to derived the frequency-dependent bath contribution to

the interaction ĤS�B, contained in the spectral density, J(o).
We use the following definition,

JðoÞ ¼ 2

p�h
tanh

b�ho
2

	 
ð1
0

CðtÞ cosðotÞdt; (16)

where a factor b = 1/kBT is added to make sure the spectral
density is temperature-independent. The definition in eqn (16)
is often know as the standard definition of J(o) and can
appropriately describe the low-frequency vibrational modes of
the thermal bath. However, this approach has been found not
reliable for characterizing the high-frequency region of the
spectra.43,45 Instead, the high-temperature limit of J(o),

tanh
b�ho
2

	 

! b�ho

2

	 

; is often used to describe these modes.

The variation in the energy gap, e01(ti), was estimated along
multiple trajectories. In total two sets of simulations were
carried out, one for the first step of the D–J algorithm and
one for the third step. Each trajectory was generated through a
MD simulation on each system, composed of two Cy3–oxypropyl
and two Cy5–oxypropyl dyes. The Generalized Amber Force Field
(GAFF)46 was employed to describe the cyanine molecules, and
their respective atomic point charges were generated with a
RESP fit, using the Q-Chem software.47 The four cyanine
molecules were solvated in a TIP3P water box and Cl� ions were
explicitly added to neutralize the partial positive charge of the
dyes. To mimic the scaffolding of the cyanine molecules to a
supramolecular structure constraining the relative positions of
the dyes, each molecule was subjected to a small harmonic
restrain over the OH end-groups. If connected to a DNA platform,
the cyanine dyes would form a bond through this group and,
hence, the mechanical constrain on the molecule is concentrated
there. Ground-state MD simulations were performed using the
Amber18 program,48 with the harmonic constrain on the OH
group present throughout the entire simulation.

The energy gap from the ground to first excited state was
calculated for each individual cyanine molecule, every 4 fs
along each MD trajectory. Quantum Chemical calculations were
performed using TDDFT with the B3LYP/6-31G level of theory, as
included in the PySCF package.49 The use of more sophisticated
basis sets and DFT functionals will result in more accurate
absolute values for the excited state energies, but the magnitude
of the fluctuations will be virtually the same. A comparison of
energy fluctuations calculated with different basis sets and DFT
functionals is presented in Fig. S2 (ESI†). The same time-step
was employed for every dye in both of the studied circuits,
but the length of the QM calculations varied depending on
convergence of the correlation function in eqn (13). Here,
convergence was said to be reached when C(t) did not seem to
visibly change with increasing sampling, and the dephasing
function, D(t), showed a purely decaying behaviour for the
time-range of interest. The last data points for some calculated
autocorrelation functions were not considered within the time-
range of interest, as C(t) will not be statistically significant for the

Fig. 4 Schematic of the dye circuits representing the DJ algorithm and corresponding Hamiltonians. (A) For the excitonic circuit found to evolve
similarly to Ĥ1, and whose spatial distribution was determined using GA, and (B) for the circuit evolving as Ĥ3 (and Ĥ

con

prod).
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last few lag points, given the small number of MD trajectories
employed. Convergence of the autocorrelation, C(t), was
observed to vary significantly between dyes within the same
system, supporting the initial assumption that local baths on
each dye are fairly independent from each other. Further details
on the MD and QM simulations are included in the ESI.†

5.3 Simulating the performance of explicit molecular
excitonic circuits

Using the methodology described in Section 5.1, we generate

system Hamiltonians, Ĥ1 and Ĥ3. We define the system–bath

interaction, ĤS�B, for each dye separately, following eqn (4)
and the model introduced in Section 5.2. The energy gap
fluctuations resulting from the interaction of each dye molecule

with its local bath, in the systems defined by Ĥ1 and Ĥ3 are
plotted in Fig. 5A and B, respectively. In general, the nuclear
modes coupling to the electronic transitions of the dye can
correspond to either intramolecular vibrations (i.e., arising from
the chemical structure of the dye), local intermolecular modes
(i.e., from interaction to the other dyes in the system) or from
collective motions from the water solvent.50 These modes affect
the system differently depending on the spatial arrangement and
chemical nature of the excitonic circuit, and this difference will be
reflected in the fluctuation patterns of e01. The influence of these
fluctuations on exciton dynamics can be more conveniently
illustrated in terms of the correlation function, C(t), of eqn (13).
These correlation functions are plotted in Fig. 5C and D.

We find that the short-time behaviour of C(t) is fairly similar

for all dyes in circuits Ĥ1 and Ĥ3, with a rapid decay on time
scales of about 8 fs. This fast component of the oscillations has
a period of B16 fs, for all four dyes in both circuits, but
the amplitude of the oscillations and its slow frequency com-
ponents differ across different dyes and between the circuits.
The short-time component in C(t) most likely arises from
intramolecular vibrational modes (probably involving the

CQC bond), which are expected to be comparable for all dyes,
as Cy3 and Cy5 are structurally very similar. However, we can
expect the slower frequency components and the long-time
decay of the correlation function to differ between dyes,
depending on the local environment induced by the inter-
molecular interactions within each circuit, which are dictated
by its spatial arrangement.

We observe that the correlation function for Ĥ3 does not
seem to vary widely between different dyes, while striking

discrepancies are evident between the dyes in Ĥ1. This disparity

between Ĥ1 and Ĥ3 arises due to their different spatial dye

arrangements. Each cyanine dye in Ĥ3 (Fig. 4B) interacts with
only one other molecule, with each Cy3–Cy5 pair sharing
identical interactions. Therefore, the local environment is
similar for all dyes, leading to a similar pattern of fluctuations.

On the other hand, the geometrical arrangement for Ĥ1 is quite
different (Fig. 4A), since each dye interacts closely with the other
dyes in the circuit. Differences in intermolecular interactions
manifest as differences in C(t). The most notable difference is
the magnitude of C(t) for the Cy5(D) dye, which is more than
twice that of the other dyes in the circuit (see insert in Fig. 5C),
and the presence of large long-time oscillations in the same dye.
We quantify the differences in C(t) by fitting each to the following
functional form,41

C0ðtÞ ¼
XNexp¼2

i¼1
aie
�t=tc;i þ

XNdamp¼6

i¼1
~ai cosð~oitÞe�t=~tc;i ; (17)

This functional form is capable of describing the fast
exponential decay (in the first term) and the damped oscillations
(in the second term) observed in MD simulations. The value of

the correlation at t = 0, C0ð0Þ ¼
PNexp¼2

i¼1
ai þ

PNdamp¼6

i¼1
~ai; is a direct

measure of the magnitude of the average fluctuations, and
indicates that Cy5(D) couples more strongly to the bath

Fig. 5 Energy gap fluctuations estimated for each one of the four dyes in the circuit corresponding to (A) the first step of the D-J algorithm, Ĥ1, and (B)

for the third step, Ĥ3. Corresponding autocorrelation function for the circuits: (C) Ĥ1, and (D) Ĥ3.
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compared to the other dyes. Finally, the noticeable long-time
oscillations observed in this dye are contained within the first
two terms of the damped component of C0(t), Ndamp = 1,2, but
due to the complex environment of the dyes, it is hard to assign
these slow oscillations to a particular component of the
molecule’s normal modes. A complete analysis of the fitted form
of C0(t), including the fitted parameters for each dye, is included
in the ESI.†

We calculate the dephasing function by performing a
numerical integration over the time component of C(t), as
defined in eqn (14). The dephasing function for each dye, in

the circuits described by Ĥ1 and Ĥ3, is presented in Fig. 6A
and B, respectively. This function describes the rate at which
the phase of each dye decays as a result of its coupling with the
bath. It can be shown that the rate of decay of D(t) is directly
proportional to C(0), and inversely proportional to the
correlation time, tc,i. Physically, both quantities are related to
the strength of the system–bath coupling and, thus, we expect
the dyes exposed to stronger influence of the nuclear modes to
dephase faster.

The dephasing times for the dye molecules in Ĥ3 are tD,A =
82.1 fs, tD,B = 97.4 fs, tD,C = 43.0 fs and tD,D = 82.8 fs. These
values, with an average of tD = 76.3 fs, are consistent with those
reported for cyanine dyes in other studies.7 We observe that
only the Cy3(C) dye seems to deviate from the other dye
molecules possibly due to subtle differences in geometric
arrangement or perhaps indicating the need for increased

sampling. The dephasing times for the dye molecules in Ĥ1

are much less homogeneous, with tD,A = 173.6 fs, tD,B = 45.9 fs,
tD,C = 95.9 fs and tD,D = 18.9 fs. We note that the Cy3(A) appears
to be remarkably protected from the effect of the thermal bath.
The close proximity between the two Cy5(B and D) dyes appears
to lead to faster dephasing for these two dyes. However, the

value of tD for Cy5(D) is strikingly small, meaning there is an
increased coupling to the bath that cannot be simply explained
in terms of inter-atomic distances. A comparative analysis on

the torsion angles of the geometries in Ĥ1 (ESI,† Fig. S4)
reveals a conformational change on the Cy5(B) dye, involving
one of the heterodimer rings that may be responsible for the
unexpectedly short dephasing time.

We compute the spectral density, J(o), from eqn (16).
The power spectrum resulting from the numerical integration
over the correlation function of each site gives rise to an
intricate and noisy spectra as plotted and discussed in
the ESI.† We thus capture the essential features in the low-
frequency regime by fitting the noisy calculated J(o) to the
following functional form,

JðoÞ ¼ 2

p�h
tanh

b�ho
2

	 

a1tc;1

tc;12o2 þ 1
þ a2tc;2
tc;22o2 þ 1

� �
(18)

which is derived by assuming that C(t) exhibits a double
exponential decay (i.e., ãi = 0 in eqn (17)). This fitted spectral
density is plotted in Fig. 6C and D, and the fitting parameters
are presented in the ESI.† We observe the same tendency in J(o)
as in the dephasing function, D(t), i.e., the molecules more
strongly coupled to the thermal fluctuations exhibit faster
dephasing rate and larger peak amplitudes in the short-
frequency range of the spectra. The numerical spectral density
employing the high-temperature limit of eqn (16) is also shown
in the ESI.† The fit is, however, only calculated for the spectra
corresponding to the standard form of J(o), as eqn (18) intends
to capture the low-frequency region of the spectra, which
encodes the differences between the local environments of
the dyes in the circuit.

The dephasing rate, gm = 1/tD,m, and spectral density, Ji(o),
for every dye in each system provide a complete description of

Fig. 6 Numerical dephasing function for each dye in the circuit corresponding to (A) the first step of the D–J algorithm, Ĥ1, and (B) for the third step,

Ĥ3. Spectral density fitted as in eqn (18), for the dyes in circuits: (C) Ĥ1, and (D) Ĥ3.
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the system–bath component of the total Hamiltonian for that
molecule (eqn (4)–(6)). We employ this description to realize the
D–J algorithm with a realistic bath, by applying the same
methodology used for the model bath in Section 4. Here, we
solved the Redfield equations with J(o) described by eqn (18),
and using the parameters calculated in this section, i.e., tD, a1,2

and tc;1,2. The resulting time-dependent dynamics are shown in
Fig. 7, for the constant combined and serial versions of the
algorithm. For the serial case, we maximize fidelity by eliminating

the trivial action of Ĥ2 (just the identity operator).
The fidelity of the cyanine-mapped algorithm is then calculated

using eqn (8). We find the simulated geometries encode the
constant D–J algorithm with final fidelities of %F(tcon) = 0.994 and
%F(t3) = 0.819, for the combined and serial circuits, respectively.
We note these values are better than those obtained with a model
bath, which is expected, as these fictitious systems loss their phase
about 20 times faster than the realistically simulated circuits.

We note that in both simulated Hamiltonians, Ĥ
0

1 and Ĥ
0

3,
the oscillatory behaviour is non-periodic, which results in
increased stability against environment fluctuations, at least
within the timescale of interest. This suggests that circuit
fidelity depends almost entirely on the choice of circuit
geometry, and not on its coupling with the harmonic bath.
More conclusive results require a more accurate treatment of
the intermolecular coupling, as eqn (10) does not consider the
effect of the thermal motion over the charge distribution of the
individual dyes. While the limited study we present here cannot
necessarily be generalized, we can safely state that design
strategies that limit overall evaluate time and circuit-to-circuit
exciton transfer will feature improved fidelity. To this end, the
combined strategy is preferred, especially for simple
computations with relatively few qubits.

6 Conclusions

In this manuscript, we have evaluated the possibility of
mapping multi-step quantum operations into excitonic circuits
by applying our methodology to the realization of the 2-qubit
Deutsch–Jozsa algorithm. We show this implementation can be

approached with two general strategies: one involving a
mapping of the individual steps in the algorithm and the
precise control of the initial state of each operation in
the sequence (i.e., a serial approach), and a second one were
the entire algorithm is mapped into a single excitonic circuit
realizing the transformation (i.e., a combined approach).

We have implemented these two strategies on a cyanine-
based excitonic circuit, first by studying a model environment for
the system–bath interaction, and second by explicitly simulating
the thermal fluctuations with QM/MM simulations. In the first
case, the artificial bath model revealed a significant fidelity
decrease in the serial case. Although this result is not surprising,
it is essential to understand the magnitude of improvement that
can be achieved by a combined algorithm.

The explicitly simulated model reveled the same pattern.
However, the complexity of some of the transformations, and the
reduced conformational space employed to map those operations,
resulted in low fidelities arising from the impossibility to map the
quantum operation exactly into an excitonic circuit within the
constrained search space. Surprisingly enough, however, these
geometries resulted in non-periodic quantum dynamics, with an
increased protection to the thermal environment. As a result, it
was not possible to draw conclusive differences between the serial
and combined approaches with the present simulation, since the
fidelity is almost entirely dependent on our ability to find
precise geometries. Future studies should look to expand the
conformational search space, for example, by employing
molecules with shorter band gaps. This improvement will be
essential if we intend to map more complicated operations than
those presented in this work. Future implementations must also
consider that the accuracy of a given exciton construction will be
determined on how close we can get to the spatial arrangement
derived from the GA search, and small deviations from idealized
molecular configurations can lead to significant changes in the
expected Hamiltonian. Moreover, while the accuracy of the
simulation used here is enough to gain a general understanding
of the main features of the harmonic bath, more rigorous
methods and extended sampling is required for a precise study
of the open system performance of these circuits.

Finally, here we limit ourselves to describing the
environmental effects in terms of the local bath, while the
effect of intramolecular fluctuations and those characteristic of
the macromolecule scaffolding (e.g., a DNA scaffold) were
mostly ignored. As a result, the effect of the environment is
possibly underestimated, and more detailed studies are needed
to fully assess the fidelity of organic excitonic systems.
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