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Nuclear spin relaxation as a probe of zeolite
acidity: a combined NMR and TPD investigation
of pyridine in HZSM-57

*d

The relative surface affinities of pyridine within microporous HZSM-5 zeolites are explored using two-

dimensional *H nuclear magnetic resonance (NMR) relaxation time measurements. The dimensionless

ratio of longitudinal-to-transverse nuclear spin relaxation times T3/T, is shown to exhibit strong

sensitivity to the silica/alumina ratio (SAR) of these zeolites, which is indicative of material acidity. This
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trend is interpreted in terms of increased pyridine surface affinity with decreasing SAR. Temperature
programmed desorption (TPD) analysis corroborates this observation, revealing a distinct increase in the
heat of desorption associated with adsorbed pyridine as a function of decreasing SAR. A direct

correlation between NMR and TPD data suggests NMR relaxation time analysis can be a valuable tool for

rsc.li/pccp

Introduction

Microporous solids (exhibiting pore diameters <2 nm) such as
zeolites and metal organic frameworks have potential applica-
tions across a variety of processes including chemical conver-
sion, storage, sensing and separations.” In the field of
heterogeneous catalysis zeolites are regularly applied to facili-
tate a range of reactions such as cracking,®* alkylation® and
dehydration.®® A key feature regarding the activity of such
materials is that of surface acidity, characterised by the
presence of Brgnsted (proton donating) and/or Lewis (electron
accepting) acid sites within the micropore network, and across
the external material surface. As both the accessibility and
acidity of these sites dictate the potential catalytic activity of
zeolitic materials, extensive research efforts have been directed
towards their characterisation.”"’

Established techniques used to investigate the surface acidity
of zeolites include infrared (IR) spectroscopy, temperature pro-
grammed desorption (TPD) and nuclear magnetic resonance
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the non-invasive characterisation of adsorption phenomena in microporous solids.

(NMR) spectroscopy. The use of IR spectroscopy with pyridine
as a probe molecule, for example, is particularly powerful since
the assignment of vibrational modes associated with pyridinium
ions at Brgnsted sites and the coordination of complexes at Lewis
sites are well-established.*™ Quantitative analysis in terms of
adsorbate density is also possible if molar extinction coefficient
values are known."* TPD analysis - again utilising basic probe
molecules such as ammonia and pyridine - is also widely
applied.”>™ Typical TPD spectra report the desorption rate of
the chosen probe molecule as a function of temperature; the area
beneath such a curve is proportional to the amount of adsorbate
present, providing quantification of acid site density, while the
position of desorption peaks provides information on acid site
strength. Magic angle spinning (MAS) solid state NMR spectro-
scopy measurements of zeolitic materials are extensively reported;
such measurements provide a direct and quantitative probe of
Bronsted acid site density via "H (proton) analysis and utilise the
observed 'H chemical shift values to both characterise site
acidity®® and differentiate between bridging (Si-OH-AI) and term-
inal (AI-OH or Si-OH) groups.*' The measurement of >°Si and Al
spectra also allows quantification of the material silica/alumina
ratio (SiO,/Al,03), which is considered an analogue of zeolite
acidity.”® Indirect measurements of acid site characteristics are
again possible via the use of probe molecules and facilitate the
investigation of site accessibility. While 'H chemical shift features
may be exploited to detail probe molecule interactions, a wide
range of heteronuclear MAS NMR experiments (including *C, °N
and *'P) have also been used to resolve adsorbate resonances.>*’

In the present work we detail an alternative magnetic
resonance technique for the comparison and characterisation
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of zeolitic acidity based on analysis of the "H nuclear spin
relaxation characteristics of a liquid-phase basic probe mole-
cule. The past decade has seen a rapid evolution in the
application and interpretation of nuclear spin relaxation phe-
nomena as a probe of surface affinity and adsorbate behaviour
within catalytically active porous media.”®*° These measure-
ments exploit relevant NMR pulse sequences to determine the
rates longitudinal and/or transverse nuclear spin relaxation
processes, which are characterised by the time constants T,
and Ty, respectively. Within the unrestricted bulk liquid phase
these time constants are known to conform to well-established
relationships with molecular rotational and translational
dynamics.*® For liquids imbibed within porous solids, however,
the correspondence between time constants and molecular
dynamics is influenced by the pore structure and surface
chemistry properties of the confining material, providing a
potential route for the non-destructive characterisation of
adsorption phenomena and confinement effects.

For fluids confined to catalytically active porous media the
evaluation and interpretation of dimensionless relaxation time
ratios is often of particular utility.>"** The ratio of longitudinal-to-
transverse nuclear spin relaxation time constants 74/, is now
established as a non-invasive probe of surface affinity,*® and is a
regularly sought metric to aid in the evaluation mesoporous catalyst
materials.>*® Most notably, this ratio has been shown to correlate
with the desorption energetics of liquids imbibed within meso-
porous oxide materials as evaluated via both experimental®” (TPD)
and theoretical® (density functional theory) methods, and has been
demonstrated as a useful probe of competitive adsorption processes
in liquid-phase catalytic systems.’*** It is of interest to note,
however, that this approach is yet to be applied to the evaluation
of liquid-saturated microporous materials, with previous relaxation
studies instead focussing on the investigation of gas admission and
storage phenomena,” *® surface area screening protocols*”*® and
the study of confinement effects.*® > To this end, we detail here the
measurement and interpretation of 73/T, ratios exhibited by
pyridine confined to the microporous zeolite HZSM-5 with varying
silica/alumina ratios (SAR, a measure of zeolite acidity). Through a
direct comparison with TPD analysis our results demonstrate for the
first time a clear correlation between nuclear spin relaxation char-
acteristics, SAR and pyridine desorption energetics.

Relaxation theory

For fluids confined to porous media the observed rates of
nuclear spin relaxation 7; " (with i € {1,2}) may be expressed
as a linear combination of unrestricted bulk, surface, and
topological contributions,*

1 1 2ap, AN
P + oxp; 1 =+ pld[?
Ti Tipuk dp 4D

1 20p; 8aD 1)
T’ pulk d, dy
—— =~

~
~

~—~
unrestricted surface  topology
Additional terms may also be required to fully describe trans-

verse relaxation (i = 2) rates due to the influence of magnetic
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susceptibility differences between the confining solid and
imbibed fluid.>**® Here T;pui " and D are the relaxation rates
and self-diffusion coefficient of the unrestricted bulk fluid,
respectively, « is a shape parameter that takes values of 1, 2 or 3
for planar, cylindrical or spherical pores, respectively, and d,, is the
pore diameter. The surface relativities p; = Bﬂ,sur{l are defined by
the relaxation rates of species at the pore surface T,-,sur{l weighted
by the length-scale of the adsorbed surface layer 6.°° Enhanced
rates of relaxation occur at the solid-liquid interface due to the
reduction in rotational and translational molecular mobility upon
adsorption®*”” and through interactions with any paramagnetic
species imbedded within the solid matrix,"®* such that
Tisurt © > Tipuic - As Tigur exhibits sensitivity to the surface
chemistry of the porous medium under investigation,®®®* this
parameter is central to the characterisation of surface interactions
using nuclear spin relaxation measurements.®

There exists two limiting cases for eqn (1), which may be
defined according to the dimensionless parameter®
b, @)

D

K=

If k » 1 a diffusion-limited condition arises, typically asso-
ciated with large pores, slowly diffusing probe molecules and/or
large surface relaxivities. In this case eqn (1) reduces to

L 1 8D -
T, Tipuk df’

such that the observed relaxation rates are dominated by the
topology of the confining pore structures and the diffusive
characteristics of the probe fluid.>® Diffusion-limited relaxation
has been observed for water confined between SiC grains
exhibiting a high surface concentration of paramagnetic Fe**
ions, resulting in large p; and p, values.** Sensitivity to the term
d,”* means this regime is also of relevance to porous structures
exhibiting small pore diameters on the same length scale as the
probe molecules employed, as has been evidenced using cali-
brated microporous silica glasses.’>* Alternatively, if x « 1 a
surface-limited condition arises, associated with the presence
of rapidly diffusing species and/or slow rates of surface relaxa-
tion. In this regime the rate of mixing between surface and bulk
populations is rapid compared to the rates of surface relaxation
and eqn (1) reduces to
1 20p;
Ti " Tipux  dp

) (4)

such that the observed rates of relaxation exhibit sensitivity to
the surface relaxivities p;. Furthermore, as the regularly applied
assumption of spherical pores (« = 3) givesi

1 1 S
+ piI_/7 (5)

T:  Tipuk

where S/V is the surface-to-volume ratio of the confining pore
structure, p; is often considered a scaling parameter between
observed relaxation characteristics and pore size.®*°®

+ Here we recall that the surface-to-volume ratio (S/V) of a sphere of diameter
dsphere May be expressed as S/V = 6/dgphere-
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In the case of microporous zeolites careful consideration of an
appropriate form of such expressions is required. In the present
case, that of pyridine relaxation within HZSM-5 with various SAR,
we note that the micropore diameter (d, = 5.1-5.6 A)*’ and
molecular kinetic diameter (d; ~ 5.3 A)*® are essentially identical,
such that there will be no contribution to the observed relaxation
rates from bulk liquid away from the pore walls. An appropriate
relaxation expression is therefore

1 2ap; 8aD
N a4 6)

T, 4,

comprising only the surface and topological terms of eqn (1).
Avalue of o = 2 is suggested as a sensible shape parameter choice
given the cylindrical pore structure exhibited by ZSM-5 zeolites,*
such that this equation might be written

1 4(, 4D -
T\ )

The corresponding ratio of observed relaxation time constants
then becomes

T py+ (4D/dy)

T2 pi+ (4D/dy) ®

where the equivalence between d; and d, means the surface
relaxivities may be expressed p; = dkT,-,Surf’l. For a range of
HZSM-5 materials differing only in SAR (assumed here to
influence only pore surface chemistry and maintain a
constant d,) and characterised by the same probe molecule
(constant D and d;), we note that changes in this ratio will be
dominated by changes in p,/p; = Tisurf/T2surs; this ratio is
considered a probe of molecular mobility at the solid/liquid
interface and is therefore sensitive to surface affinity.>*3%3°

Experimental

Materials and sample preparation

Pyridine (>99%) was obtained from Alfa Aesar and used as
supplied. ZSM-5 zeolite powders exhibiting a range of SAR
values (23, 30, 50, 80 and 300) were obtained from Alfa Aesar
in NH," form. The solid powders were calcined in synthetic air
(Air Liquide, 100 mL min ") at 773 K for 4 hours to obtain the
protonated form, HZSM-5. We note these materials have been
characterised elsewhere via argon sorption measurements,
infrared spectroscopy, elemental analysis, solid state >’Al MAS
NMR spectroscopy and tapered element oscillating microba-
lance experiments.”®7?

Samples for TPD and NMR analysis were first prepared by
pressing each zeolite powder into tablets using a manual
hydraulic press. A 2 tonne compressive force was applied to
approximately 250 mg of powder in each case, forming cylind-
rical tables measuring around 13 mm in dimeter and 1 mm in
thickness. The tablets were then broken into approximately
10 mg pieces so as to fit within the active regions of the TPD
and NMR equipment. Each material was dried in N, (Air
Liquide, 100 mL min~') at 673 K for 1 hour to remove any
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adsorbed water, and soaked in excess pyridine under ambient
conditions for at least 24 hours.

NMR relaxation measurements

'H NMR relaxation measurements were performed using a
Bruker DMX 300 spectrometer equipped with a 7.1 T
superconducting magnet, corresponding to a 'H frequency of
300.13 MHz. Experiments were performed under ambient
pressure and at 298 £ 1 K as controlled by a Bruker Variable
Temperature (BVT 3000) unit.

Pyridine-saturated zeolite materials were first placed onto a
pre-soaked filter paper to remove any excess liquid on the
external surface, then transferred to sealed 5 mm NMR tubes.
To minimise experimental uncertainties associated with the
evaporation of pyridine from the zeolite structures during NMR
analysis, the atmosphere within each NMR tube was saturated
by placing a pyridine-soaked plug of filter paper beneath the
cap. Each sample was left within the magnet bore for at least
15 minutes prior to analysis to attain thermal equilibrium.

T,-T, correlation data was acquired by applying the
two-dimensional (2D) NMR pulse sequence in Fig. 1, which
comprises an inversion recovery component followed by a
CPMG echo train.”® The indirect (T;) dimension was encoded
using m = 167 recovery times between 1 ms and 10 s, while data
in the direct (T,) dimension was acquired by taking the magni-
tude of n = 512 spin echoes separated by an echo time of
t. = 0.5 ms. Echo magnitudes S(t,nt,) were acquired as a single
data point (white data point in Fig. 1) generating an m x n data
matrix with no spectral resolution. Each experiment took
approximately 30 minutes to complete and included 16 repeat
scans separated by a recycle delay of 5T7;.

The acquired 2D NMR relaxation data may be described by a
Fredholm integral equation of the first kind,”*

%:”K(r, T ,nt, T2)F(T1, T>)dlog (T )dlog(T>)
7 +e(t,nt,). )

Here S(t,nt,)/S(t — 0,0) is the normalised spin echo magni-
tude and ¢(t,nt,) represents the experimental noise, assumed
Gaussian with zero mean. The kernel function K(t,Ty,nt,,T5)
describes the predicted forms of T; and T, relaxation, and for
the NMR pulse sequence in Fig. 1 takes the form”>

K(t, Ty,nt,, Tr) = [1 - 2exp<¥)} exp(%te).
| 2

Finally, F(T,,T,) represents the desired 2D distributions of T
and T, relaxation time constants; distributions were obtained
by applying a numerical inversion of the acquired 2D relaxation
data according to the above expressions. As this is an ill-posed
problem,’® stability of the inverted distributions in the
presence of experimental noise was achieved through the use
of Tikhonov regularisation,”” with the magnitude of the
smoothing parameter chosen according to the Generalised
Cross-validation method.”® Inverted distributions were bound
within the range {107*, 10%} s and corrected for the influence of

(10)
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Fig. 1 (a) T1—T> radio frequency (RF) pulse sequence diagram for the NMR

experiments used in this work. Thick and thin solid vertical bars represent
180° and 90° RF pulses, respectively. The echo time t, and variable
recovery time t are defined in the main text; n refocussing loops lead to
n echoes separated by t., with the sequence is repeated to incorporate
mxt recovery delays. An example spin echo is shown in grey, wherein the
white data point indicates the echo magnitudes S(z,nt,) measured in this
work. (b) Example 2D data surface acquired by applying the pulse
sequence in (a), with the contributions of T; recovery and T, decay
highlighted in the indirect and direct dimensions, respectively.

magnetic susceptibility contrast effects’ using the approach of
Mitchell et al.”®

TPD measurements

TPD measurements were performed using a Hidden Analytical
CATLAB-PCS comprising a microreactor module and integrated
mass spectrometer. Zeolite samples imbibed with pyridine
were placed within a glass microreactor under a constant
40 mL min~" flow of high-purity helium and left for 2 hours
at 432 K; after this time the mass spectrometer signal was
observed to have returned to its baseline, indicating removal of
all physiosorbed and excess pyridine. TPD curves were then
acquired across the temperature range 423-1273 K with heating
rates of § = 2, 5, 10, 15 and 20 K min~*. Data from the mass
fragments m/z = 52 and m/z = 79 were recorded, with each
experiment repeated twice to ensure reproducibility; the acqui-
sition of each TPD curve took between 4 and 10 hours.

Results and discussion
NMR relaxation

Fig. 2 summaries the T;-T), correlation data obtained from our
range of HZSM-5 zeolites. Correlation plots of this form facili-
tate a straightforward visual comparison of the nuclear spin
relaxation characteristics exhibited by bulk (unrestricted) pyr-
idine and pyridine adsorbed within zeolite structures of varying

This journal is © the Owner Societies 2021
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Fig. 2 H T.—T, correlation plots for pyridine in HZSM-5 with varying
silica/alumina rations (SAR). Correlation peaks indicate the relative
probability density of each pyridine/zeolite system exhibiting a given
combination of T; and T, times, as indicated by the colour bar. The solid
diagonal line indicates the parity ratio T;/T, = 1. The red arrow indicates the
direction of increasing T,/T5 ratio, which is interpreted here as indicative of
surface interaction strength. SAR values are indicated next to each corre-
lation peak; bulk pyridine data is also shown.

Table 1 Summary of NMR and TPD results obtained from HZSM-5
zeolites with varying silica/alumina ratio (SAR). The relative errors are
approximately 4% for T1/T, ratio values and 3% for AHqes

SAR Ty/T, AHyeo/k] mol™*
23 32 150
30 25 141
50 17 132
80 14 126
300 12 110
SAR. The diagonal line within this figure indicates

T,/T, = 1, characteristic of non-viscous bulk liquids.®° The
correlation peak obtained from bulk pyridine can been seen
close to this diagonal, consistent with the expectation that
T; = T, in the absence of surface interactions or confinement
effects. Correlation peaks away from this diagonal are charac-
terised by T,/T, > 1; as suggested by eqn (8), the position of
these peaks is expected to be dictated by the relative surface
affinities of pyridine within these structures. The T,/T, values
obtained from the logarithmic mean of these correlation peaks
are summarised in Table 1 and discussed further below.

Temperature programmed desorption

Example TPD spectra for pyridine with the range of HZSM-5
zeolites studied are shown in Fig. 3. For HZSM-5 with SAR = 23
three desorption rate maxima are evident, labelled (i), (ii) and
(iii), suggesting pyridine desorbs from three distinct sites

Phys. Chem. Chem. Phys., 2021, 23,17752-17760 | 17755
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Fig. 3 Mass-normalised TPD spectra of pyridine in HZSM-5 with varying
silica/alumina ratios (SAR) acquired with a heating rate of 10 K min~™%.
Dashed lines indicate the position of the maximum desorption rate for
each material.

within this material. While peaks (ii) and (iii) are also evident at
SAR = 30, only a single spectral desorption peak (peak (i)) is
observed for the remaining materials, characterising the tem-
peratures associated with the maximum pyridine desorption
rates across these zeolites, T,,. Given the NMR relaxation time
ratio T,/T, is conjectured to be sensitive to the strongest
adsorption sites present across a surface,** we focus here on
the consideration of this maximum desorption rate tempera-
ture across the five materials investigated, and a comparison of
the associated desorption energetics with our acquired NMR
relaxation data.

Analysis of our TPD data was performed using the variable
heating rate method of Cvetanovié¢ and Amenomiya,**> which
has been applied to a variety of acidic zeolitic systems
elsewhere.®*"®” The relationship between desorption peak tem-
perature T, heating rates  and the probe molecule heat of
desorption AHg.s may be written

_ AI‘Ides 1

2In(T,) — In(p) = r 776
P

(11)
where R is the gas constant. A series of measurements
utilising different heating rates therefore facilitates a plot of
2In(T,) — In(p) against 1/T,, yielding a gradient equal to
AHg./R; this gradient is independent of the intercept para-
meter C, which is discussed further in the ESL.}

Fig. 4 summarises our acquired TPD data, obtained
using a range of heating rates between f§ = 2 K min~' and
B =20Kmin"". Solid lines indicate a fit to eqn (11) in each case,
yielding values of AHges for each SAR. These values, together
with the T/T, ratios extracted from the data within Fig. 2, are
summarised in Table 1.

Correlating NMR relaxation with desorption energetics

We now provide a comparison of our acquired NMR relaxation
data with the heats of desorption obtained from TPD analysis.
The aim of this comparison is to validate the use of nuclear

17756 | Phys. Chem. Chem. Phys., 2021, 23,17752-17760
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Fig. 4 TPD data acquired for pyridine desorption from HZSM-5 zeolites
with varying silica/alumina ratios (SAR). Data points indicate values of the
maximum desorption rate temperature T, obtained across multiple heat-
ing rates between f = 2 Kmin~tand = 20 Kmin™. Solid lines indicate a fit
to egn (11) in each case, which yields values of the pyridine heat of
desorption AHyes; the acquired values of AHyes are detailed in Table 1.

spin relaxation measurements for the comparison of zeolitic
materials exhibiting different acidities, and more generally to
extend the potential of such measurements - applied previously
as a non-destructive probe of surface affinities in mesoporous
systems - to microporous media.

The data within Table 1 reveals clear and notable correla-
tions between SAR, T,/T, ratios and AHy,s values. In particular,
an increase in AHges, Which correlates with decreasing SAR due
to an increase in the number of Brgnsted acid sites,”" can be
seen to correlate with an increase in T;/T, ratio; this observa-
tion indicates the measurement of nuclear spin relaxation
phenomena associated with basic probe molecules imbibed
within such systems provides a useful method for the evalua-
tion and comparison of zeolitic materials in terms of their
acidity. Following our derivation of eqn (8) we attribute this
observation to an increase in the ratio T gurf/Ts surr With
enhanced AHyq.

In previous work an empirical theory was developed to
formally relate the ratio T gue/T>sus With probe molecule
desorption energetics.*” It was found that a linear correlation
is expected to exist between desorption energetics and the
inverse relaxation time ratio —T,/T;. This relationship has been
verified for a range of water®> and short-chain hydrocarbons®’
imbibed within mesoporous catalyst support materials. To
explore whether this relationship also holds within micro-
porous structures we provide in Fig. 5 a comparison of this
inverse ratio, obtained from our NMR data in Table 1 as
—T,/T; = —1/(T4/T>,), with our AHg,, values. An extremely strong
correlation is observed between these metrics, providing
evidence that NMR relaxation data obtained from liquid-
saturated microporous materials can provide a quantitative
indication of surface interaction phenomena associated with
the strongest adsorption sites present.

This journal is © the Owner Societies 2021
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Fig. 5 Direct comparison of NMR and TPD data for pyridine adsorbed within
HZSM-5 zeolites with varying silica/alumina rations (SAR). The red line is a
linear fit to the data. SAR values are indicated above each data point.

Conclusions

We have detailed an investigation into the application of
nuclear spin relaxation measurements as a probe of sorption
energetics within microporous HZSM-5 zeolites of varying SAR.
Through a direct comparison with TPD analysis our results
indicate that the dimensionless ratio of relaxation time con-
stants Ty/T5, obtained here through the analysis of 2D 'H T;-T,
correlation data, provides a non-invasive probe of surface
affinity in microporous solids. For the specific case explored
here, clear sensitivity of this relaxation time ratio to zeolite
acidity has been demonstrated. Overall, our analysis method is
of interest as it is rapid, non-destructive and simple to imple-
ment, and may be readily translated to portable and low-field
benchtop NMR systems employed for materials screening and
quality control. Measurements take on the order of tens of
minutes to perform, reducing significantly the required experi-
mental time required for such analysis compared to typical TPD
analysis protocols, which may take >100 hours. Relaxation
measurements may therefore be employed in standalone form
to provide a rapid, qualitative indication of increasing surface
interaction strength across a given material series, or per-
formed in combination with at least two TPD calibration
measurements to yield quantitative measures of surface inter-
act strength, significantly reducing the required experimental
time for such analysis. These factors suggest such relaxation
time measurements represent a valuable tool for the character-
isation of microporous materials.
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