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Infrequent metadynamics study of rare-event
electrostatic channeling†

Yan Xie and Scott Calabrese Barton *

The efficiency of cascade reactions, which consist of multiple chemical transformations that occur in a

single pot without purification steps, is limited by the transport efficiency of intermediates between

adjacent steps. Electrostatic channeling is a proven strategy for intermediate transfer in natural chemical

cascades, but implementation into artificial cascades remains a challenge. Here, we combine infrequent

metadynamics (InMetaD), umbrella sampling (US), and kinetic Monte Carlo (KMC) models to

computationally study the transfer mechanism of glucose-6-phosphate (G6P) on a poly-arginine peptide

bridging hexokinase (HK) and glucose-6-dehydrogenase (G6PDH). Transport of G6P by hopping in the

presence of poly-arginine peptides is shown to be a rare event, and InMetaD is used to compute the

hopping activation energy. US simulations capture the configurational change in the desorption process

and enable the determination of the desorption energy. Parameterized by these results, a KMC model is

used to estimate transport efficiency for the bridged enzyme complex. Results are compared to a similar

complex using a poly-lysine bridge, using kinetic lag time as a metric. Even at a high ionic strength of

120 mM, poly-arginine peptides may be capable of more efficient transport as compared to poly-lysine,

with a predicted lag time of 6 seconds for poly-arginine, compared to a previously reported lag time of

59 seconds for poly-lysine. This work indicates that poly-arginine peptides may be an improved bridge

structure for electrostatic channeling of anionic intermediates.

Introduction

Cascade reactions that combine multiple chemical transformations
into a single step, without purification steps, have attracted
attention recently due to benefits such as minimal complexity,
reduced labor requirements, and decreased waste.1 Design and
control of cascade reactions requires a deep understanding of the
mechanism and a substantial toolbox with which to build cascade
architectures.

Many examples are found in nature where substrate channeling
improves the efficiency of cascade reactions, by enabling inter-
mediate transport between adjacent reaction active sites without
equilibrating with a bulk concentration.2 Intermediates can be
thereby protected from unfavorable binding or reaction in the
bulk, enhancing overall cascade reaction efficiency. Some strategies
of substrate channeling observed in nature are intramolecular
tunneling,3 chemical swing arms,4,5 spatial organization,4,6,7 and
electrostatic channeling.7–9 Electrostatic channeling controls the
transport of charged intermediates via electrostatic interaction with
the oppositely charged surface between active sites. It is a

promising way to channel artificial cascades because it is not
limited by structural aspects, and most metabolic intermediates are
charged.10

The transport efficiency of electrostatic channeling can be
measured by the determination of the transient lag time—the
time the system takes to reach steady-state flux. For a perfect
channeling mechanism, the lag time is near zero; for an
electrostatically channeled system, a lower lag time reflects
increased channeling efficiency.11

In recent decades, considerable efforts have focused on two
well-studied examples of electrostatic channeling in nature.
The first example is the bifunctional enzyme dihydrofolate
reductase-thymidylate synthase (DHFR-TS), where bounded
diffusion guides negatively charged dihydrofolate intermediates
on the positively charged protein structure between two active
sites.10 The other often studied example is the super enzyme
complex of malate dehydrogenase (MDH) and citrate synthase
(CS) within the tricarboxylic acid (TCA) cycle, where oxaloacetate,
carrying two negative charges, crosses the positively charged
surface between MDH and CS via electrostatic interaction.12

Structural characterization of each of these systems has revealed
a charged surface present between active sites, and lag time
analyses have demonstrated the influence of this surface on
kinetics.10,13 However, experimental approaches provide a limited
view of how intermediates interact with these electrostatic surfaces.
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Thus, advanced computational simulations provide a view into the
interaction mechanisms underlying electrostatic channeling.

Computational studies have addressed substrate channeling
mechanisms, including DNA-scaffolded bienzyme systems,7,14,15

co-immobilization,16 and encapsulation,17–20 in artificial cascades.
Our group and collaborators have recently reported studies of
electrostatic channeling in an artificial cascade comprising hexo-
kinase (HK) and glucose-6-phosphate dehydrogenase (G6PDH)
where the reactions take place according to Scheme 1.21–23

In those works, an enzyme complex of HK and G6PDH was
covalently conjugated by a positively charged poly-lysine peptide,
and the negatively charged intermediate glucose-6-phosphate
(G6P) was channeled through electrostatic interactions. A hopping
transport mode was considered, and diffusion and desorption
energy barriers were computed for intermediate transport
along the poly-lysine bridge. Computational results along with
experimental data were used to parameterize a kinetic Monte
Carlo (KMC) model to compute the transport efficiency of G6P in
terms of lag time. Computational results matched well with the
experiment, and both results demonstrated the effectiveness of
the poly-lysine bridge in decreasing lag time by the increasing
transport efficiency of the intermediate. Electrostatic channeling
efficiency was shown to decrease with increasing ionic strength,
and loss of intermediate was found to be significant at each
terminal enzyme, particularly for HK, which has a significant net
negative charge.

As an alternative cationic amino acid to lysine, arginine
residues are more polarized and can form multidentate
hydrogen bonds with phosphate groups,24 enabling stronger
interaction with charged intermediates. Because of the strong
interaction, poly-arginine peptides are more electrostatically
‘‘sticky’’ than poly-lysine, increasing both the desorption energy
and hopping activation energy of G6P on poly-arginine peptides.
High desorption energy lowers desorption probability and
prevents G6P’s leakage at high ionic strength.

However, such high hopping activation energy traps G6P in
energy wells on the poly-arginine peptide, increasing the time
scale between observed hopping events to hundreds of nano-
seconds. Hopping of G6P in the presence of arginine is thus a
rare event in MD simulations. In contrast, the hopping process
of G6P remains orders of magnitude faster than the HK
enzyme’s turnover frequency of 0.7 s�1.22

Based on these considerations, poly-arginine peptides represent
a promising electrostatic bridge candidate, and the study of rare
hopping events using poly-arginine bridges would benefit from
advanced sampling techniques. Among the methods of advanced
sampling of MD simulation, infrequent metadynamics (InMetaD)25

is efficient in calculating kinetic rates and has been successfully
applied to ligand binding and unbinding studies of various

systems.26–28 For example, InMetaD has successfully estimated
the unbinding rate of an inhibitor from the p38 mitogen-
activated protein (MAP) kinase to be 0.02 s�1, comparable to the
experimental result 0.14 s�1,28 and reveals the unbinding
mechanism of a ligand from a7 nicotinic acetylcholine receptor
with the unbinding rate to be 0.0033 s�1, comparable with the
experimental value of 0.0003 s�1.26

InMetaD enhances the sampling of a system by adding bias
on predefined collective variables (CVs) to release the system
from energy minima, enabling observation of system dynamics
and kinetics. A key aspect of implementing InMetaD is the
selection of CVs. Good CVs properly describe a system in terms
of both thermodynamics and kinetics, and common CVs
include separation distances between atoms and molecules,
bond angles, and combinations of these. Here we use infrequent
metadynamics to study the rate and energy barrier of hopping of
G6P on a poly-arginine peptide. The desorption pathway and
energy barrier were studied using umbrella sampling.29 Rate
constants obtained by infrequent metadynamics and umbrella
sampling were used as parameters for KMC studies to estimate
lag time due to transport over the polypeptide surface. These
studies provide an improved understanding of the influence of
scaffolding architecture in electrostatic channeling.

Methods
Molecular dynamics

Model poly-arginine peptide structures were built using Avogadro
software.30 Two alanine residues on each end and eight arginine
residues in the middle were used to form a peptide chain (Fig. 1a).
The structure of glucose-6-phosphate (G6P) was obtained from the
Zinc database.31 Molecular dynamics (MD) simulations were
conducted using GROMACS 2020.132 with the CHARMM36 force
field.33 G6P was parameterized using CgenFF (CHARMM General
Force Field).34 The TIP3P model was used to solvate the peptide–
ligand complex in a dodecahedral box, and six Cl� ions were
added to neutralize the system. Energy minimization was
conducted with the steepest descent minimization algorithm.
Afterward, the system was equilibrated with an NVT ensemble
for 0.1 ns and an NPT ensemble for 1.0 ns. MD simulations were
conducted under an NPT ensemble with temperature governed by
the velocity-rescale thermostat and pressure governed by the
Parrinello–Rahman barostat. Periodic boundary conditions were
applied in all directions for all simulations. Simulations were
conducted at five discrete temperatures between 280 K and 320 K
with the first and last alpha carbons of the peptide restrained to
mimic the situation when the bridge is incorporated into the
HK-G6PDH cascade. At each temperature, 32 parallel simulations
were run with random initial velocities generated according to the
Maxwell–Boltzmann distribution at the designated temperature.

Infrequent metadynamics

Metadynamics simulation was conducted using GROMACS
with the PLUMED 2.2 plugin.35 In a metadynamics simulation,
the external history-dependent bias potential V(s,t0) was applied

Scheme 1 Dual site conversion of glucose to gluconolactone via
hexokinase (HK) and glucose-6-phosphate dehydrogenase (G6PDH).
Glucose-6-phosphate (G6P) is a stable intermediate.
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over selected collective variables (CV) at time t0, with the
following equation:36

V s; t 0ð Þ ¼ o t 0ð Þ � exp �
XNcv

si

s� si t
0ð Þ2

� �
2si2

0
@

1
A (1)

where o is the height of each Gaussian-shape bias, and si is the
width of the bias deposited over the ith CV si. In well-tempered
metadynamics,37 o is determined by:

oðt 0Þ ¼ o0 exp
�bVðs; t 0Þ
ð1� gÞ

� �
(2)

where o0 is the initial height, b is 1/kBT, and g is the bias factor.
Recently, infrequent metadynamics was proposed to recover
the reaction time via:28

t ¼
ðtMetaD

0

dt 0ebV s;t 0ð Þ (3)

where tMetaD is the metadynamics simulation time when the
transition occurs, V(s,t0) is the bias potential at time t0, and t is
the unbiased reaction time. In this work, the initial height o0 is
1.0 kJ mol�1 and the bias factor g is 15. The bias potential was
deposited every 10 ps.

We adopted three CVs based on distances between the
phosphate group of G6P and arginine residues. The first,
labeled d246, represents the sum of the distances, di, between
the center of mass of the G6P phosphate group and the center
of mass of the guanidinium group of the ith arginine residue,
for three arginine residues numbered 2, 4, and 6 in Fig. 1a.
Initially, the phosphate group was closely associated with
these residues, where a close association is defined as di r
0.5 nm, and d246 = d2 + d4 + d6 = d246 E 1.5 nm, which was
considered to be a minimum value. Besides d246, 19 other
possible triple association basins were defined; the details are
in ESI.†

The second collective variable, nA, represents the number of
arginine residues with which the phosphate group is closely
associated at each time step. The following function defines nA

continuously:

nA ¼
X8
i¼1

1 di � 0:5 nm

1=2 cos 10p di � 0:5ð Þ½ � þ 1ð Þ 0:5 nmo di o 0:6 nm

0 di � 0:6 nm

8>>><
>>>:

(4)

The third and final CV is nS, representing the ligand’s
solvation number (i.e., the number of water oxygens near the
ligand). The value nS can be defined continuously as:28

nS ¼
Xnw
i¼0;

1� ðdi=d0Þ6
1� ðdi=d0Þ12

(5)

where nw is the total number of water molecules, di is the center
of mass distance between the five atoms on the phosphate
group of G6P and the oxygen atom of the ith water molecule,
and d0 was 0.3 nm. The Gaussian width si was set to 0.1, 0.1,
and 1.0 for CVs d246, nA, and nS, respectively.

A committer analysis was implemented in all simulations.
Specifically, 32 simulations were initiated with d246 E 1.5 nm and
terminated once any of the 19 predefined triple association energy
basins has been reached within a wall time of 48 hours (simulation
time B24 ns). A committer basin is defined based on the sum of
three associated distances, dijk where i, j, and k indicate an arginine
residue as labeled in Fig. 1a. When the sum dijk is less than 1.5 nm
for a specific basin, while dijk for all other basins is greater than
2.0 nm, that basin is considered to be occupied.

Once any of the predefined basins is occupied, the simulation
was terminated, and the simulated time was converted to unbiased
transition times using eqn (3). Assuming that the transitions are
stochastically independent, they may be treated as Poisson
processes, and the reaction times should follow an exponential
distribution.38 Thus, the empirical cumulative distribution function
(ECDF) was computed from the unbiased transition times, t, and
compared with the theoretical cumulative distribution function
(TCDF) of a homogeneous Poisson process:28

TCDF ¼ 1� exp
�t
t

� �
(6)

where t is the characteristic time, and the reciprocal of t is the
hopping rate. In this work, the transition times below 1 ms were
fitted into the cumulative function.

Fig. 1 (a) Scheme of the poly-arginine bridge. (b) Example of a triple association configuration between G6P and the poly-arginine peptide. G6P is
associated with the second, fourth, and sixth arginine residues.
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To validate the precision of the recovered transition times,
the two-sample Kolmogorov–Smirnov (KS) test was conducted,
following the procedure of Salvalaglio et al.,38 to determine
whether they were exponentially distributed. When the p-value
of the KS test exceeds the threshold of 0.05, the dataset is
deemed to conform to an exponential distribution. This is an
important step in InMetaD analysis as it ensures that recovered
times are uncorrelated and reliable.

Umbrella sampling

In the US simulations, the d246 triple association configuration
represented in Fig. 1b was used as the initial association state,
and a steered MD simulation was conducted by pulling G6P
perpendicular to the peptide axis while restraining the entire
poly-arginine backbone. The pull rate was 2 nm ns�1, and the
simulation was conducted for 0.8 ns, yielding a maximum pull
distance of 1.6 nm, defined as the distance between the center
of mass of the alpha carbons of arginine residues 2, 4, and 6,
and that of the phosphate group on G6P.

From this data, over 20 US windows were chosen, with a
higher window density below 1 nm, where the energy gradient
was greatest. All US simulations were conducted at 300 K with a
spring constant, k = 2000 kJ mol�1 nm�2 applied over two
coordinates. The first US coordinate was the pull distance x1 as
defined above. The second, x2, represents the pull vector,
defined as the magnitude of (CA2 + CA4 + CA6)/3 � P where CAi

is the position of the alpha carbon of the associated arginine
residue i, and P is the position of the phosphorus atom of G6P.

MD sampling of each US window was conducted for 20 ns.
Grossfield-WHAM39 code was used to calculate the 2D potential
of mean force. The average of the area defined by |x1 � x2| =
0.05 nm was used as the projection of the PMF on the pull
distance, x1 (Fig. S4, ESI†).

Kinetic Monte Carlo

The ratio of hopping rate to desorption rate for varying ionic
strengths was used to parameterize the kinetic Monte Carlo
model described by Liu et al.21 Six hopping sites on the peptide
bridge and two active sites on HK and G6PDH were considered
in the KMC model. The rate ratios for hopping from enzyme to
bridge and from the bridge to enzyme were assumed to be the
same as those on the bridge. At each site, all possible events
were considered (hopping, desorption, adsorption, and reaction)
and rate constants were assigned accordingly (Fig. S1, ESI†).
Reaction events were only considered at the enzyme active sites,
labeled as HK and G6PDH in Fig. S1 (ESI†). The timescale of
reactions at these sites was given by the rate constants k1

cat and k2
cat,

respectively. According to the KMC algorithm, a random number r1

between 0 and 1 was generated to choose an event:21,40

Xi0�1
i¼1

ki or1 � Gtotal �
Xi0
i¼1

ki (7)

where Gtotal is the sum of all rate constants at the current KMC
step. The chosen event, i0, was then executed with duration, Dt,
given by:21,40

Dt = �ln(r2)/Gtotal (8)

where r2 is the second random number between 0 and 1. After each
event execution, the occupancy and rate values were updated. The
simulation was conducted with 5 parallel runs of 1 ms duration
consisting of 50 parallel cascades. The lag time, t, was computed by
extrapolating the steady-state portion of the product accumulation
to intercept the time axis (Fig. S5, ESI†). All parameters used in the
KMC simulations are described in Tables S1 and S2 (ESI†).

Results and discussion
Electrostatic channeling dynamics

Previously, a poly-lysine bridge was found to electrostatically
channel glucose 6-phosphate (G6P) between the consecutive
enzymes hexokinase (HK) and glucose-6-phosphate dehydro-
genase (G6PDH).21 Here, we studied the molecular dynamics of
G6P’s motion in electrolytes of varying ionic strengths in the
presence of either a poly-lysine bridge or a poly-arginine bridge.
On the poly-lysine bridge, the association distribution, Fig. S2
(ESI†), indicates that G6P mainly associates with one or two
lysine residues, a mode that we describe as a single association
and a double association, respectively. A hop is made when
transferring from a double association to the next double
association with a single association as the intermediate
state.21 The hopping rate was estimated to be 0.6 � 0.04 ns�1

at 310 K.21 In comparable simulations for G6P channeling on
poly-arginine peptides, three dominant interaction energy were
observed from the electrostatic interaction energy plot as
shown in Fig. S3 (ESI†). After visualizing the trajectories, we
observed that these three energy states correspond to the three
association states of single, double, and triple. In certain time
periods, rapid fluctuations in association state are observed, for
example near 40 ns and 80 ns in Fig. S3 (ESI†). Triple association
with electrostatic interaction energy of 750 kJ mol�1 on poly-
arginine peptides is much stronger than the double association of
400 kJ mol�1 on poly-lysine peptides.22 In addition, association
with three arginine residues, or triple association, was primarily
observed, as shown structurally in Fig. 1b for the poly-arginine
bridge. This is possible because of the longer side chain of
arginine, making it more amenable to triple associations.

Due to this strong electrostatic interaction, escaping from
the energy well of triple associations is rarely observed within
the time scale of MD. Fig. 2a shows residues with which G6P
associates (di o 0.5 nm) and the number of associated residues
over time at 293 K. After an initial period of the double
association with residues 6 and 7, and then with residues 3
and 5, G6P was trapped in the triple association with residues 1,
3, and 5 starting at B26 ns. As temperature increases (Fig. 2b),
the occurrence of a single association remains relatively rare,
while that of a double association decreases, and that of a triple
association increases. In our observations, triple association
dominates over the entire simulated temperature range from
293 K to 318 K. Thus, we define a full hop on the poly-arginine
bridge as a transition between different triple association
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states. To increase the frequency of transitions, we seek
advanced sampling techniques.

Hopping activation

Among the enhanced sampling methods of molecular
dynamics, metadynamics is efficient in forcing MD systems
out of local energy minima, enabling the sampling of otherwise
inaccessible regions by applying a history-dependent bias.36

The key step of applying metadynamics is the selection of
collective variables (CVs). Here we biased three CVs with the
following motivations: (1) biasing d246 to force the system out of
its initial triple association state; (2) biasing nA to destabilize
other triple-association energy basins and enable the system to
move to any other association states such as double or single;
(3) biasing nS to accelerate water molecule dynamics around
G6P without affecting interaction with arginine residues.

However, metadynamics is mainly used to quantify thermo-
dynamic properties and is not generally applied to recover
kinetic information. To calculate the rate of hopping between

triple association states, we adopted infrequent metadynamics
(InMetaD).25 The essential difference between metadynamics
and InMetaD is that in InMetaD, the rate of bias deposition is
much slower than in metadynamics, and is intended to move
the system out low-energy basins without disturbing the
kinetics in high-energy transition regions.25,38

The theoretical and empirical cumulative distributions of
the transition times at IS = 0 mM, 310 K are shown in Fig. 3a,
where the characteristic time, t, was 126 � 3 ns. The p-value
was 0.95 as calculated by the Kolmogorov–Smirnov (KS) test.41

This value is much greater than the threshold of 0.05, indicating
that the transition time conformed to an exponential distribution.
This approach was subsequently applied to calculate values of t
for temperatures from 280 K to 320 K, for which all the p-values
were above 0.05.

The hopping rate, khop, can be defined simply as khop = t�1.
At 310 K, khop is 7 � 0.6 ms�1. Compared to the poly-lysine
bridge, the hopping rate on the poly-arginine bridge is 85-fold
slower at 310 K. Similarly, the hopping rates and their errors

Fig. 2 (a) Associated arginine residue indices (top) and evolution of association number (nA, bottom) over 100 ns. (b) Association state probability
dependence on temperature.

Fig. 3 Hopping activation energy by InMetaD. (a) Cumulative probability distribution of transition time from independent InMetaD simulations at IS = 0 mM,
310 K. Theoretical cumulative probability distribution (TCDF) is in blue, and the stepwise empirical cumulative probability distribution (ECDF) in black was fitted
from the unbiased transition times, t. (b) Arrhenius plot of the hopping rate at varying ionic strength. The black line represents an Arrhenius fit for all ionic
strengths. The shaded area in blue is the 95% confidence interval.
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were estimated from the characteristic times and their errors
across all the studied temperatures and ionic strengths.
Overall, khop displays Arrhenius behavior, and the hopping
activation energy was computed for a range of ionic strengths
from 0 mM to 120 mM (Fig. 3b). No trend was observed for the
dependence of either hopping rate or activation energy with
respect to ionic strength. This observation that ionic strength
had little impact on hopping kinetics of G6P on poly-arginine
peptides is consistent with previous calculations using the
poly-lysine peptide.21 In both cases, transport is influenced
locally by short-range interactions within the Stern layer, where
counterions have relatively little influence. Hopping activation
energy of 25 � 3.6 kJ mol�1 was obtained by simultaneous
fitting of rate data at all ionic strengths and is used in the KMC
model. Notably, this hopping activation energy value of
poly-arginine is about double that observed for poly-lysine
(13 � 0.5 kJ mol�1).21

Desorption energy

Mobile G6P traversing the electrostatic surface of a charged
peptide may desorb into the bulk, which represents the major
loss mechanism in electrostatic channeling of cascade reactions.
To quantify the desorption energy and the ratio of hopping rate
to desorption rate, umbrella sampling (US) simulations were
conducted. This desorption energy is a free energy difference
that considers changes in entropy. It is therefore not directly
comparable to the electrostatic interaction energy, which is a
potential energy difference that does not include entropic
effects. We computed the desorption energy from the triple
association state by considering the center of mass distance
between G6P and associated arginine residues as a CV. The
desorption energy dependence on ionic strength was studied, as
shown in the potential of mean force (PMF) plot in Fig. 4a.
Here, the PMF is referenced to the triply associated state, and
we observed the desorption energy at zero IS to be 47 �
0.2 kJ mol�1. This value is double the desorption energy from

the poly-lysine peptide,21 consistent with the argument that the
triple association of G6P with poly-arginine peptides was
much stronger than the double association with poly-lysine
peptides.

It is worth noting the feature that appears in the PMF traces
of Fig. 4a near 0.72 nm, which varies with ionic strength. By
inspection of trajectories, we observed that 0.72 nm is a
position beyond which the system transitions from triple to
double and single association. Generally speaking, this transition
feature becomes less smooth and shifts to lower distances at
higher ionic strength, reflecting the effect of counterions to
weaken electrostatic interactions with the arginine bridge.
As shown in Fig. 4b, the desorption energy declines significantly
with increasing ionic strength. This is explained by the counterion
shielding of long-range electrostatic forces between G6P and the
arginine bridge.

Based on the above InMetaD and US results, we can calculate
the rate ratio of hopping to desorption by:

khop

kdes
¼ A � expð�Ghop=RTÞ

A � expð�Gdes=RTÞ
¼ exp �Ghop � Gdes

RT

� �
(9)

where Ghop comes from InMetaD and Gdes from US. The frequency
factor, A, is assumed to be the same for both hopping and
desorption in the same system. Due to the large difference
between hopping activation energy and desorption energy, the
poly-arginine peptide bridge displays a forty-fold larger hopping:-
desorption rate ratio, as compared to that of the poly-lysine
bridge, at zero ionic strength (Fig. 4b). This ratio decreases to
only six-fold at IS = 120 mM due to electrostatic shielding.

Transfer efficiency

We conducted Kinetic Monte Carlo (KMC) simulations to study
the transfer efficiency and quantify the reaction lag time of the
two-step cascade. The KMC model was parameterized by using the
rate ratio of hopping and desorption (Fig. 4b) and experimental
turnover frequencies of HK and G6PDH.22 In the KMC model, we

Fig. 4 Desorption energy by umbrella sampling (US). (a) Potential of mean force (PMF) profile for varying ionic strength. (b) Dependence of desorption
energy (open symbols) and hopping : desorption rate ratio (closed symbols) on ionic strength for poly-arginine peptide (blue triangles) and poly-lysine
peptide (orange squares).
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set the hopping rate to be 100 times the turnover frequency. This is
because the enzyme turnover frequencies (0.7 s�1 for HK, 6.2 s�1

for G6PDH) are much lower than the hopping rate, and we are only
interested in the magnitude difference between hopping and
reaction. We also neglected the desorption of intermediate from
HK and assumed that the hopping to desorption ratio from the
bridge to G6PDH is the same as that on the bridge. These
assumptions simplify the model to focus on a comparison between
poly-arginine bridges and poly-lysine bridges. Using these
assumptions, the KMC model can predict and compare lag time
results for both the HK-G6PDH couple bridged with poly-lysine or
poly-arginine and freely standing HK-G6PDH without any bridges.

Stop-flow lag time analysis was employed to evaluate the
channeling efficiency from all the KMC data. As shown in Fig. 5,
the lag time for the poly-arginine bridge was 1.9 s at zero IS and
increases slightly to 6.5 s at 120 mM. In comparison, the lag
time for the poly-lysine bridge increases three-fold over the
same range of ionic strength. Comparison to calculated results
for the free enzyme,21 poly-lysine bridge,21 and poly-arginine
bridge provides a clear indication that electrostatic channeling
can significantly improve transfer efficiency as compared to a free
enzyme system, and that poly-arginine represents a better bridge
candidate compared to poly-lysine for this molecular motif.

As the reaction system achieves steady state, desorption
from the bridge approaches equilibrium, creating the possibility
of multiple intermediates adsorbed there. To understand this, we
used KMC model results to obtain the probability distribution for
the number of the adsorbed intermediates on the poly-lysine and
the poly-arginine bridges, each with six hopping sites (Fig. S6,
ESI†). Our results show that the bridge was empty for about 80%
of the time, the bridge adsorbed one intermediate for about 20%
of the time, and the occurrence of more than two adsorbed
intermediates was rare for both poly-lysine and poly-arginine
bridges. This can be explained by the fact that the turnover
frequency of G6PDH is much faster than that of HK and the
transit time of the intermediate on either the poly-lysine bridge or
the poly-arginine bridge is even faster, so there is relatively
little accumulation of G6P intermediates on the bridge.
Owing to its higher adsorption energy, the poly-arginine bridge

does demonstrate a consistently higher probability for multiple
adsorbed intermediates as compared to poly-lysine.

This work only accounts for the movement of G6P on the
bridge and did not consider the desorption from HK active site
to bridge and bridge to G6PDH active site. These phenomena
lead to additional loss of intermediate transport efficiency and
therefore higher lag times.23 Additionally, the model assumes
that the hopping rate between the bridge and enzyme is the
same as that on the bridge, which is only a rough approximation.
A more realistic prediction of transfer efficiency and lag time
would be obtained by studying the transport of intermediate
over the enzyme surfaces in the presence of the poly-arginine
bridge, as has been demonstrated for the poly-lysine bridge.
We are also pursuing experimental validation of these results by
synthesis of the HK-polyArg-G6PDH system followed by stop-flow
experiments to determine lag time.

Conclusions

The transport of G6P in the presence of poly-arginine peptides was
investigated using the combination of infrequent metadynamics
(InMetaD) and umbrella sampling (US) in MD simulations.
Although arginine and lysine both carry one positive charge, the
interaction of G6P with arginine is much stronger than that with
lysine. The strong local interaction reduces hopping rates 85-fold at
310 K as determined by InMetaD. The desorption of G6P from
the triple association on poly-arginine peptides displays large
fluctuation due to the transition from triple association to double
and single association. The hopping activation energy is less
sensitive to ionic strength change compared to the desorption
energy, leading to large hopping : desorption rate ratio that persists
at high ionic strength.

Kinetic Monte Carlo studies based on this rate ratio predict
significantly lower lag times for systems built with the poly-
arginine bridge as compared to the poly-lysine bridge, and lag
time is more resistant to changes in ionic strength. These
results will be ameliorated somewhat by including transport
losses in the vicinity of the enzymes, an effect that can be
studied computationally and validated experimentally.

This demonstrates the use of InMetaD to study transport
phenomena at longer time scales, which may be applied
to channeling phenomena in other multi-enzyme fusions
including TS-DHFR and MDH-CS. This work also aids the design
of efficient artificial cascade reactions using electrostatic
bridges.
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Fig. 5 Comparison of calculated lag time at varying ionic strength
between the free enzyme system, the poly-lysine bridge channeled
system, and the poly-arginine bridge channeling system.
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