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First principles characterisation of bio–nano
interface†
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Nanomaterials possess a wide range of potential applications due to their novel properties and

exceptionally high activity as a result of their large surface to volume ratios compared to bulk matter.

The active surface may present both advantage and risk when the nanomaterials interact with living

organisms. As the overall biological impact of nanomaterials is triggered and mediated by interactions at

the bio–nano interface, an ability to predict those from the atomistic descriptors, especially before the

material is produced, can present enormous advantage for the development of nanotechnology. Fast

screening of nanomaterials and their variations for specific biological effects can be enabled using com-

putational materials modelling. The challenge lies in the range of scales that needs to be crossed from

the material-specific atomistic representation to the relevant length scales covering typical biomolecules

(proteins and lipids). In this work, we present a systematic multiscale approach that allows one to

evaluate crucial interactions at the bionano interface from the first principles without any prior

information about the material and thus establish links between the details of the nanomaterials

structure to protein–nanoparticle interactions. As an example, an advanced computational characterization

of titanium dioxide nanoparticles (6 different surfaces of rutile and anatase polymorphs) has been

performed. We computed characteristics of the titanium dioxide interface with water using density

functional theory for electronic density, used these parameters to derive an atomistic force field, and

calculated adsorption energies for essential biomolecules on the surface of titania nanoparticles via direct

atomistic simulations and coarse-grained molecular dynamics. Hydration energies, as well as adsorption

energies for a set of 40 blood proteins are reported.

Introduction

Throughout the 21st century, Feynman’s vision of the control of
materials down to the atomistic level has begun to take shape
in the form of nanotechnology: the study and use of materials
of characteristic sizes on the order of 1–100 nanometres. At this
scale, matter behaves significantly differently to bulk materials
as a consequence of increased surface area, modified coordination
of surface atoms, and different electronic band structures, amongst
other properties. Consequently, these nanoparticles (NPs) may
exhibit properties varying dramatically from the bulk materials,
from absorbing specific wavelengths of light to increased catalytic

activity. These effects may be tuned by manipulating the average
size and shape of the NP, and as a result, nanoscale particles and
fibres have found use in areas as diverse as food, medicine,
cosmetics, and construction materials.

In nanotechnology applications involving biological tissues
there is an enormous diversity and complexity of responses and
impacts, which are believed to be induced and steered by
interactions at the NP surface. These biomolecules consist of
a relatively small number of components, with only 20 amino
acids present in tens of thousands of proteins, and only 6
elements – carbon, hydrogen, nitrogen, oxygen, phosphorus
and sulphur – comprising most of the biomolecules. Given this
highly structured and repetitive nature, it can be hoped that the
bio–nano interactions are controlled by only a few material
parameters. While there are many possible combinations of
these atoms that may be biologically relevant, some of these
combinations are far more frequent and may play the
dominant role in the entire chain of molecular events following
the contact of an NP with biological fluids and tissues.
In particular, it can be expected that the interaction of NPs
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with water, amino acids, segments of lipids, sugars, and nucleic
acids is especially important. The interactions with these
representative fragments may constitute the material’s finger-
print that is predictive of consecutive biological responses.1

Indeed, the NP–protein corona, the layer of adsorbed molecules
formed upon immersion of the NP into a biological fluid, was
found to be predictive of the NP biological activity such as
association with live cells.2 It is reasonable to assume that the
contents of this corona is highly dependent on the interaction
of the NP with individual amino acid residues.

In contrast to the relatively stable and well-defined realm of
biomolecules, the world of nanomaterials is heterogenous and
subject to continuous innovation. Thousands of novel NP
variations come to market annually. The materials are adjusted
and modified for specific purposes through multiple methods.
The optimisation of nanomaterials for the best performance
and the lowest risk may require experiments with live cells or
live animals, which often represents the most expensive and
time-consuming part of the material development and approval
for applications. Replacement of such experiments by in silico
methods could not only help to save resources but would also
enable a much deeper approach to material development that
is based on the knowledge of the relationships between the
material characteristics and their activities. In this way, one can
create materials that are safe by design. An establishment of
quantitative models relating the NP structure to specific
activities is therefore a sacred goal of materials research.

The possibility to model and predict the biological activity of
NPs from first principles seems to be beyond the capacity of
even the most modern computers due to the typical time and
length scale involved and complexity of the biological response.
An alternative is the construction of a predictive system by
combining physics-based modelling (up to the limits imposed
by the system size) with a data-driven approach to relate the
physical molecular events to the biological events of interest.
Such physical molecular events (e.g. biomolecular adsorption
on the NPs, biomembrane contact, penetration, or disruption)
can be considered as initiating events of biological pathways,
and thus be predictive of the outcomes.3,4 Although direct
molecular simulation can reach the relevant system sizes that
include a NP and proteins or lipid membranes, in practice
obtaining results on meaningful timescales using atomistic
models would take an infeasible amount of computational
time, with even state-of-the-art techniques enabling only a few
microseconds of the system’s evolution. 5 To be able to discern
between variations of NPs by their interaction with various
biomolecules we therefore require a multiscale modelling
scheme that can tackle the bio–nano interface and relate the
respective interactions to the details of the NP structure derived
from the first principles.

Recent literature presents multiple examples of models
predicting biological activity of nanomaterials to their physico-
chemical properties. It is known that metal ion release rates
from metal oxide NPs and conduction band gaps correlate with
cytotoxicity.6–8 The overlap of conduction band energy levels
with the cellular redox potential in such systems determines

the ability of NPs to induce oxygen radicals, oxidative stress, and
inflammation.7,8 Beside the hazard itself, the transport and
exposure characteristics can also be related to the NP properties.
Specifically, it has been shown that statistics of protein
adsorption on NPs correlates with the NP cell association.9,10

Some of the properties, such as hydrophobicity, protein
adsorption affinity, dissolution rates and the ability to generate
reactive oxygen species, were identified by the nanosafety expert
community as determinants of biological activity,2 and their
provision is seen as a crucial step towards the development of
predictive schemes. Where such properties are not available
experimentally, materials modelling can be useful to provide
the necessary data. From the point of view of rational materials
design, such an approach would be most valuable if the
modelling did not rely on any experimental characteristics and
evaluated the materials’ characteristics from first principles.

In this work, we introduce a systematic method for char-
acterizing the interactions between inorganic NPs and bio-
molecules from first principles using coupled quantum
chemistry, atomistic molecular dynamics, and mesoscopic
methods. We obtain results for both the rutile and anatase
forms of TiO2 and demonstrate the calculation of the free
energy of adsorption of a range of proteins to titania NPs of
varying radius and surface potential. The methodology
proposed here can straightforwardly be adapted to other nano-
materials and the force field obtained for atomistic simulations
of titanium dioxide applied to its interactions with molecules
other than the biomaterials considered here.

Methods

We propose here a systematic approach to generating a
quantitative description of a specific bio–nano interface using
materials modelling. Our multiscale method includes:
� evaluation of detailed properties of the NP interface with

water and parameterization of the atomistic force field for the
material using electronic structure methods.
� calculation of interactions of the biomolecule building

blocks (amino acids, lipid segments, DNA bases) with the
surface of the material and interaction between the building
blocks at the atomistic level at the specified conditions.
� parameterization of the coarse-grained (CG) force field for

biomaterial building blocks and construction of the sample of
arbitrary size and shape.
� CG modelling of interaction of entire biomolecules with

the NP surface and calculation of preferred orientation and the
mean adsorption energy.

We start with evaluation of intrinsic properties of the target
nanomaterial, namely titania, using common electronic structure
methods. We first evaluate the relevant material (TiO2)
characteristics (band structure, ionisation potential, electro-
negativity, etc.) relating to the electronic structure using ab
initio models. We further use ab initio molecular dynamics
(MD) to quantify the hydration state of the material surface and
derive parameters of an atomistic force field. We then perform
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atomistic MD simulations with the obtained force field to
evaluate the immersion enthalpy for the material in water, as
well as adsorption energy profiles (the potentials of mean force
(PMF)) for essential biomolecules such as lipids and proteins,
lipid bilayers, and molecular fragments. To compute further
characteristics of the bionano interface we use these PMFs
within the recently proposed CG United Atom approach
(UA)11,12 to obtain binding free energies of proteins on NPs
constructed from these materials over a range of radii and
surface charges.

Semi-empirical, DFT and DFTB

We used density functional theory and semi-empirical methods to
calculate the electronic structure descriptors of TiO2 materials.
Semi-empirical calculations have been performed with the
MOPAC computational code.13 All material properties (band
gap, ionization potential, Mulliken electronegativity, absolute
hardness, dispersion, polarizability and dipole moment) were
obtained with the PM6 method using the D3 correction on the
DFT optimized structures.14 Geometry optimizations of the rutile
and anatase TiO2 bulk structures were performed with SCC-
DFTB15 using the DFTB+ software16 with the parametrization
tiorg-0-117 and with the SIESTA code18 with the PBE functional19

and a DZP (double-z polarized) basis. Troullier–Martins
pseudopotentials20 were applied on the core electrons.

Force field parameterization

The quality of the force field used in classical atomistic
simulations is of primary importance for the simulation to
produce reliable results. While there exist validated force fields
describing bulk materials or aqueous solutions of organic and
biomolecules, they are less developed for description of surface
properties of (nano)materials. For modelling of metal or metal
oxide surface in aqueous media an additional problem is
adequate representation of the material surface which is
modified (in comparison to the bulk material structure) by
reactions with water building a surface-specific layer containing
hydroxyl groups, bound molecular water or other surface
modifications.

Previously, a force field for classical MD simulations of TiO2

was developed by Matsui and Akaogi.21 In that force field Ti and
O atoms interact by Buckingham and electrostatic potentials
without bonded interactions. The force field of ref.21 was
designed to model bulk materials and possible phase transfor-
mations, but its applicability to describe TiO2 hydrated surface
and compatibility with biomolecular force fields remain
unclear. Recently, some of us22 have developed TiO2 force field
of a standard molecular-mechanical form with electrostatic,
Lennard-Jones and bonded interactions, which was further
modified by scaling of charges according to the electronic
continuum correction theory.23 The force field of ref.22 was
parametrized to fit available experimental data on crystal
structures and water adsorption enthalpies. This use of only
non-extensive experimental data left uncertainties in the
definition of some parameters as well as about details of the
hydrated surface structure. We therefore adopted a new strategy

to derive force field for classical MD simulations of nano-
particles in aqueous biomolecular environment based on high
quality ab initio modelling.

To parameterize the force field for titanium dioxide as
employed in the atomistic simulations presented here, we used
a multiscale approach. In this method, the detailed structure of
the hydroxylated layer of a metal oxide surface, as well as
parameters of the force field describing interactions of the fully
hydrated surface with surrounding biomolecular solution are
obtained from high-quality ab initio MD simulations. Ab initio
MD simulations provide a representative set of snapshots
correctly representing thermal fluctuations of the studied
systems, which is used for the further analysis. The method
of deriving force field parameters is based on partitioning the
quantum mechanical electron density into atomic basins. We
apply the population analysis method by Manz24 to partition
the electron density among the atoms and extract individual
net atomic charges and atomic volumes for individual atoms,
as well as information on the bond orders for individual pairs.
Briefly, the method consists of the following.

First, the net atomic charges (NAC), defined by the DDEC6
partitioning method,25 are computed:

q ¼ z�N ¼ z�
ð
d3rwðrÞnðrÞ (1)

Here z is the atomic number and N is the number of electrons
assigned to the atom. n(r) is the total electron density, and w(r)
is the spherical weight attributed to the atom by the partitioning
method. NACs provide partial atom charges which are routinely
used to model electrostatic interactions in molecular simulations
with empirical force fields.

Second, the cubed atomic moment (CAM) are determined:

V ¼ r3 ¼
ð
d3rr3wðrÞnðrÞ (2)

CAM corresponds to the volume occupied by the atom in the
material and it is proportional to the local polarizability.25

Third, the concept of bond order (BO), defined by26

Dij ¼ 2

ðð
d3rd3r0

wiðrÞwj r
0ð Þ

wðrÞw r0ð Þ nðrÞn
DXH r; r0ð Þ (3)

which quantifies the amount of shared electron density
between atoms i and j. Here, wðrÞ ¼

P
i

wiðrÞ is the total spherical

weight, nDXH(r, r0) is a normalized probability distribution (over
r0 such as to exclude exactly one electron) that quantifies the so-
called dressed exchange hole. The electron density close to the
nucleus is depleted due to the exchange interaction. This
concept can be modified for bond order by contraction/expan-
sion of the density to align bond orders with the conventional
view. With this definition the bond order between two atoms
decreases smoothly to zero as the distance between them
approaches infinity.

As a training ensemble, we have used trajectories generated
in ab initio molecular dynamics simulations described
previously.27 Briefly, six fully hydrated TiO2 planar surfaces of
low surface energy (rutile 110, 100 and 001, and anatase 101,
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100 and 001), each arranged in 2D periodic slab immersed in
water, were simulated with DFT computed forces during 50 ps,
and 20 snapshots for each surface taken each 1 ps from the last
20 ps of the simulations were taken for the analysis. This set of
surfaces form a good representation of the surface of a rutile or
anatase nanoparticle without requiring the significant
computational time required to simulate an entire nanoparticle.
Each member of the ensemble was subject to atom-in-molecule
analysis with the Density-Derived and Chemical (DDEC6)
method25 to determine net atomic charges, volumes, and bond
order parameters using ChargeMol v3.5 software.28

We have used the calculated bond order to determine
whether any two atoms are bound by setting a threshold value
of 0.25. The local connectivity of atoms was used to determine
the force field types. Disregarding atom coordinations which
were observed in less than 1% cases, we identified two force
field types for Ti-atoms, five types of oxygen atoms, and one
type of hydrogen, as described in the Results section below. For
each type of atom, we have computed average net atom charges,
eqn (1), and cubic atomic volumes, eqn (2). Computed net
atomic charges were used directly to determine partial atom
charges of the force field, with a minor modification providing
total zero charge for stochiochemical sample of TiO2. Net
atomic volumes defined by eqn (2) and averaged over identified
force field types were used to determine parameters B of the
Lennard-Jones potential using the theory developed by Tka-
chenko and Scheffler,29 and B(V) dependences numerically
computed and tabulated for each atom nucleus by Gould.30,31

Finally, the repulsive Lennard-Jones parameters A were determined
by simple scaling relationships from the atomic volumes:

A ¼ 1

2
B 2RAð Þ6 (4)

where RA is effective van der Waals radius (equal to the minimum
of the Lennard-Jones potential) corresponding to the atomic
volume V. For hydrogen, we assumed zero Lennard-Jones para-
meters, to make it compatible with TiP3P water model.

Lipid–NP interaction and heat of immersion

The interaction of NPs with lipids can be expected to differ
depending on whether single lipids or larger structures are
considered, and to parameterise these we consider both adhesion
energies for a bilayer of lipids and the binding energy of single
lipids, calculated through atomistic simulations as detailed
previously.32 We additionally calculate heats of immersion as
follows. The change in enthalpy upon immersion was estimated
by conducting simulations of three systems: the surface in contact
with water, the surface in a vacuum, and a simulation of bulk
water containing an identical number of water molecules as the
first system. The immersion enthalpy was calculated from

DHimm ¼
1

2Ai
Hsurface-water �Hsurface-vacuum �Hwaterð Þ (5)

where H is the enthalpy of the system and Ai is the area of the
interface. All systems were simulated for 400 ns with 10 ns
equilibration.

Adsorption of biomolecular fragments

To characterize interactions between NP surface and small
biomolecular fragments, we have selected a set of 30 small
molecules which represent all typical molecular fragments
present in biomolecular fluids, and computed PMF and
binding free energies of these fragments to NP. There are
20 naturally occurring amino acids of which the proteins of
living organisms consist. Each full amino acid contains a pep-
tide backbone fragment which is common to all amino acids. In
order to avoid redundancy, we excluded the backbone fragment
and considered the side chain analogues for all amino acids
excluding glycine (for which the side chain analogue is just an H
atom) and proline which has a different structure. This set of
side chain analogues consists of 18 molecules. Histidine exists in
two isomeric forms (denoted as HIE and HID) and we include
both. These side chain analogues also have the same structure as
hydrophobic lipid tails and certain common lipid head groups
(phosphatidylserine, PS and sphingomyelin, SM), further
extending the range of larger biomolecules covered by this set.
Furthermore, components of headgroups of lipids and sugars
are included. The full list of chosen biomolecules consists of:
� Amino acid side chain analogues where backbone fragment

is substituted by a hydrogen atom. We use notations of conven-
tional amino acids for the side chain analogues.
� Glycine and proline amino acids with the backbone

fragment (GLY, PRO).
� Modified charged forms of amino acids with pKa values

between 4 and 10 (HIS+, GLU-protonated, CYS-, denoted HIP,
GAN, CYM)
� Segments of the most abundant lipids: choline (CHL) and

phosphate (PHO) group of phosphatidylcholine (PC) lipids; amino
group (ETA) of ethanolamine lipids (PE), ester group (EST)
� D-Glucose representing sugars (DGL).
The list of molecules introduced here covers all the main

types of chemical entities: hydrophobic, polar, aromatic, and
charged, and represent all typical molecular fragments present
in biofluids. Thus, the set of PMFs and binding free energies of
these molecules makes a ‘‘fingerprint’’ of NP with respect to
bio–nano interactions.

Calculations of PMFs and binding free energy for each small
molecule from the set near a fully hydrated 2D-periodic TiO2

slab were performed in 300 ns adaptive well-tempered
metadynamics simulations using simulation setup previously
reported12 and summarized in the ESI.†

Biomolecular adsorption

Given the complexity of protein–NP systems, it is of interest to
produce a scheme to produce adsorption free energies for large
proteins based on these simple fragments. The amino acid
PMFs can, in principle, be used to calculate the binding energy
to nanoparticles for larger biomolecules (e.g. proteins)
assembled from these fragments under the approximation of
pairwise additivity. However, the PMFs include only interactions
between the biomolecule and the nanomaterial up to a distance
of about 1 nm, whereas the bulk of the nanomaterial interacts
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with these molecular fragments via the long-range van der Waals
interaction which may remain significant at distances beyond
the cut-off used for the calculation of the PMFs. To include these
effects while avoiding the need to explicitly sum over the
interaction between each atom in the NP and in the target
biomolecule, we employ the continuum approximation and treat
each AA bead as a sphere interacting with the spherical
NP through the Hamaker approach. In this model, the bulk
interaction between two spheres of radii R1, R2 with the surface–
surface distance d is given by,33,34

U dð Þ ¼�A12

6

2R1R2

2R1 þ 2R2 þ dð Þd þ
2R1R2

2R1 þ dð Þ 2R2 þ dð Þ

�

þ ln
2R1 þ 2R2 þ dð Þd
2R1 þ dð Þ 2R2 þ dð Þ

�
;

(6)

where the quantity A12 = p2lr1r2 is referred to as the Hamaker
constant (in vacuum) and is a measure of the magnitude of the
long-range dispersion interaction based on the number density
of the two materials r1, r2 and the vdW interaction strength l.
A derivation of the dispersion interaction including the effects of
the medium in which these particles are immersed is achieved
through Lifshitz theory.34 For materials denoted i = 1, 2 inter-
acting through a medium i = 3, the constant A12 must be
replaced by another one A123 expressed in terms of the refractive
indices (at visible wavelengths) of the materials ni, their dielectric
constants ei and the main electronic absorption frequency ne (in
the UV) for material 2:34

A123 ¼
3

4
kBT

e1� e3ð Þ
e1þ e3ð Þ

e2� e3ð Þ
e2þ e3ð Þ

þ3hne
8
ffiffiffi
2
p n1

2�n3
2

� �
n2

2�n3
2

� �
n12þn32ð Þ

1
2 n22þn32ð Þ

1
2 n12þn32ð Þ

1
2þ n22þn32ð Þ

1
2

� �

(7)

Clearly, this value will be different for each biomolecule that
may interact with the NP. The characteristic radii of the amino
acids and the Hamaker constants were calculated as described
elsewhere.35

Once the PMFs and Hamaker constants for the set of amino
acids and other fragments of interests have been calculated, we
employ the UA methodology12 to calculate the binding energies
of a set of reference proteins (see ESI†) onto spherical titania
NPs. In this model, the protein is represented as a set of beads,
with each bead representing one amino acid. The interaction
potential between the NP and a bead consists of three
components. The first is the PMF describing the short-range
potential obtained through atomistic simulations as described
in the previous section and corrected to take into account the
radius of the NP by applying a distance-dependent scaling
factor.12 Using this correction, a set of PMFs calculated for a
planar slab of the material may be applied to all spherical NPs of
this material, substantially reducing the computational time
required to evaluate the binding energy for a set of NPs of
the same material. To account for the bulk of the NP beyond

the cut-off range of the PMF, the van der Waals interaction is
added as the second component. This term is corrected to
exclude the volume of the NP sufficiently close to the AA that
it would be included in the PMF.

The final component is the electrostatic interaction in the
Debye–Hückel approximation, which accounts for the inter-
action between the surface charge of the NP and charged
residues and is specified in terms of the surface (zeta)
potential.12 The total potential for a given bead type is calculated
by summing over these three contributions, and then summed
over all beads to produce the total interaction potential at a given
orientation of the biomolecule relative to the surface of the NP,
denoted U(z, f, y). Here, z gives the distance between the centre
of the NP and the closest point of the protein. The binding
energy for a protein on a spherical NP of radius R as a function of
the orientation of the protein f, y is given by,11

Eðf; yÞ ¼ �kBT ln
3

ðRþ aÞ3 � R3

ðRþa
R

z2 exp
�Uðz;f; yÞ

kBT

� �
dz

� �
;

(8)

where a is a function of f, y and gives the maximum distance of
the protein from the NP before the protein is deemed to be
unbound. Performing a Boltzmann-weighted average over
orientations produces the mean binding energy,11

Ead ¼
Ð Ð

P E;f; yð ÞE f; yð ÞdfdyÐ Ð
P E;f; yð Þdfdy (9)

with the weighting function P(E, f, y) = sin y exp(�E(f, y)/kBT).
Electrostatic potentials were calculated assuming a Debye

length of 0.766 nm as calculated for an electrolyte concen-
tration of 150 mmol in water at 300 K. Binding energies were
calculated for radii in the interval 5–200 nm and for five values
of the electrostatic surface potential between �50 and +50 mV.

Results & discussion
Intrinsic NP properties

Electronic properties of a specific nanomaterial can be
obtained through computational techniques such as quantum
mechanical semi-empirical calculations based on the Hartree–
Fock formalism13 and density functional theory methods, with
results for TiO2 shown in Table 1 and Table S1 of the ESI.† This
allows for both the optimization of the structure of a given
nanomaterial on the density functional tight binding (DFTB)
level16 and the density functional theory (DFT) level and the
calculation of physicochemical properties of this material by
semi-empirical quantum mechanical calculations.13 Temperature
and the size of the NP are important factors that determine the
stability of the TiO2 forms. Here, we calculate electronic band
gaps, ionization potentials, electronegativity, hardness, dispersion
corrections, polarizability and the dipole moment for bulk anatase
and rutile representing the core of a TiO2 NP at the semi-empirical
level of theory in comparison to DFT and DFTB calculations for
band gaps and ionization potentials. Such descriptors have been
applied in statistical models to describe toxicity of metal oxide
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nanomaterials in relation to the core properties of a NP.8,36,37

Moreover, we employ DFT calculations (Table S1 in ESI†) using
the SIESTA code18 where the unit cells of anatase and rutile TiO2

are used to describe the extended bulk structures by Monkhorst–
Pack meshes for the point sampling of the Brillouin zone
integration.38

Extrinsic NP properties

Bio–nano interaction characteristics. It is well-known that a
NP immersed in a biological medium forms a corona of
adsorbed proteins, lipids and sugars, and that the
composition of this corona is highly dependent on the
affinity of each type of protein and lipid present to the NP.39

Thus, the energy of adsorption, also referred to as the binding
energy, of biomolecules to an NP is an important set of values
characterizing interactions of NPs with biomolecules. To
calculate these adsorption energies, we employ a coarse-
graining approach in which the interactions between small
biomolecules, e.g. amino acids, and the NP surface are
evaluated using atomistic molecular dynamics to obtain
PMFs. These potentials, together with additional terms
describing the electrostatic potential and long-range van der
Waals attraction, are used as the input for a calculation of the
binding energy of proteins built up from these smaller
fragments. In this way, parameterizing a small number of
building blocks is sufficient to evaluate the strength of
binding between NPs and proteins for which an atomistic
molecular-dynamics simulation would be prohibitively time-
consuming.

The first step in this parameterization is a development of a
force field for atomistic simulations between biomolecular
fragments and the NP. This issue was handled as discussed
in the Methods section (part Force Field Parameterization) and
a summary of the identified force field types and force field
parameters are given in Tables 2 and 3.

Using the bond order concept, we have determined local
connectivity of the atoms in AIMD trajectories of ref. 27, and
identified the following atom types at the hydrated surface of
TiO2: Ti–O6 and Ti–O5, which are Ti atoms coordinated by 6
respectively 5 oxygens; O–Ti3 which is oxygen coordinated by 3
Ti atoms, normally present in the bulk of material; O–Ti2 which
is bridge oxygen at the TiO2 surface; O–H1Ti1 which is oxygen
of a hydroxyl group attached to the surface; O–H1Ti2 which is

protonated bridge oxygen, and O–H2Ti1, which is oxygen of the
molecularly adsorbed water. Analysis of AIMD simulation
results showed however very low fraction of protonated oxygen
bridges. While formation of protonated oxygen bridges was
observed in simulations of hydrated TiO2 surfaces using Reax
force field,40 in ab initio simulations27 such protonated bridges
were unstable, resulting in one of Ti–O bond cleavage and
formation of additional OH-group. We did not include proto-
nated oxygen bridges in classical atomistic simulations because
of their low (about 1%) abundance in ab initio simulations, but
we include force field parameters for them in Tables 2 and 3
having in mind that content of protonated bridges is pH-
dependent and may increase at low pH.

Table 1 Material properties calculated through MOPAC,13 DFTB+,16 and SIESTA18 for the anatase and rutile forms of TiO2

TiO2 solid
systems

Band gap,
eV

Ionization potential–
Valence band maximum
energy, eV

Mulliken
Electronegativity

Parr & Pople
absolute hardness

Dispersion energy
per atom, kJ mol-1

Polarizability,
Å3

Dipole moment,
Debye

Semi-empirical
Anatase 9.41 6.67 1.96 4.70 �4.92 133.01 0.34
Rutile 9.66 5.51 0.68 4.83 �5.41 122.32 6.16
DFTB
Anatase 3.42 3.36 — — — — —
Rutile 2.68 3.64 — — — — —
DFT
Anatase 2.49 8.75 — — — — —
Rutile 2.25 9.46 — — — — —

Table 2 Non-bonded force field parameters for TiO2 in water
environment

Atom
type Coordination Description

Partial
charge, e s, Å

e,
kJ mol�1

H H–O1 Hydrogen 0.417 0 0
TiA Ti–O6 Bulk Ti 2.248 1.99 13.79
TiB Ti–O5 Surface Ti/defect 2.159 1.9 13.79
OA O–Ti3 Bulk TiO2 oxygen �1.124 3.51 0.409
OB O–Ti2 Bridge oxygen �1.035 3.42 0.401
OF O–H1Ti1 Hydroxyl oxygen �0.913 3.29 0.389
OG O–H1Ti2 Protonated oxygen bridge �1.035 3.42 0.401
OH O–H2Ti1 Adsorbed water �0.923 3.151 0.634

Table 3 Bonded force field parameters for TiO2 in aqueous environment

Bond Equilibrium distance, Å Force constant, kJ mol�1 Å�1

Ti*–OA 1.9 8000
Ti*–OB 1.9 8000
Ti*–OF 1.9 8000
Ti*–OG 1.9 8000
Ti*–OH 1.8 400.
OF–H 1.0 3267
OH–H 1.0 3267

Angle Equilibrium angle, deg Force constant, kJ mol1 deg�1

OF–Ti*–OH 90. 500.
OH–Ti*–OH 90. 500.
Ti*–OF–H 114.85 543.
Ti*–OG–H 112.6 564.
Ti*–OH–H 114.85 543.
H–OH–H 104.2 628.
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As observed in ab initio simulations,27 undercoordinated
surface Ti-atoms have either adsorbed water or hydroxyl groups
bound to them. Each hydroxyl group contributes a charge of
about �0.4e (taking in mind than if an OH group is attached to
undercoordinated Ti-O5 atom, its force field type is changed to
Ti–O6). We selected the fraction of hydroxyl groups at the
surface as 30%, from the condition that the experimentally
measured surface charge of TiO2 NPs at neutral pH is about
�0.62e nm�2.41 In the atomistic simulations, the OH-groups
were attached to Ti surface atoms in a random manner.
Molecularly bound water was attached to all other sites. While
such setup excludes eventual surface diffusion of OH-groups,
ab initio simulations27 showed that after settling equilibrium
structure further diffusion in the first hydration layer is practi-
cally absent on a ten-picoseconds time scale. Eventual diffusion
of adsorbed water or protons on a longer time scale would only
change the localization of the OH groups at the surface, which
still can be well represented by a random localization of these
groups at the surface. Thus, this diffusion will not have a major
influence on binding of biomolecules to the surface.

After setting up hydroxyl groups and adsorbed water, the
total charge of the TiO2 slab was brought to the nearest integer
value by a minimal scaling of the atom charges, and
the corresponding amount of Na+ counterions was added to
the system. Furthermore, ions of NaCl salt were added to the
solution in concentration 0.15 M.

Biomolecular adsorption on NPs

Using this force field, we computed PMFs for the range of
biomolecular fragments to rutile (110) and anatase (101) planar
surfaces. These surfaces are the lowest energy surfaces in the
respective forms of TiO2, and by this reason one can expect that
they represent most of the surface of the NPs. A similar model
has been used previously to study adsorption of proteins on a
surface of rutile NP.42 We extend the previous calculations by
covering a wider range of biomolecular fragments and using a
more advanced force field accounting for the difference
between bulk and surface titania, allowing multiple chemical
environments for oxygen atoms, and moreover taking into
account structural differences between the anatase and rutile
forms. The PMFs are depicted in the ESI,† and the computed
binding free energies extracted from them are shown in Fig. 1,
from which differences in the adsorption profile for the two
forms of TiO2 can clearly be seen. The most strongly binding
molecules for anatase are glutamic acid (GLU), cysteine anion

(CYM) and aspartic acid (ASP), all these are negatively charged
molecules with either carboxyl group or thiolate. None of these
molecules show significant binding to rutile. The difference in
binding could originate in the specific structure of the anatase
surface where negatively charged groups of the molecules can
coordinate favourably with hydrated positively charged titanium
atoms. On the rutile surface, access to titanium atoms is
screened by the bridging oxygen atoms, thus preventing the
binding of anionic molecules. The different character of binding
of small molecules have consequences for the binding of larger
biomolecules and formation of the protein corona. The Hamaker
constants associated with these fragments were calculated
using parameters found from the literature and are listed in
Table 4.43,44

To further investigate the difference between the two materials,
we calculated the binding energies of a set of 40 proteins on
anatase and rutile NPs of a range of radii and zeta potentials using
the coarse grained model discussed previously. The proteins were
chosen primarily based on ones for which PDB structures exist for
the human form of the protein with complete coverage of the
sequence and include insulin (4EWZ), transferrin (1D3K) and an
IgG domain (4HVW). To these, we have further added HSA (4K2C),
BSA (4F5S), lung surfactant SP-D (3DBZ) and a lysozyme (1REX) as
these are of biological interest. The resulting binding free energies,
of which some are presented in Fig. 2 and the complete set
provided in the ESI,† depend strongly on the radius of the NP
and on a lesser extent on the value of zeta potential as depicted in
Fig. 2(c and d).

Immersion and adhesion enthalpies, lipid wrapping

A key measure of the degree of interaction between NPs and
membranes is the extent to which the NP adheres to or is
wrapped by the membrane. According to the Helfrich
membrane model45 applied by Deserno and Gelbart46 to the
wrapping of spherical particles by membranes, the outcome is
determined by whether the adhesion strength w (the free
energy of adsorption per unit area) is sufficient to overcome
the bending energy penalty associated with the required
membrane deformation. Particles smaller than certain critical
size will not adhere to the membrane. Larger particles will adhere
and undergo wrapping; the extent to which wrapping occurs is
determined by the membrane tension. With low tension and/or
strong adhesion, particles will be completely engulfed, following
which the particle may detach from the membrane leaving a
membrane pore and potentially to cytotoxicity. The adhesion
strength drives the particle wrapping process, so that any
assessment of the NP interaction with cells must include an
estimate of its adhesion strength w for a given membrane, which
may be approximated by the adhesion strength with respect to the
membrane lipids. Adhesion strength data can then be used to
estimate the probability of passive NP uptake by human cells as
well as pulmonary surfactant disruption due to the interaction
with NPs in the alveolar spaces of lungs for evaluation of NP
toxicity. A major obstacle to progress is the lack of quantitative
experimental data for NP/lipid bilayer adsorption. We have
previously proposed methods of calculating w from molecular

Fig. 1 Adsorption free energies of biomolecule fragments to rutile (left)
and anatase (right) TiO2 surfaces.
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simulation and applied these to a range of materials including
gold,32 silica,47 and titania.48 Some data for DMPC lipids on
titania surfaces are shown in Table 5, calculated through
atomistic simulations using the force field developed here.

Discussion

In silico material characterization provides valuable information
on the NP properties that may not be readily available from
experiments. Yet, due to principal technical limitations such as
the large required system size or time scale, the computations at
the nanoscale are necessarily approximate and often cannot
guarantee quantitative accuracy in reproducing experimentally
observed properties in absolute terms. The possible mismatches
with experimental data may be caused by unrealistic assumptions

about the material such as its crystalline order, structure of the NP
surface, material purity, or the coating. Unfortunately, such
assumptions are unavoidable as experimental datasheets are
often lacking the relevant information.

In our calculations of intrinsic properties of titanium oxides,
we used common quantum mechanical methods on anatase
and rutile polymorphs of bulk TiO2. The methods show different
accuracy with respect to different material properties. It is known
that the band gap of rutile is lower than anatase TiO2 by ca.
0.2 eV49 and the ionization potential is larger for anatase than
rutile. Our DFT and DFTB band gap results show the trend
consistent with experiments, while semi-empirical calculations
predict the opposite trend. For the ionization potential, the
semi-empirical calculations give the trend consistent with
experiments, while both DFT and DFTB show larger values for
rutile. More accurate approaches have been used in literature to
reproduce not only the relative trends between rutile and anatase
TiO2 but accurate values of band gaps and band alignment in
accordance with measurements.49

In the evaluation of extrinsic properties of titania NPs, such
as interaction with water, lipids and proteins, we used the new
force field developed in this work. All titania surfaces exhibited
a large degree of hydrophilicity as reflected in the uniformly
exothermic heats of immersion, which were an order of
magnitude greater than the silica surfaces studied previously.
A far greater range in heat of immersion was observed on the
anatase surfaces than for rutile. From the data on the lowest
energy surfaces, (110) for rutile and (101) for anatase, rutile
appears to be more hydrophilic. Thus, as discussed in Section
2.2, the anatase surface is more strongly binding to the amino
acid molecules than the rutile surface is, and this in turn leads
to a difference in the calculated binding energies for the
proteins considered as can be seen in Fig. 2, providing further
evidence that a wide range of biomolecules should be selected
for the calculation of predictive descriptors. The stronger
binding of proteins to anatase correlates with the weaker
binding of water as compared to rutile, as seen from the heats

Table 4 Hamaker constants (in units of kJ mol�1) describing the bulk interaction between anatase and rutile with twenty common amino acids

AA ALA ARG ASN ASP CYS GLN GLU GLY HIS ILE

A (anatase-AA) 19.53 23.47 25.28 25.88 24.88 23.87 22.86 24.88 25.89 16.86
A (rutile-AA) 17.19 21.90 22.30 22.83 21.94 21.05 20.15 21.94 22.83 14.87

AA LEU LYS MET PHE PRO SER THR TRP TYR VAL

A (anatase-AA) 16.65 20.13 22.25 24.68 18.82 24.27 20.33 29.42 22.04 17.07
A (rutile-AA) 14.66 17.74 19.61 21.77 16.57 21.41 17.92 25.97 19.43 15.03

Fig. 2 Adsorption free energies of a set of proteins (labelled by their
Protein Databank identifier) onto spherical anatase (a) and rutile (b) NPs of
radius 50 nm and zero zeta potential. The variation as a function of the
radius for human serum albumin (PDB-ID: 4K2C) is shown in (c) and
variation as a function of zeta potential for a particle of radius 50 nm in (d)
for both anatase (blue) and rutile (red).

Table 5 A summary of the calculated heats of immersion, adsorption energy for single DMPC molecules and adhesion strength for DMPC bilayers on a
range of titania48 surfaces

Polymorph Rutile Rutile Rutile Rutile Anatase Anatase Anatase Anatase

Miller index 110 100 101 001 101 100 001 110
Heat of immersion (mN m�1) 1024 1009 847 1102 774 1176 392 1006
Single lipid adsorption energy (kJ mol�1) �1.8 �3.4 �13.8 �0.4 �1.7 �0.2 �0.1 �1.9
Adhesion strength (mN m�1) �1.8 �3.6 �4.0 �0.3 �1.0 �1.1 �0.6 �4.0
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of immersion. The observed trends for the protein binding
energies here are in agreement with experiments showing that
anatase titania binds blood serum proteins more strongly than
the rutile polymorph.50

For the majority of the surfaces, the energy of adsorption of
single lipids was less than the thermal energy indicating that
lipids do not spontaneously adsorb on these surfaces. The only
surface to display strong adsorption was the rutile 101 surface
with a minimum of �13.8 kJ mol�1. The average adhesion
strength across the cleavage planes for rutile and anatase is
relatively weak at �2.0 � 0.4 mN m�1. However, rutile has two
surface (100 and 101) which strongly bind lipids (�4 mN m�1),
while anatase has only one (110). Since particle surfaces are
expected to comprise a range of low energy cleavage planes, this
observation suggests a slightly greater tendency for bilayers to
wrap rutile NPs compared to anatase NPs, but both forms wrap
less than amorphous silica.

The computed binding affinities of amino acids/proteins
and lipids to TiO2 would allow further to address questions of
cellular uptake of nanoparticles covered by biomolecular
corona, and further evolution of corona after cellular uptake
and encapsulation of nanoparticles in phagosomes. This can be
done either by direct modelling of such processes within UA
models, or by providing adsorption energies data as extrinsic
descriptors in the nanoinformatics approaches.

As discussed previously,12 the UA model contains a number
of approximations, which may cause systematic errors in the
protein adsorption energies. The most significant of these is
the assumption that all contributions to the NP–protein
potential can be treated additively and that the orientation of
AA side chains can be neglected. Moreover, charge regulation in
both the protein and the NPs are neglected, and the protein is
assumed to be fixed to its native structure and cannot relax due
to binding to the surface of the NP. Finally, we note that the
Hamaker constants required are typically not available ab initio
and must be obtained from the literature, with different
sources providing different values for these constants. Thus,
the calculated adsorption energies do not necessarily predict
the correct absolute value. We expect, however, that these
factors are not significant due to the characteristic sizes of
the NP–protein complex, and we expect it to produce the correct
ranking of proteins by affinity to a particular NP. This, in turn,
should enable the correct ranking of the corona abundances.
Moreover, the simplifications in this model present substantial
time savings in comparison to more computationally
intense calculations of protein adsorption using atomistic
simulations.5,51 These atomistic simulations are limited to
providing binding energies for a single NP, whereas the method
outline here enables the rapid calculation of binding energies
for a whole class of NPs of the same material but varying sizes,
shapes, and zeta potentials.

The set of descriptors given here is by no means definitive
but are selected as a set of reasonably simple properties that
can be evaluated using standard computational techniques and
can be employed to further characterize the surface. As an
example, we note that the binding energies calculated here may

be of use in estimating the composition of the protein corona
which forms around a NP by using these as input for simple
models of the steady-state corona.52,53 They may additionally be
of use for machine-learning models of more complex phenomena
such as uptake by cells, as they provide a quantitative means to
encode the chemical identity of the NP. In this work, we have
presented results for titanium dioxide as this is a particularly
important nanomaterial and is being extensively investigated by
toxicological studies,54 however, we stress that the methodology
used here is completely general and can be applied to a wide
range of nanomaterials other than titanium dioxide, e.g. metals,
metal oxides, silica and carbon-based nanomaterials. Likewise,
the range of biomolecules that can be evaluated can readily be
extended by identifying further basic structures and generating
PMFs and Hamaker constants for these.

Conclusions

In this work, we have performed an in-depth parameterization
of titanium dioxide nanoparticles on scales ranging from the
atomic to mesoscopic. In particular, we have developed a novel
forcefield for atomistic simulations in which multiple coordinate
sites are considered, and we have demonstrated that the crystal
phase of the titanium dioxide (anatase or rutile) leads to different
affinities towards biomolecules. Our general methodology can be
straightforwardly adapted to other nanomaterials, enabling their
in-depth characterization and prediction of their interactions with
a range of biomolecules.

Author contributions

IR, DP, MS, EGB, KK, APL: software, investigation, analysis,
visualisation; IR, KK, APL, NQ, VL: conceptualisation, writing;
NQ, APL, VL: funding acquisition, supervision.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The work has been funded by EU Horizon 2020 under grant
agreements No. 686098 (SmartNanoTox project), No. 731032
(NanoCommons project), and 814572 (NanoSolveIT project),
and by Science Foundation Ireland through grant 16/IA/4506.
The computations of binding free energies were performed on
resources provided by the Swedish National Infrastructure for
Computing (SNIC) at the Parallel Computer Center (PDC).

Notes and references

1 X.-R. Xia, N. A. Monteiro-Riviere and J. E. Riviere, Nat.
Nanotechnol., 2010, 5, 671.

2 OECD-NANoREG-ProSafe joint meeting in Paris, Nov
29–Dec 1, 2016, http://www.h2020-prosafe.eu/?p=954.

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
Ju

ne
 2

02
1.

 D
ow

nl
oa

de
d 

on
 2

/9
/2

02
6 

4:
35

:5
9 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://www.h2020-prosafe.eu/p=954
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1cp01116b


13482 |  Phys. Chem. Chem. Phys., 2021, 23, 13473–13482 This journal is © the Owner Societies 2021

3 E. Valsami-Jones and I. Lynch, Science, 2015, 350, 388.
4 S. A. Love, M. A. Maurer-Jones, J. W. Thompson, Y.-S. Lin

and C. L. Haynes, Annu. Rev. Anal. Chem., 2012, 5, 181.
5 H. Lee, Small, 2020, 17, 1906598.
6 T. Puzyn, B. Rasulev, A. Gajewicz, X. Hu, T. P. Dasari,

A. Michalkova, H. M. Hwang, A. Toropov, D. Leszczynsk
and J. Leszczynski, Nat. Nanotechnol., 2011, 6, 175.

7 H. Zhang, Z. Ji, T. Xia, H. Meng, C. Low-Kam, R. Liu,
S. Pokhrel, S. Lin, X. Wang, Y. P. Liao, M. Wang, L. Li,
R. Rallo, R. Damoiseaux, D. Telesca, L. Mädler, Y. Cohen,
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36 K. Tämm, L. Sikk, J. Burk, R. Rallo, S. Pokhrel, L. Mädler,
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