
This journal is © the Owner Societies 2021 Phys. Chem. Chem. Phys., 2021, 23, 8891–8899 |  8891

Cite this: Phys. Chem. Chem. Phys.,

2021, 23, 8891

Analysis of DNA interactions and GC content with
energy decomposition in large-scale quantum
mechanical calculations†

Han Chen and Chris-Kriton Skylaris *

GC content is a contributing factor to the stability of nucleic acids due to hydrogen bonding. More

hydrogen bonding generally results in greater stability. Empirical evidence, however, has suggested that

the GC content of a nucleic acid is a poor predictor of its stability, implying that there are sequence-

dependent interactions besides what its GC content indicates. To examine how much such sequence-

dependent interactions affect the interaction energies of double-stranded DNA (dsDNA) molecules,

dsDNA molecules of different sequences are generated and examined in silico for variabilities in the

interaction energies within each group of dsDNA molecules of the same GC content. Since the amount

of hydrogen bonding depends on the GC content, holding the GC content fixed when examining the

differences in interaction energies allows sequence-dependent interactions to be isolated. The nature of

sequence-dependent interactions is then dissected using energy decomposition analysis (EDA). By using

EDA, the components of the interactions that depend on the neighboring base pairs help explain some

of the variability in the interaction energies of the dsDNA molecules despite having the same GC

content. This work provides a new paradigm and tool for the study and analysis of the distributions of

interaction components in dsDNA with the same GC content using EDA within large-scale quantum

chemistry calculations.

1 Introduction

Hydrogen bonding represents a significant contribution to the
stability of a double-stranded DNA (dsDNA). Adenine–thymine
(A–T) contributes two hydrogen bonds, and guanine–cytosine
(G–C) contributes three hydrogen bonds. As such, the amount
of energy required to denature a double-stranded DNA depends
on the GC content, which is the percentage of nucleobases that
are guanine or cytosine. Base stacking represents another
significant contribution due to p–p interactions.1 Since base
stacking occurs for neighboring base pairs, the interaction
energy and stability of a DNA structure do not depend on the
GC content alone. The ordering of the base pairs in addition to
the GC content is therefore also a factor contributing to the
stability of a DNA.

Due to the importance of interacting biomolecules in a
supermolecule system, determining the various factors that
contribute to the interaction energy of a biomolecular system
would aid in the understanding of some biological phenomena.

For instance, mRNA transcription involves the opening and
unwinding of the DNA helix by RNA polymerase along with the
aid of many transcription factors. The interactions within and
their contributions to the interaction energy of the DNA strands
affect the transcription process and efficiency.2 Another example
is CG islands, which are regions of high GC content often
associated with the beginning of a gene. The GC content affects
the interaction energy of the DNA helical region. Since it can be
near or within the promoters of many genes, understanding how
the GC content affects the interaction energy in CG islands near
such genes can elucidate some of the aspects of transcription
initiation and promoter escape.3,4

Understanding such biomolecular interactions is a motivation
for using and further improving computational chemistry
methods. Density functional theory (DFT) examines the electronic
structure of chemical systems with many atoms. Due to
computational costs, DFT is often applied to small systems that
are either simple or simplified models of biomolecules so that
biomolecular interactions can be studied and then extrapolated to
real systems. An example of such systems is the pairing of stacked
amino acids, where their orientations relative to each other
determine the stability and interaction energy.5 Also regarding
stacking interactions, fragment-based drugs and moieties have
been studied in the context of binding to different DNA base
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pairs.6 Stacking interactions and hydrogen bonding are often the
themes in DFT-based studies of biomolecules, since they serve as
important noncovalent contributors to the stabilization of the
supermolecule.

Often such studies involve very simple or simplified versions
of real biomolecules. DFT calculations are expensive, and
conventional software packages are cubic-scaling in terms of
the computation time it takes and the number of atoms in the
system being studied. Biological molecules, such as proteins
and nucleic acids, are usually large or part of a larger complex
of interacting units, which exceed reasonable limits in the
computational time that a cubic-scaling software package takes
on such systems.

ONETEP (Order-N Electronic Total Energy Package)7 is a DFT
software package based on a plane-wave, pseudo-potential
approach that utilizes the electronic localization inherent in
systems with a non-vanishing band gap. As such, the computational
cost of ONETEP DFT calculations scales linearly with the
number of atoms and the number of processors when
parallelized.8 Due to its linear scaling, ONETEP is suitable for
studying biological systems on the order of thousands of
atoms.9 On the other hand, cubic-scaling calculations, in general,
can only handle up to hundreds of atoms at its best. In addition to
the size of the system, the variability of a class of systems, such as
nucleic acids with different sequences, presents combinatorial
issues for setting up and running a large number of calculations
and is exacerbated if the calculations are cubic-scaling.

DFT has been applied to the study of DNA molecules in the
context of ligand complexes and disease prevention. Ligand
binding to DNA has impacts on the stability of DNA, such as
increasing the susceptibility of DNA to cleavage and altering the
thermodynamic properties.10 Ligand binding to DNA has also
been examined using electronic absorption spectra and charge
transfer using time-dependent DFT (TDDFT) calculations.11

However, as noted, such complexes are usually small enough
for cubic-scaling calculations.

While the DFT method aims to estimate the total energy of a
system, the main objectives of energy decomposition analysis
(EDA) is to partition the interaction energy of a multi-fragment
supermolecule into their chemical origins,12 such as electro-
statics, exchange–correlation contributions, polarization,
charge transfer, and other relevant chemical phenomena.
Hence, EDA is an important analytical tool that partitions the
interaction energy into chemically interpretable components.

EDA is a family of decomposition methods, each of which is
known as an EDA scheme. The EDA schemes can be categorized
according to the nature of their underlying theory.12 There are
two major categories of EDA schemes: variational-based and
perturbation-based. Variational-based schemes are typically
derived from the early forms of EDA. The interaction energy
is decomposed by the use of intermediate wave functions.
LMO,13 ALMO,14 and BLW15,16 schemes are in this category.
Perturbation-based schemes approach EDA from the popular,
symmetry-adapted perturbation theory (SAPT) scheme.17,18 The
interactions among the fragments are seen as perturbations to
the non-interacting description and are constructed as

corrections resulting from different physical effects. EDA can also
facilitate the creation of new force fields in molecular mechanics
by parameterization against EDA data, thereby yielding force
fields that are more accurate and transferable.19,20

There have been other studies on applying DFT and EDA to
simple biomolecules for understanding some of the stabili-
zation interactions common in biological systems and with
drugs. Usually, the types of biomolecules being studied are
DNA base pairs, amino acids, or interactions between them. In
order to facilitate these studies or computations, oftentimes
simplified versions of biomolecules with some functional
groups (such as the phosphate backbone) removed are used
when studying the interactions between pairs and for avoiding
confounding factors due to other subunits and other types of
biological interactions.1,21 While the decomposition of the
interactions of base pairs, base stacking, and base pairs with
amino acids on small scales serves as important starting points,
studies of such interactions on a larger and nontrivial system
would provide deeper insights into how variety and domains
within a biomolecule come into play in biological systems and
complexes.22

In the present work, the HALMO-EDA scheme is used for
decomposing the inter-strand interactions of dsDNA molecules
into various factors and investigating how such factors contribute
to the variability of interaction energies despite having the same
GC content. Linear-scaling DFT in the ONETEP scientific package
and a brief overview of HALMO EDA are presented. The pipeline
in which dsDNA molecules are generated, optimized, and
decomposed for chemical interactions is developed and applied
in conjunction with DFT and EDA, alongside a molecular-
mechanic interpretation of the energy decomposition as
supporting data.

2 Methods
2.1 Linear-scaling DFT and ONETEP

ONETEP uses a linear-scaling method that employs a basis set
of orthogonal and localized functions known as periodic sine
(psinc) functions.23 Such a basis set allows systematic control of
truncation errors and accurate representation of the kinetic-
energy operator. The localized quantities would lead to a
physical way of dividing the computational effort among many
processors to allow calculations to be performed in parallel.
What distinguishes this approach is that the localization is
achieved in a controlled and mathematically consistent manner
so that ONETEP obtains the same accuracy as cubic-scaling
plane-wave approaches, while offering fast and stable
convergence.8

ONETEP aims to obtain the same result as solving a set of
single-particle Schrödinger equations in Kohn–Sham (KS) DFT:

ĥciðrÞ ¼ �1
2
r2

i þ vðrÞ
� �

ciðrÞ ¼ eiciðrÞ (1)

where ĥ is the single-particle Hamiltonian with ei as energy
eigenvalues and ci(r) as spatial eigenfunctions, and v(r) is the
effective potential. At absolute zero, the system is at the ground

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
A

pr
il 

20
21

. D
ow

nl
oa

de
d 

on
 7

/1
4/

20
25

 4
:5

4:
03

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0cp06630c


This journal is © the Owner Societies 2021 Phys. Chem. Chem. Phys., 2021, 23, 8891–8899 |  8893

state, and the occupation numbers are restricted to either
0 or 1.

If there is a band gap in the system, the density matrix
decays exponentially as a function of |r0 � r|. The density matrix
can then be truncated to a sparse band-diagonal form such that
the amount of information it contains increases linearly with
its size.8 The density kernel, K, is used to achieve the truncation
and is defined for each element as

Koð Þik¼
X
i

Moð Þii f oi Moy� �
i
k (2)

where o is a spin index that is a or b, Mo is the matrix of
expansion coefficients for the molecular orbitals in terms of the
basis functions, and fo is the diagonal matrix of occupation
numbers. Using the density kernel, an element of the density
matrix can be written as

roðr; r0Þ ¼
X
i;k

fiðrÞ Koð Þikf�kðr0Þ (3)

where {f} is a set of spatially localized, nonorthogonal
functions. The electron density for a spin-unpolarized system is

n(r) = 2ra(r,r) = 2rb(r,r) (4)

The truncation of the density kernel is carried out by setting

Kik = 0 (5)

when

|Ri � Rk| 4 rcut (6)

where Ri and Rk are the centers of localization regions of fi and
fk, respectively, for a cutoff distance, rcut.

In ONETEP’s formulation, molecular orbitals are linear
combinations of a set of localized orbitals called nonorthogonal
generalized Wannier functions (NGWFs) and are expanded as

ciðrÞ ¼
X
a

faðrÞMi
a (7)

where ci is the molecular orbital, fa is the NGWF, and Ma
i is the

expansion coefficient. Localization of NGWFs is performed by
confining them to spherical regions centered on atoms and any
contributions outside the localization spheres are truncated
during conjugate gradient optimization.8 This is attained by
expanding each NGWF in {f} in an orthogonal basis of psinc:23

fiðrÞ ¼
X
m2Li

Dðr� rmÞCmi (8)

where each psinc, D(r � rm), is centered at rm in a real-space
Cartesian grid. Cmi is non-zero only when the corresponding
psinc falls within the localization region, Li.

The total energy is variationally minimized with respect to
both the density kernel and the NGWFs. The method of
minimizing the energy is carried out using two nested loops.
Corresponding to the outer loop, the set of NGWFs is varied.
Corresponding to the inner loop, the density kernel is
optimized with respect to a fixed set of NGWFs. The density
kernel is constrained to be idempotent, which imposes

orthogonality on the orbitals. The constraint is applied in
ONETEP using a modified Li–Nunes–Vanderbilt (LNV)
scheme24–26 where the energy is minimized with respect to an
auxiliary density kernel. The relationship between the auxiliary
density kernel, L, and the density kernel, K, is

K = 3LSL � 2LSLSL (9)

where

Sij ¼
ð
f�i ðrÞfjðrÞdr (10)

and given that L is nearly idempotent. Through the purifying
transformation of (9), the auxiliary density kernel causes the
density kernel to approach idempotency.

2.2 Energy decomposition analysis

In ONETEP, the available EDA scheme used in this work is
hybrid absolutely localized molecular orbitals (HALMO),27 which
is based on localized molecular orbitals (LMO) and absolutely
localized molecular orbitals (ALMO). The decomposition of the
interaction energy into frozen density, polarization, and charge
transfer is based on the first-generation ALMO EDA.14 Further
decomposition of the frozen-density component is based on
LMO EDA.13 HALMO is a hybrid EDA scheme with some
differences in the names for similar, though not identical, EDA
components compared to LMO.

Fig. 1 depicts the decomposition of interaction energy as
performed using HALMO EDA. HALMO EDA has a frozen-
density component, which is composed of electrostatics,
exchange, Pauli repulsion, and correlation. Despite the
similarity of these components with LMO EDA, HALMO-EDA
frozen density cannot be computed solely from LMO-EDA
components. First-generation ALMO EDA does not further
decompose its frozen-density component.

Electrostatics in HALMO EDA is the same as in LMO EDA,
and it is the classical-like terms of the Kohn–Sham (KS) energy
containing the electron–electron coulombic repulsion and
nucleus–nucleus repulsion. Exchange is also the same in both
EDA schemes, and it is the change in exchange energy from
isolated fragments to the supermolecule without the relaxation
of the orbitals. Repulsion is again the same, and it is the
difference in energy due to the overlapping of the orbitals
without considering correlation. Correlation, however, is exclusive
to HALMO EDA and is the difference in correlation energy from
isolated fragments to the supermolecule with orthogonalized

Fig. 1 Decomposition of interaction energy in HALMO EDA.
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molecular orbitals that are variationally optimized within their
respective fragments. For the mathematical definitions of these
HALMO-EDA components, the reader is referred to the original
development and implementation of HALMO EDA in ONETEP.27

LMO EDA does not have a charge-transfer component but
has an energy component that is called polarization. However,
polarization in LMO EDA is not the same as polarization in
HALMO EDA. Instead, polarization in HALMO EDA is the same
as that of ALMO EDA, which arises from the use of a self-
consistent field for molecular interactions (SCF MI).28,29 After it
is determined, charge transfer simply becomes the remaining
component of the interaction energy. Since LMO EDA does not
concern itself with charge transfer due to its dependence on the
choice of basis set, SCF MI is not used in LMO EDA. Although
charge transfer is absent in LMO EDA, charge transfer has a
common and useful interpretation that it is a measure of
covalency among fragments,14 and HALMO EDA calculates
charge transfer as one of its components. Charge transfer is
simply the difference in energy when going from the polarized
state to the state of the supermolecule with molecular orbitals
that are variationally optimized across the supermolecule.

2.3 Computational procedure with DNA structures

To generate structures and perform classical molecular
dynamics (MD) simulations of DNA fragments, we have used
AmberTools, which is a distribution of programs that are
independently developed as part of the Amber Project and is
the free distribution that is built upon by Amber30 for additional
programs and parallelization. The version of AmberTools used
here is 18, and the three programs of it used in this work are NAB
(Nucleic Acid Builder), LEaP, and sander.

To study how interaction energy is affected by the sequence
and sequence length, all possible four-base-pair (4bp)
sequences were generated for optimization and energy deter-
mination. 2bp and 3bp sequences were not considered due to
their lower sample sizes. Naive generation of DNA sequences
would result in redundant structures, causing unnecessary
computations on equivalent sequences. By standard convention,
nucleic acid sequence without the strand direction being
indicated is always presented in the 50-to-30 direction. If a
sequence is presented in the 30-to-50 direction, the 30 and 50

ends must be indicated. Since each DNA sequence has a reverse
complementary sequence and could be a palindrome, two
generated sequences that give the same structure are reduced
to one unique sequence by removing one of them. For example,
TAAT and its reverse complement ATTA give the same structure
and are treated as if they are the same sequence. The famous
TATA (for a TATA box) is a palindromic sequence and, hence, has
a reverse complement that happens to be the same.

Removing such redundant sequences based on sequence
alone would only remove redundancies due to palindromic
sequences, since each of them has a reverse complement that
is the same. It would not remove non-palindromic sequences
that are reverse complements of each other. Therefore, the
implementation of the uniqueness of two sequences based on
reverse complementarity was also taken into consideration.

This resulted in 136 unique 4bp sequences. With the unique
sequences generated, NAB with the BSC1 DNA force field
was used for creating 136 dsDNA structures in silico without
optimizing the resulting structure, which was done later in the
pipeline.

dsDNA alone is a negatively charged system due to the
phosphates in its backbone. Sodium counterions were added
to the dsDNA structures in order to neutralize the negative
charges using LEaP, which is an AmberTools program that
creates new systems or modifies the existing systems. However,
adding the counterions to the dsDNA structures would
obfuscate the association of counterions with individual
strands, since LEaP considers dsDNA as a whole. Because the
interaction energy of the two DNA strands coupled with
counterions will be decomposed using EDA, the counterion-
strand association is necessary for defining the fragments
for EDA.

To keep track of which counterions are associated with
which DNA strand, each dsDNA created from NAB was sepa-
rated into its individual strands. The sodium counterions are
then added to each strand in isolation. The counterions are
tracked before recombining them back into double-stranded
form. Although not needed during the optimization of the
dsDNA structures, bookkeeping of the counterion-strand
association was maintained throughout. This allows the
optimized structures to be used for HALMO EDA later, which
requires the counterion-strand associations in order to define
each counterion-neutralized single-stranded DNA (ssDNA) as a
fragment.

Depending on the length or possibly the DNA sequence
itself, automatic determination by LEaP of the number of
sodium counterions to add sometimes does not actually
neutralize all the negative charges. However, LEaP offers an
option to explicitly specify the number of counterions to be
added and thus allows a workaround to the issue. Before
adding the counterions, in LEaP, the negative charge of a
DNA strand is determined and then negated to give the number
of sodium counterions needed to neutralize all of the negative
charges. The number of counterions to add is explicitly passed
to LEaP so that LEaP does not determine it automatically in an
occasionally erroneous way.

Sander is a program in AmberTools for geometry optimization
and molecular dynamics. In this work, it is used exclusively for
optimizing the dsDNA structures in implicit water. For implicit
water, the implicit-solvation model used31–33 corresponds to the
sander IGB value of 1. Other configuration parameters for sander
that are used have the values imin = 1, maxcyc = 10 000, ncyc =
5000, and ntb = 0. Sander’s cut parameter is dynamically deter-
mined, and the lower-bound value for drms is set to 1.0 � 10�6,
both of which are discussed below.

In addition to sander’s optimization (which shall now be
considered as the inner loop of optimization), an algorithm for
the outer loop outside of AmberTools was developed that
utilizes Brent’s method34 to minimize a structure’s energy with
a specified desired RMS (root mean square) as the lower bound
and before the maximum number of steps is encountered.
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Furthermore, dynamically determining the cutoff distances for
each dsDNA structure in an iterative fashion is implemented as
part of the algorithm to avoid arbitrary cutoff distances. The
nesting of the inner optimization by sander with the outer
optimization yields negative interaction energies for all dsDNA
structures, suggesting that the method gives more credible
results than using sander alone, which would produce positive
interaction energies for some of the structures.

The implementation of Brent’s method used in the outer
optimization is part of the Apache Commons Math, which is a
Java library developed by the Apache Software Foundation.
Given a user-specified lower-bound RMS and the maximum
number of steps, the outer optimization executes sander’s
optimization as if it is an energy function of desired RMS to
be minimized. Without falling below the lower-bound RMS, the
RMS passed to the energy function is the desired RMS
for sander to optimize the DNA structure. The RMS passed to
the energy function is adjusted by Brent’s method until the
minimum of the energy function, which would be the energy of
the properly optimized DNA structure, is found. The energy
function is a programmatically generated function based on the
DNA sequence, the implicit solvation environment, and the
various configurations needed by sander.

To systematically determine the cut-off distances without
predefining them with arbitrarily large ones, the cut-off
distances are decided dynamically and iteratively as part of
the outer optimization. The criterion for a cut-off distance used
in this work is that it should not be shorter than the largest
distance between any two atoms in a supposedly optimized
DNA structure. Achieving this criterion begins with an initial
guess based on the distances of the atoms in an unoptimized
DNA structure and is then used as the first cut-off distance for
sander in the inner optimization. The largest distance in the
supposedly optimized DNA is checked against the cut-off
distance used. If the cut-off distance turns out to be shorter
than the largest atom distance, a new cut-off distance is
established by increasing from the previous cut-off distance in
the outer optimization, and the inner optimization process with
sander is performed again with the new cut-off distance. The
procedure repeats until the criterion that the cut-off distance
used for the inner optimization is not shorter than the largest
atom distance in the resulting dsDNA structure is satisfied.

3 Results and discussion

All possible and unique 4bp sequences were generated, result-
ing in 136 sequences. These 136 sequences are constructed
in silico as dsDNA in B form by NAB along with the addition
of sodium counterions, and are then geometry optimized by
sander in implicit water. Using the optimized structures, energy
calculations were performed by both sander (with the BSC1
force field) and ONETEP (with PBE+D2 and B97M-V exchange–
correlation functionals), with ONETEP also having performed
HALMO EDA in a vacuum. Descriptive statistics of the
interaction energies and their HALMO-EDA components are

calculated for the 4bp dsDNA structures in order to compare
and contrast differences and variabilities for a fixed GC
content.

To study the significance of the ordering of the base pairs in
addition to the amount of hydrogen bonding between the two
strands of a dsDNA, the sequences are categorized by their GC
content, which is the percentage of bases that are G or C. The
possible GC contents for 4bp sequences are 0%, 25%, 50%,
75%, and 100%. Categorizing the 136 4bp sequences according
to GC contents results in 10, 32, 52, 32, and 10 sequences,
respectively. The purpose of GC-content categorization is to
observe how base stacking and any other effects besides
hydrogen bonding affect the interaction energies and their
HALMO-EDA components.

For each of the dsDNA structures, ONETEP was used to
calculate the interaction energy and HALMO-EDA components.
Similarly, sander was used to calculate the interaction energy,
electrostatics, and vdW energies in vacuum and in implicit
water. Since implicit solvation with HALMO EDA is not
supported in ONETEP, HALMO EDA was performed in vacuum
only (Tables 3 and 4). However, single-point energy calculations
with implicit solvation is supported in ONETEP, and the overall
interaction energies in implicit solvation were computed
(Table 2).

Table 1 demonstrates the variabilities, through median
absolute deviation (MAD), in the interaction energies within
each GC-content group in vacuum. The spread in the inter-
action energies exists in both ONETEP and AmberTools. On the
other hand, Table 2 indicates that the implicit solvation of
dsDNA makes the spread in the interaction energies of the DNA
strands much less pronounced. For both in vacuum and in
implicit water, the median of interaction energies becomes
more negative as the GC content increases as expected from
the estimates based on the GC content alone discussed below.
However, the MAD in a GC-content group can be large enough
to suggest that there are sequence-dependent interactions, and
the variability of interaction energies within a GC-content
group deserves further dissection by EDA.

Interaction energies and EDA components are also estimated
by adding the interaction energies of one base pairs based solely
on the GC content and not on the sequence. Such additive
energies often underestimate the stability of a dsDNA, particularly
of those in implicit water, and suggest that the GC content alone

Table 1 Interaction energies for 4bp dsDNA in vacuum from ONETEP
categorized by GC content. All energy values are in kcal mol�1. Abbreviations:
MAD, median absolute deviation; est., estimate from additive one-bp
interactions

GC content

PBE B97M-V BSC1

Median MAD Est. Median MAD Est. Median MAD

0% �58.7 5.1 �63.0 �55.6 4.3 �58.1 �45.6 5.8
25% �80.3 12.8 �79.9 �77.1 11.5 �75.7 �64.2 11.0
50% �97.4 8.6 �96.9 �95.4 8.6 �93.3 �81.8 9.3
75% �115.9 8.8 �113.9 �115.4 9.3 �110.9 �105.0 12.8
100% �134.5 10.9 �130.9 �133.7 10.6 �128.5 �120.4 14.5
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often does not account for base stacking interactions. This further
suggests that there could be other interactions besides just
hydrogen bonding that are contributing to the interaction
energies being more negative than the corresponding estimates
(Tables 1 and 2).

To examine which part or parts of an interaction energy
exhibit the majority of the variability, HALMO EDA was applied
to the same dsDNA structures in vacuum (Tables 3 and 4 with
histograms, ESI†). The largest contributor to the variability of
interaction energies based on the MAD appears to be frozen
density (Table 3). Since there is much less variability in the
interaction energies for implicit water, the observation that
frozen density is the most important contributor is in accordance
with the fact that electrostatic forces are involved in the different
environments between vacuum and implicit solvation due to the
screening effects in the presence of a solvent.

Since charge transfer is often considered to be a measure of
covalency among fragments,14 the electron transfer portion of
hydrogen bonding can be considered as part of charge transfer.
By energy decomposition, the effects of hydrogen bonding can

be segregated in the analysis. According to EDA results in the
present work, hydrogen bonding is not the sole contributor to
the strengthening of the interaction between the two DNA
strands, which would offer computational support to the
hypothesis that GC content alone cannot explain the thermal
adaptability of single-celled and multicellular organisms.35,36

Furthermore, the estimates of charge transfer from additive
one base pair are very close to the corresponding value for the
dsDNA structures calculated as a whole (Table 4). Cross-base
stacking may be a contributor to the increase in stability
between DNA strands. Since a sufficiently long nucleic acid
can fold back on itself, the overall 3D structure of a nucleic acid
could further affect its stabilization. Additionally, proteins that
stabilize a nucleic acid may also affect the perceived interaction
energy, and some of these proteins are sequence-specific,
structure-specific, or discriminate differently based on the
different classes of nucleic acids.

In HALMO EDA, polarization and charge transfer are not
further decomposed. Frozen density, on the other hand, is
decomposed into subcomponents, allowing more fine-grained
dissection of the interaction energy to better pinpoint the
sources of the variability. The descriptive statistics for 4bp
dsDNA grouped by GC content (Tables 5 and 6) offer a demon-
strative interpretation that electrostatics and Pauli repulsion
play larger roles in the variability of the interaction energies
among sequences with the same GC content compared to
exchange and correlation.

To demonstrate the effects of frozen density, polarization,
and charge transfer, HALMO EDA provides visualizations of the
electron-density differences (EDDs) among these components.
For the sequence TA, Fig. 2 depicts the change in going from
frozen density to polarization, whereas Fig. 3 depicts the

Table 2 Interaction energies for 4bp dsDNA in implicit water from
ONETEP categorized by GC content. All energy values are in kcal mol�1.
Abbreviations: MAD, median absolute deviation; est., estimate from addi-
tive one-bp interactions

GC content

PBE B97M-V BSC1

Median MAD Est. Median MAD Est. Median MAD

0% �43.2 0.7 �35.6 �41.4 1.0 �30.2 �31.2 1.0
25% �49.0 1.2 �39.1 �47.1 2.4 �34.0 �37.1 1.2
50% �53.7 1.8 �42.7 �51.9 3.0 �37.8 �42.3 1.3
75% �58.3 2.4 �46.3 �56.2 3.0 �41.6 �47.5 1.1
100% �64.5 2.6 �49.9 �64.1 4.3 �45.4 �53.5 1.0

Table 3 Frozen density and DFT-D2 dispersion correction for 4bp dsDNA in vacuum from HALMO EDA categorized by GC content. All energy values are
in kcal mol�1. Abbreviations: MAD, median absolute deviation; est., estimate from additive one-bp interactions

GC content

Frozen density DFT-D2

PBE B97M-V PBE

B97M-VMedian MAD Est. Median MAD Est. Median MAD Est.

0% 21.2 5.4 4.8 �4.5 4.7 �8.8 �22.5 1.1 �12.7 0.0
25% 8.4 16.3 �1.3 �17.1 13.3 �16.7 �24.1 0.8 �13.4 0.0
50% 4.6 6.2 �7.4 �23.3 6.2 �24.6 �24.9 1.4 �14.0 0.0
75% �0.3 5.2 �13.5 �33.4 6.0 �32.4 �25.9 1.2 �14.7 0.0
100% �6.8 8.8 �19.6 �41.4 7.7 �40.3 �27.0 1.3 �15.4 0.0

Table 4 Polarization and charge transfer for 4bp dsDNA in vacuum from HALMO EDA categorized by GC content. All energy values are in kcal mol�1.
Abbreviations: MAD, median absolute deviation; est., estimate from additive one-bp interactions

GC content

Polarization Charge transfer

PBE B97M-V PBE B97M-V

Median MAD Est. Median MAD Est. Median MAD Est. Median MAD Est.

0% �17.2 0.8 �15.1 �16.1 0.8 �14.3 �39.2 0.3 �39.9 �34.5 0.3 �35.0
25% �25.2 1.2 �21.3 �23.7 1.1 �20.4 �44.2 1.1 �44.0 �38.9 1.0 �38.6
50% �31.4 1.9 �27.5 �29.5 2.3 �26.5 �48.4 0.9 �48.0 �42.8 0.7 �42.2
75% �37.5 3.5 �33.8 �35.5 3.3 �32.7 �52.3 1.1 �52.0 �46.3 0.9 �45.8
100% �42.0 3.0 �40.0 �40.4 3.0 �38.8 �55.1 1.0 �56.0 �49.0 1.0 �49.4
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change in going from polarization to the variationally
optimized state. For instance, the electron transfer portion of
hydrogen bonding can be visualized by the charge-transfer
component, illustrated by the increase in the electron density
between the base pairs in Fig. 3. In fact, the majority of charge
transfer comes from the electron transfer between bases from
opposing strands where the hydrogen bonding occurs.
Observing the EDD in going from frozen density to polarization,
the change in electron densities reflects some of the pre-
hydrogen bonding aspects, where the electrons on the oxygen
that is partaking the hydrogen bonding have accumulated
toward its companion hydrogen as if it is preparing for the
electron transfer that occurs in the charge-transfer component.

Analogous to ONETEP’s HALMO EDA, AmberTools offers a
molecular-mechanic version of energy decomposition. For the
counterion-coupled dsDNA structures studied in this work, the

two components that make up the entire interaction energy
according to the BSC1 force field are electrostatics and vdW. As
for HALMO EDA, the statistics calculated for these components

Table 5 Electrostatics and Pauli repulsion for 4bp in vacuum from HALMO EDA categorized by GC content. All energy values are in kcal mol�1.
Abbreviations: MAD, median absolute deviation; est., estimate from additive one-bp interactions

GC content

Electrostatics Pauli repulsion

PBE B97M-V PBE B97M-V

Median MAD Est. Median MAD Est. Median MAD Est. Median MAD Est.

0% �71.8 5.5 �85.5 �101.3 6.1 �99.1 159.2 2.2 150.6 166.9 10.6 155.0
25% �94.2 12.7 �102.4 �125.3 16.3 �117.2 177.0 2.6 167.8 185.0 44.4 172.7
50% �108.7 5.8 �119.2 �138.8 8.8 �135.3 194.2 3.3 184.9 202.6 8.1 190.4
75% �126.3 5.0 �136.1 �158.8 7.4 �153.4 212.4 3.0 202.1 223.0 5.9 208.0
100% �144.4 8.6 �153.0 �179.5 9.5 �171.5 230.2 4.5 219.2 246.1 10.2 225.7

Table 6 Exchange and correlation for 4bp in vacuum from HALMO EDA categorized by GC content. All energy values are in kcal mol�1. Abbreviations:
MAD, median absolute deviation; est., estimate from additive one-bp interactions

GC content

Exchange Correlation

PBE B97M-V PBE B97M-V

Median MAD Est. Median MAD Est. Median MAD Est. Median MAD Est.

0% �37.5 0.5 �36.7 �61.9 3.2 �56.9 �28.8 0.8 �23.6 �9.2 0.4 �7.9
25% �41.7 0.8 �40.4 �69.1 3.8 �64.0 �31.2 0.6 �26.3 �21.1 12.4 �8.2
50% �45.4 1.0 �44.1 �75.9 2.7 �71.1 �33.7 0.9 �28.9 �10.1 0.6 �8.5
75% �49.3 0.9 �47.8 �85.1 1.6 �78.3 �36.5 0.7 �31.6 �10.4 0.5 �8.8
100% �53.6 1.3 �51.6 �93.1 2.8 �85.4 �39.4 1.3 �34.2 �11.0 0.7 �9.1

Fig. 2 Change in electron densities from frozen density to polarization for
the sequence TA in vacuum. Red indicates an increase in electron density,
whereas blue indicates a decrease. Isovalue is set at �0.02 e Å�3.

Fig. 3 Change in electron densities from polarization to supermolecule
with variationally optimized molecular orbitals across the supermolecule
for the sequence TA in vacuum. Red indicates an increase in electron
density, whereas blue indicates a decrease. Isovalue is set at �0.02 e Å�3.

Table 7 Interaction and solvation energies for 4bp dsDNA using the BSC1
force field categorized by GC content. All energy values are in kcal mol�1.
Abbreviations: MAD, median absolute deviation

GC content

Vacuum Solvation Implicit water

Median MAD Median MAD Median MAD

0% �45.6 5.8 12.4 5.7 �31.2 1.0
25% �64.2 11.0 27.3 11.5 �37.1 1.2
50% �81.8 9.3 39.6 8.3 �42.3 1.3
75% �105.0 12.8 56.8 12.5 �47.5 1.1
100% �120.4 14.5 67.9 13.9 �53.5 1.0
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can also be grouped by the GC content (Table 8). For these
dsDNA structures, BSC1 decomposes the interaction energy
into electrostatics, vdW, and solvation energy. Solvation energy
is zero in vacuum and non-zero in implicit water. Electrostatics
and vdW are the same regardless of whether a dsDNA structure
is in vacuum or in implicit water.

Similar to HALMO EDA, electrostatics is also the major
contributor to the variability of interaction energies according
to BSC1 and substantially outweighs that of vdW. The decrease
in the variability in the overall interaction energy between in
vacuum and in implicit water is substantial, which can be seen
in Table 7 by their MAD statistics. For any comparison in this
study, caution should be taken when comparing MAD statistics
between overall interaction energies and specific energy com-
ponents. While the interaction energy provides an indication of
the thermal stability of dsDNA molecules as a whole from
multiple contributing factors, a particular energy component’s
susceptibility to neighboring base interactions is a reflection of
that component only.

Non-vdW and vdW energies for 4bp dsDNA in vacuum from
the BSC1 force field are compared and contrasted with that of
HALMO EDA (Table 8). The overall interaction energy is
composed of non-vdW and vdW parts. In BSC1, there is a
dedicated vdW component, and electrostatics makes up the
remaining portion of the interaction energy as the non-vdW
part. In HALMO EDA, there is no component specific to vdW, so
vdW is defined either as the correlation component in HALMO
EDA or as the empirical dispersion correction37 depending on
whether the exchange–correlation functional intrinsically includes
dispersion interactions. This definition used in the present work
was arrived at by calculating 27 possible combinations of HALMO-
EDA components (which has six components) and empirical
dispersion correction, which is non-zero for PBE and zero for
B97M-V. The calculated values were then compared with the vdW
component of BSC1 to determine which of the combinations of
HALMO-EDA components and empirical dispersion correction
give values that are closer to the vdW component of BSC1 while
still maintaining chemical interpretability. A definition of vdW
from EDA components varies between different EDA schemes and
different studies, where, for instance, an alternative definition of
vdW38,39 includes charge transfer, which in turn is couter-
intuitively claimed to be related to covalency.14 Differences in
the definitions of vdW are attributed to the differing components

in various EDA schemes and the methodologies of establishing
such definitions.

By defining vdW in terms of HALMO-EDA components as
done in the present work, similar variabilities (by MAD) for
each GC-content group compared to BSC1 are exhibited in PBE
and B97M-V, with the exception of the 25% GC-content group
for B97M-V that is also apparent in the overall interaction
energy in vacuum. For PBE, the vdW contribution to the
interaction energy is significantly overestimated in a consistent
manner compared to both BSC1 and B97M-V. For B97M-V not
in the 25% GC-content group, vdW contribution is under-
estimated compared to BSC1, roughly by the same magnitude
in the opposite direction relative to PBE. To provide a
comparison with an SAPT-based approach, vdW components
are also provided between the two fragments for each dsDNA
structure from vdW2017,20 an SAPT-based force field for vdW
contributions, which is detailed in the ESI.† These further
demonstrate the non-uniqueness in the partitioning of energy
components among EDA schemes.

The much greater variability in vdW contributions for the
25% GC-content group using the B97M-V functional lends itself
to future studies in determining whether the variability is an
artifact of the way this exchange–correlation functional
operates or is due to actual sequence-dependent interactions.
If the latter, such interactions are apparently more pronounced
when the GC content is 25% for 4bp and could serve as a useful
category for future studies of interactions that depend on
neighboring base pairs.

4 Conclusions

We have applied energy decomposition analysis (EDA) methods
to dissect the interactions within double-stranded DNA
(dsDNA) to examine how much sequence-dependent
interactions affect the interaction energies of dsDNA
molecules. For this work, we have analyzed all 136 combinations
of four-base-pair (4bp) sequences, which we have categorized
based on their GC content.

Hybrid absolutely localized molecular orbitals (HALMO)
EDA has shown to be a useful tool in conjunction with
molecular mechanics in decomposing the interaction energies
into components for comparisons and analyses. It has been

Table 8 Non-vdW and vdW energies for 4bp dsDNA in vacuum using HALMO EDA and BSC1 force field categorized by GC content. The interaction
energy is composed of non-vdW and vdW parts. In HALMO EDA, vdW is defined either as the empirical dispersion correction (for PBE) or as the
correlation component (for B97M-V). In BSC1, the non-vdW part is equivalent to the electrostatic component for the dsDNA structures in this work. All
energy values are in kcal mol�1. Abbreviations: MAD, median absolute deviation

GC content

Non-vdW vdW

PBE B97M-V BSC1 PBE B97M-V BSC1

Median MAD Median MAD Median MAD Median MAD Median MAD Median MAD

0% �36.4 6.5 �44.3 6.9 �27.6 6.0 �22.5 1.1 �9.2 0.4 �17.8 0.8
25% �57.5 13.4 �50.4 46.0 �47.1 10.9 �24.1 0.8 �21.1 12.4 �17.4 0.9
50% �73.8 9.0 �80.3 12.5 �65.3 8.3 �24.9 1.4 �10.1 0.6 �17.2 1.3
75% �90.2 8.4 �95.1 18.4 �87.9 12.0 �25.9 1.2 �10.4 0.5 �16.9 1.1
100% �106.5 11.2 �104.6 19.4 �104.4 15.4 �27.0 1.3 �11.0 0.7 �17.2 0.9
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demonstrated in this work and the work of other researchers
that GC content is an important property of DNA in the context
of its stability. Despite its importance, it is not the sole factor in
determining the stability of nucleic acids, since substantial
variabilities can exist for nucleic acids with the same GC
content. This suggests that the hydrogen bonding between
two bases should not be considered as the only or even the
most important factor in the interactions between two
complementary DNA strands.

This work has provided a new paradigm and tool for the
study and analysis of nucleic acid interactions using EDA
within large-scale quantum chemistry calculations. Future
work can involve a more in-depth study of intramolecular
interactions that exist within nucleic acids and also the inter-
actions of nucleic acids with other entities, such as proteins
and drug molecules.
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