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First-principles calculations of hybrid
inorganic–organic interfaces: from
state-of-the-art to best practice

Oliver T. Hofmann, *a Egbert Zojer, a Lukas Hörmann, a Andreas Jeindl a

and Reinhard J. Maurer b

The computational characterization of inorganic–organic hybrid interfaces is arguably one of the

technically most challenging applications of density functional theory. Due to the fundamentally different

electronic properties of the inorganic and the organic components of a hybrid interface, the proper

choice of the electronic structure method, of the algorithms to solve these methods, and of the

parameters that enter these algorithms is highly non-trivial. In fact, computational choices that work

well for one of the components often perform poorly for the other. As a consequence, default settings

for one materials class are typically inadequate for the hybrid system, which makes calculations

employing such settings inefficient and sometimes even prone to erroneous results. To address this

issue, we discuss how to choose appropriate atomistic representations for the system under

investigation, we highlight the role of the exchange–correlation functional and the van der Waals

correction employed in the calculation and we provide tips and tricks how to efficiently converge the

self-consistent field cycle and to obtain accurate geometries. We particularly focus on potentially

unexpected pitfalls and the errors they incur. As a summary, we provide a list of best practice rules for

interface simulations that should especially serve as a useful starting point for less experienced users and

newcomers to the field.

1 Introduction

Interfaces between organic and inorganic materials are special
for a variety of reasons. From a technological point of view,
inorganic materials and organic molecules exhibit complementary
properties: For instance, inorganic materials tend to have higher
charge-carrier mobilities, while organic materials exhibit stronger
light-matter coupling and are easier to modify chemically.1–3

Organic molecules may, for instance, be tuned to obtain a specific
band gap for light absorption or emission. Moreover, hybrid
inorganic–organic interfaces determine the functionality of
essentially all organic (opto)electronic devices,4–6 like OLED-TVs
or AMOLED displays. For these reasons, they have been in the
focus of research on organic semiconductors already for several
decades.

Hybrid inorganic–organic interfaces are also highly interesting
from the perspective of fundamental science, as they form
a bridge between the traditional worlds of chemistry and
physics, combining delocalized and localized electronic states.

The strength and nature of the interactions between an inorganic
and an organic system can vary substantially, ranging from purely
physisorptive systems, where van der Waals interactions dom-
inate, to strongly chemisorptive interactions, where new bonds
are formed (and, inevitably, other bonds are weakened or
broken).7,8 Accurately describing these different worlds on equal
footing poses a formidable technical challenge, especially if
such a description is based on first-principles computational
simulations.

This challenge can be loosely separated into two main
aspects: On the one hand, there is the ‘‘level of sophistication’’
of the computational method that needs to be sufficient to
describe the relevant physics of the interface, i.e. the ‘‘metho-
dological challenge’’. Although both density functional theory
and the solution of the Schrödinger equation using a many-
electron wavefunction method are formally exact, in practice
every practically applicable variant of these approaches is based
on certain fundamental approximations that limit the physical
effects it can capture. Such approximations comprise, e.g., the
choice of a specific approximate density functional in DFT
approaches or using trial wave functions of limited flexibility
in (post) Hartree–Fock calculations. A second, often overlooked
aspect is the ‘‘numerical challenge’’: This arises from the many
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possible numerical strategies and the specific settings for
solving the system of equations resulting from the chosen
electronic structure method. These options include the choice
of the type of basis set, the algorithms used to find the minima
for the electronic and/or geometric structure, the precision with
which the minima are determined, etc. Here, many choices that
perform well for crystalline inorganic materials (such as metals)
fare much worse for molecules and vice versa. Most electronic
structure software packages employ robust default settings that
ensure convergence for a variety of systems. These settings are
sometimes more geared towards crystalline inorganic materials
or towards molecular systems, making the code more efficient
for one material class than for the other. However, the ideal
choices of parameters and algorithms become more difficult
when different classes of materials are combined, which is
naturally the case for hybrid inorganic–organic interfaces.
In the best case, this may mean that the defaults cause the
calculations to run inefficiently, so that they take longer than
necessary to complete. In the worst case, applying the wrong
algorithm – or the right algorithm wrongly – can render
calculations numerically unstable or can lead to results that
are physically incorrect.

The goal of this article is to provide a detailed account of the
‘‘methodological’’ as well as the ‘‘numerical/technical’’ chal-
lenges associated with modelling hybrid inorganic–organic
interfaces. To achieve this, we will first discuss (in Section 2)
in which respects the inorganic and organic components of a
hybrid interface differ from a physical point of view. This
provides the basis for the remainder of the discussion: in
Section 3, we will briefly address model building, i.e. the
necessary considerations when creating a model of a system
that will be simulated and eventually compared to a real-world
experiment. Section 4 continues by briefly discussing the
advantages, disadvantages, and limitations of different popular
computational methods that are used to model hybrid
inorganic–organic interfaces. Due to its practical relevance,
we will mainly focus on density functional theory with the
different exchange–correlation approximations and van der
Waals correction schemes that can be employed to model
hybrid inorganic–organic interfaces. In Section 5, we will then
deal with the algorithms, numerical approximations and settings
employed in common software packages. Using examples, we
will show, inter alia, how the uncritical use of numerical default
settings may yield incorrect results. In addition, we will highlight
the problems associated with geometry optimizations and the
different optimization strategies, which can lead to significant
differences in the calculated interface geometries.

During the following discussion, we will especially address
questions relevant to practitioners. These include aspects
regarding the general strategy employed for modelling interfaces
(e.g., extended interfaces with periodic boundary conditions
versus aperiodic interface models), as well as specific details
such as the optimal choice of numerical parameters, e.g., for a
rapid convergence of the self-consistent field algorithm or for the
geometry optimization. We provide a diverse, but not exhaustive,
set of examples from our experience gathered over more than a

decade of interface simulations, but also show new simulations
performed to illustrate certain arguments. This is done in an
effort to establish a set of best practices. Wherever possible, we
point out how chemical intuition or physical understanding can
guide the choice of the optimal algorithms and their settings.
We expect that this work will help newcomers in this field to
obtain reliable results more efficiently, but we are confident
that even seasoned veterans may still learn a thing or two.
We definitely did when compiling this work!

2 Some fundamental differences
between inorganic and organic
materials

An inorganic–organic interface consists of two very dissimilar
components: An inorganic component (‘‘the substrate’’) and an
organic component (‘‘the adsorbate’’).† The substrate is either
a metal, a semiconductor, or an insulator, and typically much
thicker than the adsorbate, which consists of molecules
adsorbed in a (sub)monolayer or as a thin film. In this section,
we will briefly discuss the most salient differences in their
electronic properties. These differences will accompany us
through the rest of this work, as they are the reason for many
of the numerical challenges the simulations face. Before we
start with the discussion, it is important to note that the
possible components of hybrid inorganic–organic interfaces
encompass – quite literally – the whole of chemical space.
To keep the discussion focused and avoid derailing the topic,
we have to simplify and generalize several statements regarding
the different materials classes, fully knowing that there are
several exceptions and further physical differences that we
cannot mention here. Overall, we highlight three important
differences in electronic structure between organic and
inorganic compounds:

2.1 Electronic states – orbitals and bands (Fig. 1a)

Electronic states in molecules are typically discussed in terms
of molecular orbitals, i.e., as discrete energy levels. Conversely,
electronic states in crystalline inorganic materials are
commonly described as continuous bands. On a formal basis,
the two pictures are strictly equivalent: A band structure is just
a sorting of orbitals (which, in a periodic structure, are
infinitely extended) using the associated wave vectors (which
can be obtained, e.g., by a Fourier analysis). The band structure
picture can be used to reveal a major difference between two
materials classes: Metals and semiconductors (and, more
rarely, also insulators) show appreciable band dispersion, i.e.,
a pronounced dependence of the energy of the electronic states
on the wavevector. The reason for that is that the individual
building blocks (which are often just one or a few atoms)
interact with each other over multiple unit cells. Conversely, in
organic materials the wave-function overlap between neighboring

† Note that, of course, the role of substrate and adsorbate may be reversed, i.e.,
the substrate could be organic and the adsorbate inorganic.
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molecules is typically much smaller, leading to bands
with comparably smaller band dispersions. In fact, even in
high-mobility materials like rubrene, band dispersions in
p-stacking direction amount to only a few tenths of an eV.9

2.2 Variation of the valence electron density (Fig. 1b)

Crystals consisting of elemental metals and simple semi-
conductors typically have a relatively uniform, weakly varying
valence electron density. Conceptually, their electron densities
can, thus, be reasonably well described using models derived
from the homogeneous electron gas, or weak perturbations to it
(like the local density approximation or the generalized
gradient approximations within density functional theory).
This contrasts with organic molecules, where the charge
densities in the regions between the individual molecules can
drop by orders of magnitude, resulting in much larger
gradients of the electron density. Hence, for organic materials
hybrid functionals tend to yield more accurate properties than
(semi-)local functionals. This situation is primarily a consequence
of interatomic distances between atoms of different molecules
being significantly larger than interatomic distances of neighboring
atoms within the same molecule. Additionally, the periodic
repeat units of the inorganic crystals relevant in the present
context are typically small, encompassing only one or a few
atoms, resulting in lattice vectors of only a few Å in length.
Due to the size of molecules, the unit cells of molecular crystals
or adsorbates are typically much larger than those of a metal or
semiconductor substrate such that the above-described charge
density variations occur on length-scales much larger than the
size of the unit cell of the substrate.

A further reason for qualitatively different charge distributions
in organic and inorganic materials is that metals and many
(conventional) semiconductors exhibit only non-polar (or very

weakly polar) bonds. In contrast, organic molecules can contain
highly polar bonds (such as O–H, N–H, CQO, etc.).

2.3 Chemical bonding (Fig. 1c)

Metals and most insulators have high coordination numbers,
since they are held together by isotropic forces (i.e., metallic and
ionic bonds). Semiconductors and organic molecules are primarily
held together by covalent forces, which are strongly anisotropic.
Conversely, van der Waals forces, which for most organic
molecules are both the major source of cohesion in molecular
crystals and a major factor in the interaction between substrate
and adsorbate,7 are (to a first approximation) isotropic.‡

These three major differences between organic and inorganic
systems each require special consideration when performing
first-principles calculations: For instance, the localization of
states and the variation of the electron density influences the
applicability of electronic structure methods and basis sets used
to describe the components (see Section 3). This poses a sizable
challenge when combining differently bonded systems at a
hybrid interface. Moreover, the different nature and direction-
ality of the above-mentioned forces complicates the structure
optimization, as will be illustrated in Section 4. A further
challenge in modelling periodic hybrid inorganic–organic
interfaces is the requirement of describing organic and
inorganic components in the same unit cell. This requirement
of commensurability often leads to very large super-cells, where a
large number of substrate atoms need to be accounted for.

Finally, it should be emphasized that the nature of the
interaction between inorganic substrates and organic

Fig. 1 Differences between organic and inorganic materials. Shown is a monolayer of benzene and a metal slab (here, Au) as prototypical organic and
inorganic component, respectively. (a) Schematic depiction of the electronic states in the orbital picture and the band picture. Due to the interaction
between the atoms, the metal exhibits many energetically similar states that form (dispersing) bands due to the interaction between the atoms.
Conversely, each benzene molecule has several molecular orbitals, which hardly interact with each other, giving rise to (almost) flat bands. (b) Electron
density, as calculated with the PBE functional, shown at an isovalue of 0.0025 e bohr�3. While the metal shows an extended, rather smooth and
homogeneous electron distribution, the electron density of the organic component is localized on the individual molecules and becomes small in
between. (c) Schematic depiction of the bonding in the components. Each benzene molecule is held together by directed covalent bonds, while between
the molecules, non-directed van der Waals interactions dominate the cohesion. The metal is held together by metallic bonds. Like covalent bonds, these
originate from wave function overlap, but they contain multiple bonding partners at the same time (which also increases their isotropy).

‡ Note that, technically, van der Waals forces are anisotropic as a consequence of
the anisotropy of the polarizability of the system. However, this anisotropy is only
weak and mostly ignored in modelling approaches.
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adsorbates strongly depends on the considered interface.4–6,8,10

The interaction can perturb electronic states only weakly, being
almost exclusively driven by van der Waals interactions, or it
can be very strong and include the formation of covalent
bonds.7,11 Additionally, charge is often transferred across
hybrid inorganic–organic interfaces.4–6,8,10 At interfaces, the
presence of dipoles can also play a different role than for bulk
materials or isolated molecules,10 impacting charge- and
energy-transfer across the interface,4,12 modifying the lateral
charge-distribution at the interface,13 and reshaping molecular
states.14 Regular assemblies of dipoles also massively
impact the electronic structure of interfaces through so-called
‘‘collective electrostatic effects’’.4,8,10,15

3 The structural model

The first step of any first-principles calculation is to set up a
structural representation of the system to be modelled.
Realistic systems extend over mesoscopic length-scales,
typically containing too many atoms to be explicitly considered
in a quantum-mechanical simulation. Furthermore, only in
very few cases the atomistic structure is known a priori in full
detail. Therefore, an (idealized) abstraction of the real-world
situation must be used. The choices made in this abstraction
are crucial, as they will determine the outcome of the computation,
potentially resulting in fundamental deviations from the actual
situation. Even if a perfect simulation method was available, it
could not yield sensible results if the structural representation
oversimplifies reality. It is, therefore, imperative that the structural
model contains all the physical and chemical aspects that are
relevant for the considered real-world system. Thus, in this section,
we will review several common approaches used to set up models
for hybrid inorganic–organic interfaces and discuss their impact
on the outcome of the calculations.

Interface calculations can be separated into two major
categories, depending on the spatial extent of the chosen model
system. In an open boundary or ‘‘cluster’’ calculation, illustrated
in Fig. 2a, a finite-size cluster is cut from the actual, extended
interface. It is then modelled as a finite system, either on its own
or ‘‘embedded’’ into a surrounding medium that is then typically
treated at a lower level of theory. Alternatively, a slab type

calculation can be performed. It employs periodic boundary
conditions to infinitely repeat a central unit cell, as illustrated
in Fig. 2b. Both open and periodic boundary calculations have
their merits. Which approach is preferable depends on the
system and the scientific question that should be addressed.
At the same time, both approaches also face their own (notably
different) challenges, as will be discussed in the following.

3.1 Cluster models of hybrid inorganic–organic interfaces

The vast majority of studies on extended hybrid inorganic–
organic interfaces use periodic boundary conditions. However,
finite cluster models of interfaces are well-suited for interface
problems where the process or property to model is spatially
localized, exhibits quantum confinement, or only affects a
single molecule.16 These could be, for example, interfaces
formed by nanoconfined systems such as nanoclusters or small
nanoparticles. For extended interfaces, cluster models can be
preferable when, e.g., the modelled coverage is extremely low or
when there is only an individual molecule on a surface, which is
often the case in catalysis-related problems. A similar situation is
encountered in single molecule junctions, e.g., in break-junction
experiments, where one typically aims at a situation in which
only a single molecule forms the bridge between two
electrodes.17 Modelling a system as ‘‘non-periodic’’ is also the
method of choice when dealing with situations where the
objects of interest are at such large distances that they do not
significantly influence each other. This, for example, applies to
adsorbates at moderate coverage in the absence of island
formation, as well as to surface defects (again, for relatively
low coverage). For such systems the unit cells in periodic
boundary conditions would have to be made enormously big
to prevent effects associated with the limited unit cell size, which
introduce spurious interactions (especially if the defects or
adsorbate molecules are charged).18–21 In cluster calculations
such spurious interactions cannot exist by design.

Nowadays it is possible to deal with clusters containing
hundreds22,23 or even thousands24,25 of atoms. However, some-
times there are benefits to creating relatively small cluster
models containing ‘‘only’’ a few tens of atoms. This allows to
study interface properties with high-level methods, including
highly correlated wave-function-based methods or many-body
perturbation theory.26,27 For certain spectroscopic observables,
this arguably yields more accurate properties than when relying
solely on DFT.28 A further decisive advantage is that the
calculated systems do not need to be charge-neutral (in contrast
to periodic boundary calculations, as will be discussed below).
This is particularly useful when considering, e.g., charged
defects and core-level excitations, or when calculating
ionization energies/electron affinities from the energy
difference between a charged and an uncharged cluster
(DSCF-approach).29,30

There are two main challenges associated with creating a
cluster representation: One has to decide which part of the
substrate is cut out, i.e. the size and the shape of the cluster.
Additionally, one has to decide how the fringe of the cluster is
treated, i.e. whether (or how) it needs to be saturated or

Fig. 2 Schematic representation of tetracyanoethylene (TCNE) on a
fcc(100) surface in (a) a cluster calculation and (b) with periodic boundary
conditions.
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embedded into a realistic environment in order to avoid
artefacts. A further obvious problem when using small sub-
strate clusters are so-called finite-size effects, where the spatial
confinement of the wavefunction in the cluster increases the
band gap.29,31 For semiconductors, this leads to quantitatively
too large band gaps. The situation is, however, more problematic
for metal clusters, which form a finite band gap (and are, thus,
not metallic at all).29,32 Particularly problematic in this context is
that electronic and optical properties of metal clusters converge
very slowly with cluster size.33 For some properties, this problem
can, in principle, be mitigated by using very large clusters or
using appropriate extrapolation techniques.34 However, such
large clusters are often computationally unfeasible. A second,
related problem is that the interaction between substrate and
adsorbate can change non-trivially with the size and shape of the
cluster.35,36 Interestingly, this problem appears to be less serious
when dealing with large, p-conjugated, flat lying molecules.29

Another issue is that clusters cut out from the bulk structure
(say, an fcc crystal structure of a coinage metal) are often not
stable in this form.37 This can outright prevent a geometry
optimization of the substrate, since the cluster would
disintegrate. In practice, this is sometimes solved by constraining
the positions of the substrate atoms,37 which, however, impedes a
comprehensive determination of adsorbate geometries, since
surface relaxations can be accounted for only to a limited degree.

Furthermore, cutting a cluster from a substrate creates
additional surfaces at its rim. For semiconducting substrates,
this requires ‘‘breaking’’ several covalent bonds. The remaining
‘‘dangling bonds’’ often give rise to states in the band gap,
which artificially increase the reactivity of the cluster. To obtain
reliable results, it is, thus, necessary to remove these dangling
bonds. This can be done either by artificially saturating them,
e.g. with (pseudo)hydrogen atoms,38–44 or by employing density
embedding methods.16,31,45–50 In the latter case, the cluster,
which is computed using an expensive method, is embedded
into a surrounding material that is significantly more extended,
but described by a computationally less demanding approach
(often, specially designed pseudopotentials). Several density
embedding schemes have been developed for metal
clusters,50,51 which are mostly focused on predicting adsorption
energies and excited-state properties.

As mentioned above, it is important to be aware that most
cluster models focus on only a single (or at most a few)
individual molecules adsorbed on the surface. They are,
therefore, generally not well-suited for mapping a situation in
which inter-molecular interactions are relevant or even
dominant. This is, for example, the case when the adsorbate
structure is a direct consequence of adsorption-induced surface
reconstructions52–58 or intermolecular interactions (as for
upright-standing molecules in ordered self-assembled mono-
layers, SAMs).59–62 Such SAMs typically consist of long aliphatic
or aromatic backbones, which are chemically bonded to the
substrate via docking groups. In these systems, the chemical
docking of a single molecule to the substrate might be properly
described by a cluster model, but to obtain reliable electronic
properties of the interface, also suitable embedding schemes

need to be applied.63–65 At the same time, these systems also
have sizable inter-molecular interactions between molecules,
which are mostly determined by electrostatic and van der Waals
forces.66 Removing the surrounding molecules in a cluster
model also removes these interactions. As a result, rather than
remaining upright, as they would be in a real-world sample, in a
simulation the isolated molecules would fall over, which
fundamentally changes the physical properties of the interface
(see also Section 5). Even for flat-lying molecules, neglecting the
interactions with neighboring molecules in a cluster calculation
can be particularly problematic, if their electronic nature
changes due to intermolecular interactions. This is, for example,
the case for dyes such as indigo, where the formation of
hydrogen bonds triggers an extension of the aromatic p-system.67

Notably, even if the size of the cluster is extended to accommodate
several interacting molecules, edge effects would likely be
unavoidable.

Besides the two rather specific examples of self-assembled
monolayers and H-bonded dyes, cluster calculations, by design,
miss so-called collective (also termed cooperative) electrostatic
effects.68–74 This term refers to the fact that extended sheets of
dipoles, which are commonly encountered at interfaces, affect the
electrostatic potential landscape in a way that is fundamentally
different from the impact of an isolated dipole.10,75 This
directly affects the energies of the electronic levels of the
materials and has a strong impact on several observables, such
as X-ray photoemission spectra (i.e., core-level energies)76 or
ballistic electron transport through molecules,77 as well as on
the overall magnitude of the charge transfer.78 In principle,
these collective effects could be modelled in a cluster approach
by using a sufficiently large cluster containing multiple
molecules, but whenever an extended sheet of dipolar entities
is replaced by a finite-size cluster, massive electrostatic edge-
effects occur.70,79 Thus, to date the only strategy for correctly
capturing collective electrostatics in conjunction with a cluster
approach appears to be the use of suitable embedding
schemes.65

3.2 An overview of the repeated slab approach

Most calculations for hybrid inorganic–organic interfaces are,
arguably, performed using periodic boundary conditions as
indicated in Fig. 2b. Therefore, the peculiarities of this
approach shall be discussed in more detail here. There are
two subclasses of this ansatz, ‘‘buried interfaces’’ and ‘‘exposed
interfaces’’. As shown in Fig. 3a, in a ‘‘buried’’ interface, the
whole unit cell is filled with inorganic and organic material.
Due to the periodic boundary conditions in the direction
perpendicular to the buried interface, there are two separate
interfaces between the organic and inorganic material, which
may not be identical.

Buried interfaces are the model of choice for the simulation
of hybrid inorganic–organic interfaces with thick adsorbate
films. This includes, for example, multilayer adsorption of small
molecules or truly three-dimensional heterostructures.80

Conversely, ‘‘exposed’’ interfaces are the model of choice when
the simulations are connected to surface-science experiments of

PCCP Perspective

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
M

ar
ch

 2
02

1.
 D

ow
nl

oa
de

d 
on

 1
1/

7/
20

25
 2

:5
6:

02
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0cp06605b


This journal is © the Owner Societies 2021 Phys. Chem. Chem. Phys., 2021, 23, 8132–8180 |  8137

solid/vacuum and solid/gas interfaces. While most issues that we
will discuss below pertain to buried as well as exposed interfaces,
the focus in the following will be on exposed interfaces due to
their prevalence in literature.

Exposed interface calculations require the inclusion of a
region of vacuum, as shown in Fig. 3b. The purpose of this
vacuum region is to decouple the periodic replicas perpendicular
to the interface, which are generated as a consequence of the
employed boundary conditions (see below). The semi-infinite
substrate is modelled by a finite number of atomic layers and the
exposed interface(s) frequently contain only a (sub)monolayer of
the adsorbate, usually only on one side of the metal slab. In the
past, adsorbate layers have sometimes been placed on both sides
of the substrate to prevent spurious polarizations. This approach
is now outdated, as alternative approaches to account for an
asymmetry of the slab have been implemented in the majority of
the commonly applied codes, as discussed below.

Most band structure codes employ periodic boundary
conditions in all three dimensions. As the buried and exposed
interfaces are intrinsically only periodic in two dimensions
(unless the buried interface is meant to model a periodic
organic–inorganic heterostructure), in the simulations there
is also the above-mentioned periodic repetition of the
substrate(s) and the adsorbate(s) in the direction perpendicular
to the interface. In conjunction with exposed interfaces, this
strategy is commonly referred to as the ‘‘repeated slab
approach’’.

Despite their name, not only cluster, but also periodic
calculations may suffer from various finite size effects:
� When the cell contains too little vacuum, the periodic

replicas in z-direction may interact with each other. Provided
that the vacuum is large enough to prevent wave-function
overlap (approx. 15–20 Å), this interaction is not of quantum-
mechanical nature. Rather, electrostatic interactions and
polarization effects play a role, as will be discussed in detail
in the next section.

� Unit cells can be laterally too small to represent the actual
experimental situation. This can be the case, for example, when
a low-coverage situation should be modelled, but the size of the
unit cell in the computation needs to be restricted due to
computational limitations. Too tight packing of adsorbates
then results in spurious interactions between lateral replicas,
which can lead, e.g., to geometrical distortions of the adsorbate
molecules or to inaccurate adsorption energies, especially when
encountering spurious electrostatic interactions between
charged adsorbates.
� Finite-size effects can also occur when the number of

atomic layers chosen to represent a semi-infinite substrate is
too small. As in the above-discussed case of cluster calculations,
this can result in an artificial band gap and/or artificial surface
states of the substrate. In contrast to clusters, where no clear
construction recipe exists to eliminate artifacts due to such
finite-size effects, for slab calculations the thickness of the
substrate can be systematically increased by adding further
layers (using the bulk crystal structure of the substrate) until
these finite size effects disappear.

An advantage of periodic boundary conditions is that substrate
slabs are usually stable structures. It is, thus, both possible and
sensible to relax the geometry of the substrate when it comes into
contact with the adsorbate. Often, these geometry optimizations
lead to partial extractions of surface atoms or small-scale surface
reconstructions.81,82 This can notably improve the stability of the
interface, leading to a substantially larger (more exothermic)
adsorption energy. It is common practice not to relax the complete
slab. Rather, only the layers closest to the adsorbate are allowed to
rearrange, while the other atoms are constrained to their bulk
position. The reasoning behind that strategy is that the layers
away from the interface are meant to represent the bulk of the
substrate. In fact, if all metal layers were allowed to relax, the
atoms at the surface of the slab not covered by an adsorbate would
adopt the geometry of a clean metal surface, rather than that of
the bulk atoms. In this way one would model adsorption on a free-
standing metal film rather than on an exposed surface. As a rule
of thumb, half or more of the layers present in the slab should be
kept constrained. In Section 5 we will showcase, how such
seemingly unimportant ‘‘details’’ (like fixing the positions of all
slab atoms completely) can critically influence the resulting
adsorption geometry.

3.3 A detailed discussion of the repeated slab approach

There are additional consequences of employing periodic
boundary conditions, as they imply also full translational
periodicity of all observables (including the electrostatic
potential, the electron density, and, of course, the ionic positions).
This imposes some constraints and limitations on the
simulations, which are discussed in the following paragraphs.

3.3.1 Determining interface dipoles. Periodic boundary
conditions require that the electrostatic potential must have
the periodicity defined by the unit cell. Therefore, the potential
must not change for translations by (multiples of) a unit cell
vector. In particular, the electrostatic potential must be
identical at opposite edges of a unit cell. In the example shown

Fig. 3 Schematic representations of (a) a buried interface and (b) an
exposed interface, consisting of alkyl chains on a metal slab. The
background gradients indicate the electrostatic potential.
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in Fig. 4a, which displays the electrostatic potential of a
tetracyanoethylene (TCNE) monolayer adsorbed on Ag(111),
this requires identical values of the electrostatic potential at
0 and 80 Å (the two limits of the unit cell in the direction
perpendicular to the surface). Thus, there can be no net dipole
moment within a unit cell. In practice, when calculating a
periodic structure that would have a dipole moment, e.g.,
because of charge rearrangements at the interface or due to
polar adsorbates, an electric field appears that generates a
potential gradient in the unit cell such that the potential shift
induced by the system’s dipole moment is exactly cancelled.
This is shown by the blue curve in Fig. 4a. The magnitude of the
artificial electric field depends linearly on the magnitude of the
dipole density (i.e., dipoles per surface area of unit cell) and
inversely on the thickness of the vacuum region. A small
vacuum region therefore leads to a large field, a large vacuum
to a small field. Note that this field is not a feature specifically
implemented into certain program packages. Rather, it occurs
automatically because of the periodic boundary conditions. The
spurious field is most clearly visible in the vacuum region
separating two periodic replicas of the slab. Intimately linked
to that field is an artificial polarization of the slab. This
artificial polarization is visualized in Fig. 4b, which shows the
plane-integrated difference between the electron densities of
the TCNE/Ag(111) interface with and without the spurious field.

Interestingly, although the metal is much more polarizable
than the TCNE molecule, the polarization leads to notable
(if relatively small) charge rearrangements between the ends
of the entire slab, i.e. from the top of the TCNE monolayer to
the bottom of the metal slab.

The spurious field also affects the total energy of the system.
A first estimate of that contribution (neglecting the polarization
of the metal and the adsorbate) can be derived from the
interaction between the dipole of the interface and a homo-
genous field.83,84 As pointed out by Bengtsson84 (because the
field is internal, not external), it is given by E = 1/2 � m � F,
where m is the dipole and F the field within the unit cell. In
most cases, this energy contribution is small but non-negligible
and, thus, might modify the calculated relative stabilities of
specific configurations. The magnitude of the effect shall be
illustrated by the following, example: Let us consider a dipole of
1 e Å (approx. 5 Debye), which is packed at such a density (here,
ca. 180 Å2) that the resulting step in the electrostatic potential
amounts to 1 V. Using a unit cell height of 40 Å, the total energy
contribution from the dipole in the field is 1/2 � 1 e Å �
1 V/40 Å = 0.01 eV. Although that value is small, it is in the
same range as the typical energy differences between different
polymorphs of organic molecules.85 Therefore, it is important
to never compare energies between different structures when
the spurious field is not compensated. This is, for example,
sometimes done for time-consuming geometry optimizations,
since the correction schemes discussed below can slow down
the SCF convergence.

The spurious field and its ensuing artefacts can be avoided
in several ways, which are graphically depicted in Fig. 5:
� Size of the vacuum region: in principle, one possible

approach would be to increase the vacuum region until the
field essentially vanishes. Unfortunately, increasing the
vacuum size also increases the computational cost, especially
when working with a plane-wave basis set (for a discussion on
basis sets, see Section 4). Moreover, since the field decays with
one over thickness, the convergence is very slow, making this
not a good approach. Moreover, in this approach a surface
vacuum level never forms, making an accurate determination
of properties like the work function impossible. Thus, this
strategy is not advisable at all.
� Symmetric slab: a second approach is to construct sym-

metric model systems. There, the interface is mirrored
perpendicular to the xy plane (i.e., the adsorbate is added on
the bottom side of the substrate, too), causing the net potential
step across the overall slab to vanish for symmetry reasons.
This approach has two major disadvantages. To avoid the two
sides interacting with each other, both the substrate and the
adsorbate must be duplicated. Therefore, the system must be at
least twice as large as for an interface with an adsorbate layer
bonded to only one side of the slab. Furthermore, care must be
taken to construct truly symmetric systems. This is not always
straightforward. For example, the (111) surfaces of fcc-metals are
stacked in an ABC manner, making it impossible to generate
strictly symmetric slabs. In order to at least have identical
surfaces (terminating, e.g., with ‘‘A’’-type layers), it is necessary

Fig. 4 Tetracyanoethylene on Ag(111) using a unit cell with 80 Å in z-direction.
(a) Evolution of the (plane-averaged) electrostatic potential without (blue)
and with (orange, dashed) dipole correction. (b) Polarization induced by
the spurious field, calculated as the difference of the electron density with
and without dipole correction. The Ag/TCNE system extends from 0 to
B20 Å, with 60 Å of vacuum above it. The data were obtained with
FHI-aims using the PBE+vdWsurf method and a 3 � 3 � 1 G-centered
k-grid. The original calculations can be found at http://dx.doi.org/10.
17172/NOMAD/2019.10.16-1.

PCCP Perspective

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
M

ar
ch

 2
02

1.
 D

ow
nl

oa
de

d 
on

 1
1/

7/
20

25
 2

:5
6:

02
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://dx.doi.org/10.17172/NOMAD/2019.10.16-1
http://dx.doi.org/10.17172/NOMAD/2019.10.16-1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0cp06605b


This journal is © the Owner Societies 2021 Phys. Chem. Chem. Phys., 2021, 23, 8132–8180 |  8139

to use 3n + 1 layers (n being an integer number), i.e., four layers
(ABCA), seven layers (ABCABCA), ten, etc. For other types of
materials, like, for example the polar surfaces of wurtzite-type
materials including the popular ZnO, (close to) symmetric slabs
cannot be constructed at all.
� Dipole correction: the most common way to deal with the

spurious polarization due to periodic boundary conditions is to
introduce a discontinuity in the electrostatic potential within
the vacuum region.83,84 This is also frequently referred to as the
‘‘dipole correction’’. Since it is by far the most common
approach used in practice, we discuss it in more detail in the
following: the first step is to define the position of the plane
(parallel to the interface) where the discontinuity of the electro-
static potential is created. In Fig. 4, we designate this position
as z0. For all practical intents and purposes, this position
separates the unit cell into a region that is ‘‘below’’ and a
region that is ‘‘above’’ the slab (the red and blue regions in
Fig. 5c). The choice of the position is, to some extent, arbitrary,
but it should be far away from the electron density of the slab to
ensure that lateral variations in the potential due to the finite
extent of the adsorbate molecules have decayed. While z0 can be
chosen manually, today many codes determine this position
automatically, choosing either the center of the vacuum or the
position in the unit cell where the electron density is minimal
(for numerical reasons, plane-wave basis sets exhibit very small
but finite electron density in the vacuum region). The next step
is to determine the magnitude of the potential discontinuity
that is necessary to compensate for the asymmetry of the slab.
The specific implementation differs between different code
packages, but there are two main strategies how this can be
done: Either, (1) the dipole moment of the unit cell in z
direction is explicitly calculated by integrating over the plane-
averaged charge density (electrons and nuclei) between z0 and
z0 + a3 (where a3 is the length of the lattice vector perpendicular
to the surface). Alternatively, (2) rather than the dipole

moment, the gradient of the electrostatic potential at z0 (i.e.,
the electrostatic field at this position) is numerically calculated,
and a field with opposite polarity is applied by introducing the
appropriate step in the potential. Either method needs to be
repeated self-consistently throughout the SCF cycle until the
system’s dipole is fully compensated by the correction.
Although this procedure generally increases the number of
cycles required to reach SCF convergence, the additional
computational cost tends to be relatively small, especially
compared to the other strategies described before.

When applying the dipole correction in practice, some
technicalities should be considered. First, the approach
requires that z0 is in a region where there is no electron density.
Otherwise, especially for unit cells with a large vacuum region,
moving z0 by a small distance can result in significantly
different dipole moments when using method (1). Similarly,
also method (2) will fail, since the potential gradient differs for
different values of z0 if there is non-vanishing electron density
in the vacuum region. The second technicality to keep in mind
is that both procedures only work if the potential at z0 is
spatially homogenous, i.e. if there are no significant variations
in the potential within the xy-plane. To achieve this, z0 needs to
be placed sufficiently far away from the interface. Due to
collective effects, the field emanating from the dipoles decays
very quickly.68 Therefore, choosing z0 at a distance from any
atom in the slab that is larger than the distance between the
dipoles on the surface can already be sufficient. Consequently, to
be able to find a suitable position for z0 in cases where there is
only one dipole (i.e., typically one adsorbate molecule) per unit
cell, the height of the vacuum region should be in the same
range as (and ideally larger than) the lateral extent of the unit
cell. For large supercells, this provides the limiting factor for how
small the vacuum region can be chosen in a slab calculation.
� Other approaches: there are many more approaches to

achieve a similar electrostatic decoupling of periodic replicas:

Fig. 5 Schematic visualization of the electrostatic situation of exposed interfaces: (a) no electrostatic correction (b) a symmetric construction to prevent
the formation of a net dipole in the unit cell, (c) an electrostatic correction scheme (i.e., either the dipole correction or a Coulomb cutoff) and (d) a truly
2D-periodic interface with mixed boundary conditions (periodic parallel to the interface, open boundary conditions perpendicular to it). The color in the
background schematically indicates the evolution of the electrostatic potential.
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for example, the long-range electrostatic interactions across
images perpendicular to the surface can simply be truncated
in Fourier space. This so-called Coulomb cutoff method is fast,
simple to implement86 and effectively equivalent to the dipole
correction approach.87 Other approaches include the minimum
image convention, where the Coulomb operator is still periodic,
but contributions from neighboring unit cells are removed.88,89

Yet another approach to eliminate spurious electrostatic inter-
actions across images is the use of open boundary conditions
perpendicular to the surface. Then, the system is periodically
repeated in x and y directions, while it is non-periodic
perpendicular to the surface (mixed boundary conditions). This
can be achieved by solving the electrostatic potential on a grid
and imposing reflecting (Dirichlet) conditions when solving the
Poisson equation, which is used to evaluate the Hartree
potential.90,91 All these methods display a slightly different
behavior92 and are occasionally used for more non-standard
situations that involve complex boundary conditions or electro-
static environments.93

Periodic boundary conditions directly imply that a sample is
infinitely extended. While this is obviously not the case
perpendicular to the surface, it is also an approximation
parallel to the surface, since every real-world sample is finite
in size. One consequence of this is that, if an adsorbate has a
dipole moment parallel to the surface, it vanishes when
employing periodic boundary conditions. For metallic sub-
strates, this is less of an issue, since any dipole moment is
fully screened by the metal. On non-metallic substrates, the
screening is incomplete and in the actual sample lateral
potential gradients prevail, which in the simulations would
be eliminated by the periodic boundary conditions. However,
because in practice the potential gradients are typically very
small (and correlate inversely with the domain size),94 this
artefact is typically of little relevance (unless observables like
piezoelectricity are of interest).

This brings up another problem associated with employing
the repeated slab approach: naturally, this approach is not
suited to describe interfaces that do not display periodicity in a
two-dimensional plane. One of the reasons for that can be the
lack of commensurability between substrate and adsorbate, an
aspect that will be discussed below. Another reason is that one
might not be dealing with a flat substrate or with a homogeneous
adsorbate layer, as would be the case for nanoparticles with
adsorbed molecules or for single molecule junctions. In such
cases, problems associated with collective electrostatics (i.e. steps
in the electrostatic energy due to periodic arrangements of
dipoles) come into play.4,8,10 As discussed above, cluster
calculations without electrostatic embedding will fail to
account for these effects of extended polar surfaces. Conversely,
the periodic boundary conditions in repeated slab simulations
automatically include them. This, however, becomes a
problem, when the investigated system does not contain a
periodic arrangement of dipoles. This, for example, applies to
single-molecule junctions. Their correct description employing
periodic boundary conditions requires large unit cells to
prevent spurious interactions between neighboring dipoles

and to avoid collective electrostatic effects in the simulations that
do not occur in the actual junctions.12,77 Similar considerations
apply when modelling local excitation processes at a surface, as in
the case of final-state simulations of core-level binding energies.
With periodic boundary conditions, they artificially model a core
hole in each unit cell, in sharp contrast to the actual situation
encountered in the experiments.21 In such cases, where a
periodicity of the interface is assumed that does not exist in the
actual system, repeated slab calculations can produce even
qualitatively wrong results.

3.3.2 Charged unit cells. Another issue that arises due to
periodic boundary conditions is the problem of describing
charged moieties. Non-neutral entities arise in several physical
problems, e.g., when dealing with defects in semiconductors18,31

or when modelling ionization processes.95 Within the repeated
slab approach, it is generally not possible to charge only a single
unit cell. Rather, periodic boundary conditions imply that all
unit cells in the system carry a charge. A periodic arrangement of
(non-compensated) charges, however, results in a diverging
energy. This prevents convergence of the SCF algorithm for
charged unit cells.

In practice, by default all band structure codes compensate
unit cells containing an excess (or a deficiency) of electrons by
assuming a homogenous background charge with opposite
polarity, which exactly compensates the excess charge. This is
a feature of the Ewald summation, which neglects the ‘‘G = 0
term’’. Including that term would cause numerical problems
and neglecting it has no consequences for neutral unit cells, as
for those it is exactly zero. For charged unit cells, neglecting the
‘‘G = 0 term’’ corresponds to restoring charge neutrality by the
above-mentioned homogeneous background charge. Therefore,
analogous to the electric field in dipolar cells, this homogenous
background charge is not a particular feature of a specific code
(which could be switched on or off via a keyword), but rather
appears automatically.

A common scenario, where homogeneous charge back-
grounds are used are, e.g., first principles studies of charged
defects in bulk systems. Although these calculations suffer
strongly from a dependence on the size of the supercell (i.e., the
charge density of the compensating background), several efficient
correction and extrapolation schemes have been developed to
compensate for these problems.96–100 Unfortunately, they are not
applicable to interfaces:20 A particular problem for interfaces is
that there is a Coulomb interaction between the excess charge,
that is localized in the slab, and the delocalized homogenous
background charge. This gives rise to a significant contribution to
the total energy of the system, as shown in Fig. 6b for the example
of a 4-layer Cu(111) slab containing one excess charge per 1 � 1
surface unit cell. The spurious energy contribution originates
from the spurious net dipole of the unit cell and, hence, scales
linearly with the thickness of the vacuum region,101 as shown
schematically in Fig. 6a.

Two classes of approaches have been developed to deal with
this problem. The first corrects for the electrostatic potential of
the excess surface charge by interfering with the Poisson
equation that describes the electrostatic potential104–106 or via
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a posteriori correction schemes based on the dielectric profile of
the interface.20 A variety of modified Poisson solvers have
recently been proposed to tackle charged surface systems in
the context of electrified interfaces107 such as the Solvated
Jellium approach108 and the metallic boundary conditions
proposed by Otani and Sugano.104 Both approaches neutralize
the interaction between charged cells perpendicular to the
substrate. Note, however, that even there the lateral interaction
between charged cells persists, requiring a careful converge of
the supercell size. The downside of these approaches is that
they are not yet widely available.

The second class of methods ensures that the slab as a
whole is charge neutral, such that no compensating back-
ground charge is generated. This is typically achieved by
intentionally adding spatially localized countercharges into
the system. Two representatives of this class are the virtual
crystal approximation (VCA)18,109 and the Charge Reservoir
Electrostatic Sheet Technique (CREST):102,103 The VCA modifies
the charge of the atomic nuclei, such that the excess charge in
the cell is completely accounted for. This effectively localizes
the countercharge to the slab, mitigating the size divergence

problem (but not completely eliminating it, since for a fixed
amount of charge there is now a dependence on the substrate
thickness). Hence, the VCA is commonly used to simulate
doping of bulk semiconductors, where it provides a fixed
number of free charge carriers per volume, rather than per
area. CREST is an extension of the VCA and models the
countercharges as a charged sheet, which is placed below the
substrate. The additional energy contribution due to introducing
that charged sheet at a specific position in the vacuum region is
then corrected analytically,103 eliminating the size dependence.
This approach can also be used to mimic the impact of
band-bending and charge transfer for adsorbates on (doped)
semiconductor substrates.43,110,111 A conceptually similar
approach is the generalized dipole correction approach,112 which
introduces a monopole sheet as a ‘‘computational electrode’’ and
a dipole layer in the vacuum region to decouple charged periodic
images to produce boundary conditions equivalent to
isolated slabs.

3.3.3 The commensurability conundrum. Slab-type calculations
can only employ a single set of periodic boundary conditions
(i.e., one size of the lateral unit cell). Therefore, both the
substrate and the adsorbate are subject to the same lattice
periodicity and must share a common supercell. This is only
possible if the adsorbate unit cell is an integer multiple of the
substrate unit cell (or vice versa) such that a common supercell
can be defined,113 as shown in Fig. 7a and c. More precisely, the
epitaxy matrix, that defines the relation between the adsorbate
and substrate unit cells, must contain only integer entries.
More details on how epitaxy matrices are defined and a

Fig. 6 (a) Schematic representation of the slab and the evolution of the
dipole when varying the unit cell height for a charged unit cell. Provided
that the vacuum region is much larger than the slab, the dipole of the cell
amounts to Q�z0/2, with Q being the net charge of the slab and z0 referring
to the unit-cell height. (b) Dependence of the energy (relative to a 40 Å
thick cell) on the unit cell height of a charged Cu(111) (1 � 1) surface unit
cell where one extra electron was added and compensated with a
homogenous background (dashed line) or with the Charged Reservoir
Electrostatic Sheet Technique CREST102,103 (solid line). All calculations
were done using the PBE functional and 33 � 33 � 1 k-points and can
be found under https://dx.doi.org/10.17172/NOMAD/2020.12.11-1.

Fig. 7 Different types of epitaxy. Orange circles represent the substrate,
blue circles the adsorption site of the adsorbate. (a) Commensurate
interface. (b) Point-on-line epitaxy. (c) Higher-order commensurate
interface. (d) Incommensurate interface. Only a and c can be modelled with
periodic boundary conditions. b and d require streching or compressing of
either the substrate of the adsorbate.
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discussion of the different types of commensurability
(including epitaxy, point on line, line on line, etc.) can be found
in a recent review by Forker et al.114 Following the Frenkel–
Kontorova model,115 commensurate structures form only under
certain conditions (coincidence notwithstanding): The
interaction of the substrate with the adsorbate must be
sufficiently strong such that there is a clear, energetically
preferred adsorption site for each molecule. At the same time,
the interaction within the molecular adsorbate layer must be
sufficiently weak such that the molecules are not expelled from
the potential well of that adsorption site.

In reality, of course, not all hybrid inorganic–organic inter-
faces are commensurate in all directions (see Fig. 7b and d).
Still, when modelling an interface using periodic boundary
conditions, commensurability must be enforced. If the devia-
tion from commensurability is not too large, this can be done
by compressing and/or expanding the lattice constants of either
of the interface components. In practice, this implies that an
appropriate supercell of the substrate and the adsorbate
(probably containing 2 or more molecules) should be sought
that minimize the relative lattice mismatch. When modifying
the lattice constant(s), care has to be taken not to perturb the
properties of the material too much, e.g., by verifying that the
degree to which the band structure, the work function, and
similar properties are affected by the change of the unit cell
parameters is still acceptable.

Even then, one should keep in mind that any distortion of
the lattice parameters will make covalently bonded systems more
reactive (as they are no longer in their energetic minimum).
A second effect is that in a truly incommensurate system every
adsorbate molecule resides at a different relative position on the
substrate. Consequently, in the full layer all adsorption sites are
equally sampled independent of whether they are energetically
favorable or not. Conversely, when artificially enforcing
commensurability, only favorable adsorption sites will be
occupied. This can be most easily understood, when considering
only a single molecule in a fixed supercell. Moving the modelled
molecule over the substrate does not change the molecule–
molecule interaction. Hence, the whole layer can be translated
relative to the surface, until the most favorable molecule–
adsorbate interaction is found. This and the higher reactivity
of the modified sub-systems tend to lead to an overestimation of
the substrate–adsorbate interaction, and, thus, to overestimated
adsorption energies. However, also the opposite effect may
occur, if, e.g., the stretching of the substrate introduces a lattice
mismatch between the docking groups of the adsorbate and the
docking sites of the substrate. The magnitude of either effect can
be appreciable116 and can easily be larger than the energetic
differences between different adsorption sites or polymorphs.117

Consequently, for such interfaces authoritative first-principles
structure search or the reliable simulation of surface phase
diagrams is currently an unsurmountable challenge.

Presently, there are few approaches of which we are aware
that overcome the commensurability conundrum. If the molecule–
substrate interaction is very weak, certain properties can be
described by modelling a freestanding monolayer defined by the

periodicity of the adlayer alone, for example when simulating STM
topographies. An alternative is to map the DFT interactions
onto more approximate methods like interatomic potentials116

(i.e., force fields) or semi-empirical methods. Today, this mapping
can be done efficiently with the help of machine-learning
methods.118–123 The computationally cheaper methods can then
be efficiently evaluated for extensive domains containing
thousands of molecules, potentially providing a more accurate
representation of incommensurate interfaces.

3.4 Structure of the interface

The properties of an interface are strongly affected by its
atomistic structure. While setting up the initial structural
model of the interface (i.e., the input geometry of the calculation),
several assumptions need to be made that can have a fundamental
impact on the obtained results. These include, e.g., the size and
shape of the unit cell, the number of molecules to be placed in
that cell, the adsorption sites and orientations of the molecules,
etc. Many of these decisions are immutable and will not change
during the calculations. This is obvious for factors like the
coverage, but also applies (at least to some extent) to aspects
like the orientation of the molecules and their adsorption site,
as will be discussed in the following.

The choice of the initial setup can be massively simplified
when structural input from experiments is available. Unfortunately,
such input is typically limited, since most experimental methods
yield only incomplete atomistic insight. The immediate interface
region typically comprises only a monolayer or at most a
few layers of organic material, which often provides too few
scattering events for X-ray diffraction to yield the full structural
information. Low-energy electron diffraction (LEED) provides
information about the unit cell of the organic adsorbate, but
yields only limited information on the geometry of the adsorbed
molecules regarding their adsorption sites or on their
orientation relative to the substrate. Scanning tunneling
microscopy (STM) can provide this information when performed
with atomic resolution, but imaging both the substrate and the
adsorbate simultaneously works only in fortunate circum-
stances. Also, STM can only be applied to conducting substrates.
Moreover, it should be kept in mind that STM measures the local
density of states, not the positions of the atoms, and that the
appearance of an adsorbate in STM can be deceiving.124–131

Also, the composition of the substrate surface and its impact
on the interface structure is often not a priori clear.
Many metal–organic interfaces incorporate adatoms from
the substrate,8,82,132–139 which have a decisive impact on the
geometry of the organic layers as well as on the interface
properties.8,82,132,133,140,141 A similar problem occurs for semi-
conductor surfaces, which can exhibit different reconstructions
and surface terminations. One example for this is the
ZnO(0001)-surface, which, depending on the sample history,
may contain a different number of hydrogen or hydroxyl groups
on the surface or form triangular pits with missing surface
atoms.39,101,103,142–144 Like for metal surfaces, these surface
modifications can substantially change the interface geometry
and chemistry.145,146 A particular challenge in this context is
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that adatoms or hydroxyl group are frequently not detectable in
(especially LEED or STM) experiments. Rather, their presence
can often be inferred only indirectly, e.g., through their impact
on the geometry, which requires a combination of theoretical
and experimental techniques.

In lieu of experimental information, scientific studies often
consider only a single molecule in a large supercell in order to
‘‘avoid spurious interactions’’ or to model a theoretical low-
coverage regime. This strategy does not account for the fact that
the absence of interaction may be spurious in itself, or that at
nominally low coverages there could be island growth, with
layers that locally display dense packing. Spuriously large unit
cells particularly affect the adsorbate geometry: For (mostly)
upright standing molecules, the coverage and packing motif
crucially determines their tilt angle,147 but also for simple,
weakly interacting, flat-lying molecules, a dependence of the
adsorption height on the molecular coverage has been
reported.148,149 Moreover, a surprisingly large number of
molecules shows coverage-dependent re-orientations, phase
transitions, or conformational and chemical changes.62,150–160

Even if the ‘‘single molecule in a supercell’’ approach is the
best suited model (e.g., because the molecules repel each other
on the surface), finding the correct geometry (i.e., adsorption
site, orientation, conformation, etc.) is not necessarily

straightforward. Even for an isolated molecule, multiple possi-
ble adsorption sites and conformations exist, often with nota-
bly different properties. This point is exemplified in Fig. 8 for
the case of 6,13-pentacenequinone on Ag(111). Systematically
scanning the potential energy surface for a single molecule in
an approx. 252 Å2 large supercell, we detect 10 different stable
local minimum structures. The displayed data have been
calculated with PBE+vdWsurf 161 and were taken from Jeindl
et al.162 The different structures and their adsorption energies
are depicted in Fig. 8a. Notably, six of the ten found structures
are almost isoenergetic (i.e., within 50 meV); only four
structures are substantially less stable. Despite the very similar
adsorption energies, the adsorption heights vary substantially
between the structures (especially for the oxygens), as shown in
Fig. 8b.

We emphasize that the existence of a variety of different
adsorption structures is not a peculiarity of this example. Even
for the relatively small molecule tetracyanoethylene (TCNE), a large
variety of different structures has been found on various metal
surfaces both theoretically153,158,163,164 and experimentally134,153

and there are plenty of additional examples.162,165–167 The
existence of multiple minima of the potential energy surface
for even a single adsorbed molecule illustrates a fundamental
problem for first-principles studies of interfaces: Unless a

Fig. 8 Overview of the different local minimum structures for the adsorption of pentacenequinone on Ag(111), calculated with 3 � 3 � 1 G-centered
k-point grid using PBE+vdWsurf. (a) Top view of the different structures, together with their adsorption energies, calculated as the energy difference
between the system and the sum of slab and molecule on their own. (b) Average position of carbon (grey), and oxygen (red) atoms above the topmost
silver layer, ordered according to their adsorption energy. Further calculation details can be found in Jeindl et al.162
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systematic structure search is performed, it is easy to miss the
global energetic minimum, which is arguably the most relevant
structure. A survey of literature indicates that systematic
searches are the exception rather than the rule. (Although,
admittedly, it is often not clear to which extent some search
based on trial-and-error was performed, but not reported. Thus,
we recommend that the details of such a search are documented
more often in the published literature). Even when systematic
evaluations are done, they mostly rely on creating different
starting points based on physical and chemical intuition
followed by local geometry relaxations, rather than employing
more unbiased and systematic approaches like Basin
Hopping168 or machine learning-based algorithms.166 As a
further complication, local relaxations have their own challenges,
as will be shown in Section 5. Yet, without any systematic search,
a (more or less) random local minimum will be found.
Consequently, different scientists studying identical interfaces
will not necessarily find the same (local) minimum structures,
which negatively impacts the reproducibility of first-principles
interface studies, at least unless the full geometry is provided
(e.g., via data repositories). Moreover, the variation of adsorption
geometries can introduce a notable (perceived) error bar on the
calculations and significantly complicates the evaluation of
the performance of the employed methodology compared to
real-word experiments (see Section 4). Interestingly, recent
advances in global structure optimization have finally put global
structure search at hybrid interfaces including predictions of their
atomistic structures168–170 and even an assessment of different
polymorphs, within reach.165,171–173 In passing, the authors note
that their algorithm for global structure search at interfaces
(SAMPLE)165 is available as a python package that can be
downloaded from the author’s homepage (www.if.tugraz.at/
hofmann). Notably, global structure search also provides an
overview of the potential energy surface, which then allows to
either perform Monte-Carlo simulations in order to predict the
morphologies of (sub)monolayers under kinetically determined
growth conditions,171 to determine thermodynamically stable
structures and phase diagrams,165 or to account for the impact
that defects with low formation energies have on the structure.163

4 The electronic structure method

Despite recent advances in the efficiency of correlated wave-
function-based methods, their application to hybrid inorganic–
organic interfaces remains expensive and is mostly restricted to
small (embedded) clusters.47 Thus, band-structure calculations
based on density functional theory remain the workhorse for
first-principles studies of interfaces. There exists, however, a
plethora of different exchange–correlation (xc) functionals
(empirical and non-empirical) that could be applied. This raises
the question which xc functional should be used in practice.

Kieron Burke, one of the pioneers of modern xc functionals,
stated that ‘‘Users should stick to standard functionals [i.e.,
PBE for materials], or explain carefully why not’’.174 This
statement certainly also holds true for interfaces, although it

should be amended by stating that a van der Waals correction
is almost always required. Nonetheless, there are sometimes
good reasons to deviate from the standard approach. Since the
performance of different electronic structure methods is
frequently reviewed, also in the light of interfaces,47,175–181 here
we will focus on a quick, rather general overview of some of the
most relevant xc functionals available as well as the options to
account for van der Waals interactions. Note that for the sake of
brevity, some of the following statements may be (over)generalizing.
For a more comprehensive discussion on how to construct
and choose xc-functionals (including a benchmark of their
performance) the reader is referred to the recent reviews of
Burke182 and of Truhlar.183

4.1 Density functionals for interfaces

The core idea of density functional theory, as laid out by
Hohenberg and Kohn,184 is that the ground state properties
of a system are encoded in its electron density, i.e. there is a
functional that directly connects the systems’ electron density
to its total energy. Although this greatly simplifies first-
principles calculations in theory, the correct functional is still
unknown. Later, Kohn and Sham demonstrated that the correct
electron density can also be obtained from an ensemble of non-
interacting particles.185 For such a system, it is straightforward
to write down the equations for the kinetic and the Coulomb
energy. Only the functional for exchange and correlation, for
which no general form is known, must be approximated. Today,
it has become customary to group the different approximations
to the exchange–correlation functional into several rungs of the
so-called Jacob’s ladder, as coined by Perdew.186 Within each
rung, many xc functionals exist. These are either constructed to
obey certain theoretical limits and sum rules, or parameterized
to reproduce the properties of specific materials that were
calculated with higher-level methods. Notably, these rungs
roughly group the xc functionals according to their computational
cost, but ascending the rungs does not necessarily mean that
also the accuracy of the results increases, as we will discuss
below. It is also important to note that many developments
of the last 15 to 20 years do not neatly fit into these rungs,
e.g. self-interaction corrected functionals or van-der-Waals-
inclusive functionals. A detailed review of these recent
developments in materials research was recently given by
Maurer et al.175

The local density approximation (LDA) constitutes the 1st
rung of Perdew’s ladder and is the simplest of all constructions,
where the xc-functional depends only on the value of the
electron density at a given point in space. Although different
versions of LDA functionals exist, they are all numerical
parametrizations to the exchange and correlation energies of
the uniform electron gas. In practice, they differ only in the
functional form and parameterization, and all yield very similar
results. It is well known that LDA gives a good account of the
lattice constants and band structures of simple metals, but
does not perform as well for molecules and semiconductors.
Nonetheless, twenty years ago, LDA calculations were used
routinely for interface calculations,29 because they exhibit an
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artificial energy minimum between subsystems, even if they are
not covalently or ionically bonded. This was often taken to
‘‘mimic’’ van der Waals interactions, although this overbinding
occurs for the wrong physical reason.176,187–189 A nice example
is the case of PTCDA on Ag(111), where LDA predicts an
adsorption height in good agreement with X-ray standing wave
measurements.190 However, for most cases of hybrid inorganic–
organic interfaces the adsorption distances computed employ-
ing LDA are too low compared to experiments.176,190–194

Furthermore, LDA also shows a strong overbinding for
intra-molecular bonds in molecules (resulting in too short
inter-atomic distances195) and, generally, performs poorly for
molecular properties.196 Since the computational advantage
over the next higher rung (GGA, see below) is very small, and
due to the unsatisfactory geometries it predicts, LDA is hardly
used today for modelling interfaces.

The first improvement over LDA is to account also for the
gradient of the local electron density, giving rise to the
Generalized-Gradient-Approximation (GGA). Due to the inclusion
of the gradient, these xc functionals are called semi-local.
In contrast to LDA, many different functional forms and
parameterizations are in frequent use. For inorganic bulk
materials, GGA functionals provide significantly better cohesive
energies and lattice constants compared to LDA.197,198

For interface simulations, the PW91 functional199 has seen
frequent use, since it recovers some of the artificial binding
of LDA. The PBE functional,200 which is a non-empirical
simplification of PW91, is considered today’s default for
solid state physics problems and is the most widely used xc
functional. Multiple modified versions of PBE exist, which
involve a re-parameterization to other theoretical constraints,
(rPBE201) to constraints specifically relevant for solids
(PBEsol),202 or to match atomization energies (revPBE203).
In PBE, most molecules that are purely van der Waals bonded
to the surface do not stick to the surface at all175,191 (potential
artefacts from basis set superposition errors and/or the
geometry optimization algorithms notwithstanding).204 Indeed,
PBE generally tends to underbind,205,206 even within
molecules.207 Its reparameterizations rPBE and revPBE are said
to improve the description of chemisorption,203 while PBEsol
slightly overestimates the adsorption energies of chemisorbed
moieties.208 PBE has been shown to yield excellent predictions
for the electronic properties of metals, especially the work
function (within the experimental uncertainties).209 It does,
however, generally overestimate the polarizability and under-
estimate the dipole moment of isolated molecules.210

Although one would expect that this poses a problem for
interfaces, when the work function is determined by polar
adsorbates, it is our general experience that (provided that
the experimental geometry is used) the obtained results agree
rather well with the experimental values obtained in ultra-high
vacuum.82,124,150,151,191,211–216

Meta-GGAs are the next rung of functionals. They also
consider the kinetic energy density, which is equivalent to the
second derivative of the electron density. This makes them the
logical next step up from GGAs. Multiple variants exist, such as

TPSS217 (and its revised version revTPSS218) or SCAN219 and its
revised versions rSCAN220 and SCAN-L.221 Although the description
of cohesive energies of metals as well as atomization energies of
molecules is improved with these xc functionals, they are, to the
best of the authors’ knowledge, hardly ever applied to investigate
the adsorption of large organic molecules on metal surfaces.
This may be in part because accounting for dispersion forces by
a posteriori correction schemes (see next section) is more difficult
for this class of functionals (apparently because meta-GGAs
already are relatively non-local, thus, undermining the concept
of these a posteriori corrections). Still, dispersion interactions
have been incorporated via non-local corrections of meta-
GGAs222 (see next section). These have been applied successfully
to small, prototypical interfaces.222,223 Unfortunately, at present
we are unaware of more extensive, systematic tests for hybrid
inorganic–organic interfaces, making it too early to assess the
performance of meta-GGAs in the context of this work.

Hybrid functionals constitute the highest rung of functionals
that can currently realistically be applied to hybrid inorganic–
organic interfaces. In this rung, a fraction of Hartree–Fock
(HF)-like exchange (sometimes referred to as exact exchange) is
admixed to the complementary part of semi-local exchange. This
exchange is non-local, which increases the computational effort
over semi-local functionals typically by at least one order of
magnitude. The computational cost is furthermore increased by
the fact that hybrid functionals yield larger band dispersions,
which has a two-fold impact: For metals, the larger dispersion
leads to a smaller density of states (and, thus, available charge
carriers) near the Fermi energy. Thus, slab-type interface
calculations generally require more metal layers, i.e. larger
systems, to provide a stable Fermi energy of the substrate, as
exemplarily shown in Fig. 9 for a Cu(111) slab. Secondly, the
larger dispersion generally224 requires a denser sampling of the
reciprocal space (i.e., more k-points) to yield converged results.

Fig. 9 Work function F of a Cu(111) slab (relative to the work function of a
6 layer-slab) as a function of the number of layers in the slab calculated with
GGA-type xc functional PBE (red) and the hybrid functional PBE0 (blue). The
calculations were done for a primitive surface unit cell containing 1 atom per
layer with 11� 11 (solid line) and 33� 33 (dashed line) k-points. Calculations
were done with FHI-aims using the ‘‘tight’’ defaults. Further details and
results can be found at https://dx.doi.org/10.17172/NOMAD/2020.12.07-1.

Perspective PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
M

ar
ch

 2
02

1.
 D

ow
nl

oa
de

d 
on

 1
1/

7/
20

25
 2

:5
6:

02
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

https://dx.doi.org/10.17172/NOMAD/2020.12.07-1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0cp06605b


8146 |  Phys. Chem. Chem. Phys., 2021, 23, 8132–8180 This journal is © the Owner Societies 2021

Furthermore, hybrid functional-based calculations are more
difficult to parallelize efficiently, which affects their scalability
towards larger systems. Although these challenges are continuously
addressed by new, improved algorithms, the large computational
cost is an effective barrier that deters many users from routinely
using hybrid functionals for interface simulations.

All hybrid functionals contain the fraction of employed
Hartree–Fock-like (HF) exchange as one parameter. Similar to
semi-local functionals, many different hybrid functionals with
different design strategies exist. Here, only a few should be
mentioned: PBE0 constitutes an extension of PBE, with a
fraction of HF-exchange of 25%, as motivated on theoretical
grounds.225 Another popular approach is the B3LYP functional,
which is heavily parameterized (to molecular data) and employs
20% HF-exchange. However, B3LYP is rarely used for hybrid
inorganic–organic interfaces as its molecule-focused para-
metrization does not provide consistent accuracy for metals or
interfaces.226 Generally, hybrid functionals significantly
improve the quality of the prediction of the properties of
isolated molecules.227 They are, however, fundamentally
problematic for metallic systems,208,226 because of a divergence
near the Fermi-energy (a problem they share with many wave-
function based methods). This problem can be mitigated by
using range-separated functionals, specifically short-range
hybrid functionals, such as HSE06,228 in which exact exchange
is attenuated in the long range. This attenuation is well
justified for metallic bulk systems, where exchange is effectively
screened and the electron density ‘‘in the long-range’’
resembles a homogenous electron gas.229 Conversely, for sys-
tems surrounded by vacuum (such as isolated molecules),
theory would require that hybrid functionals, which employ
100% HF-exchange in the long range, are applied.230 The latter
approach is frequently used in optimally-tuned range-separated
functionals,231–234 such as the LC-w-PBE functional.230 Such
functionals try to solve the general band-gap problem of DFT by
choosing the amount of exact exchange (and possibly the range-
separation parameter) such that the IP-theorem235 is fulfilled,
i.e. such that the energy of the highest occupied Kohn–Sham
state is equal to the ionization energy. For interfaces, this poses
a clear challenge: Individual, small molecules typically require
large fractions of Hartree–Fock-like exchange to fulfill the IP
theorem,236 while for metals, smaller values suffice.212

Although this problem is partly mitigated by the fact that for
interacting systems, i.e. for molecules near a surface, the ideal
amount of exchange is significantly reduced,237 the conundrum
remains that different values would be required for the sub-
strate and the adsorbate. A more detailed discussion of the role
of exact exchange for modelling interfaces, how to potentially
determine a suitable value for its relative weight, and its impact
on the transfer and distribution of charges at interfaces is given
by Wruss et al.237 Generally, hybrid functionals (of all kinds)
tend to improve the description of molecular properties,
including geometries, dipole moments and polarizabilities.210

Kresse et al. showed for pristine substrates that work functions
calculated with hybrid functionals are generally smaller than
those obtained from semilocal approximations.208 This can be

ascribed to the fact that hybrid functionals yield more localized
electron densities, which decreases the surface dipole of
metals. Notably, the trend of smaller work functions for hybrid
functionals does not necessarily transfer to the simulation of
metals covered by an adsorbate layer, where the surface dipole
is changed due to pushback and other effects, such as charge
transfer.212

4.2 Long-ranged dispersion interactions

Van der Waals (vdW) interactions between individual atoms are
quite weak, typically amounting to about 0.1 eV per atom.
However, since they act between all atoms of a system, the
grand total of the vdW energy for extended molecules adsorbing
on surfaces or forming molecular crystals becomes quite
substantial. Generally, van der Waals interactions are the main
contribution to the cohesion of organic crystals238 and organic
layers.66 Without them, many interfaces would be inherently
unstable.191 Even for covalently bonded systems, a correct
description of vdW interactions is crucial, e.g., for the adsorption
height of flat-lying molecules.176 In short, vdW interactions play
a decisive role at hybrid inorganic–organic interfaces; maybe
even so much that it is fair to say that the advent of van der
Waals inclusive functionals and a posteriori corrections, that
became commonplace for interface calculations between
2006–2010, has created a schism in the modelling of hybrid
inorganic–organic interfaces. Whereas before, large deviations
between experimentally and computationally determined
adsorption geometries were readily accepted as a reasonable
agreement, today adsorption heights within 0.1–0.2 Å of the
experiment can be readily obtained176 and even these deviations
are potentially due to numerical rather than due to physical
approximations, as we show in Section 5.

The first rung of density functional theory that intrinsically
includes (long range) van der Waals interactions would be
the random phase approximation (RPA). Due to its large
computational cost and difficulty of generating converged and
numerically robust results, this method is rarely used to
describe relevant hybrid inorganic–organic interfaces.239,240 In
addition to the RPA, there are presently two conceptually
different approaches that allow treating van der Waals
interactions within density functional theory: a posteriori
dispersion corrections that add energies derived from analytical
expressions describing van der Waals interactions to the DFT
energies and functionals containing an explicit non-local
correlation contribution (so-called van der Waals functionals).
Here, we will only briefly summarize the basic ideas behind
these approaches, and discuss the effect they have on interface
calculations. A comprehensive discussion of these approaches
goes beyond the scope of this work, and the interested reader is
referred to pertinent reviews.175,176,178,189,241–248

4.2.1 A posteriori correction schemes. Today, the most
common way to account for van der Waals interactions is via
pairwise-additive dispersion correction schemes.249–253 Here,
the vdW energies are computed via an analytical expression
after the electronic self-consistency cycle has been converged.
This approach is justified by the observation that, with a few
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exceptions,254 vdW interactions have a very small impact on the
electron density. In their simplest form, the vdW interaction
energies (EvdW) are given as

EvdW ¼ �
1

2

X
AaB

fdampðRABÞ
C6:AB

RAB
6
; (1)

where the sum runs over all possible combinations of atoms A
and B. RAB is the distance between those atoms, C6 the effective
interaction parameter and fdamp an (empirical) damping function.
Several different dispersion correction schemes exist, which vary
(mainly) in their approach for creating dispersion correction
coefficients (C6) that reflect the chemical environment of an atom
in a molecule or solid. The most commonly used schemes for
hybrid inorganic–organic interfaces are that of Grimme (the
DFT-Dx250 class of vdW correction schemes, with their most
recent versions DFT-D3255 and DFT-D4256), the exchange-hole
dipole moment approach of Becke and Johnson,257 and the
methods developed by Tkatchenko and coworkers (vdW(TS)251

and its successors vdWsurf 161 and MBD-NL258).
The Grimme-type correction schemes were the earliest

widely adopted correction schemes. In their earlier, now out-
dated variants (DFT-D249 and DFT-D2250), they rely on fixed
coefficients for a given atomic species, neglecting the impact of the
chemical environment. More contemporary variants renormalize
the tabulated C6-coefficients based on the molecular geometry,
which substantially boosts the accuracy of this scheme.255 The
Tkatchenko–Scheffler-type corrections obtain the C6 coefficient
from the local polarizability of the atoms, and rescale the
interaction parameters based on a Hirshfeld charge partitioning
scheme in order to account for the chemical environment of
the atoms.251 For both pairwise-additive schemes, several
improvements over the basic variants exist. This includes
variations of the D3 scheme to account for effects beyond the
dipole-approximation,248 three-body interaction schemes,259 or
the use of alternative damping functions.252 For both the DFT-D
and the vdW(TS) scheme variants exist which implicitly account
for the screening of dispersion interactions in extended metals
via modified parameters.161,260 Importantly, both schemes have
been specifically reparametrized for interfaces, which has been
done separately for metal substrates, like in the vdWsurf

scheme,161,261 and for ionic crystals and surfaces.262,263 Using
these reparametrized schemes seems highly advisable: For
metals, because the corresponding parameterization partly
restores the correct physics;161 for ionic crystals, because using
the conventional parametrizations yields incorrect lattice
constants or causes unphysical surface reconstructions. The
vdWsurf scheme has shown reliable performance in describing
the adsorption structure of large conjugated molecules at metal
surfaces, but yields overestimated adsorption energies.176,264 An
extensive list of parameters for the vdWsurf scheme has been
published.265

When used out of the box, both the Grimme and the
Tkatchenko–Scheffler approaches have known difficulties
treating systems which undergo strong charge transfer, which
is a common scenario at hybrid organic inorganic interfaces.248

In principle, D3 allows dealing with atoms that are far from
neutral (i.e., that experience strong charge transfer), but this
requires manual tinkering with the reference systems used for
the parameterization.262 This situation has been recently
improved with the D4 variant, which rescales the interaction
parameters based on an atom-in-molecule charge partitioning
scheme.266 One could naively expect that the vdW(TS) scheme
would automatically capture charge-transfer effects, since it
relies on a charge-partitioning scheme. However, the Hirshfeld
partitioning sometimes fails to yield correct charges (especially
for negatively charged moieties and cases of strong charge
transfer). The reason for this is that in the Hishfeld partitioning
scheme the density is partitioned according to the densities of
free, neutral atoms. Thus, the parameters in the vdW(TS)
scheme are not sufficiently rescaled in cases, where a free ion
would be a much better reference.267 Here, the situation can be
substantially improved by using an iterative Hirshfeld
scheme,268,269 which includes such an improved reference
combined with an interpolation of tabulated C6 parameters
between neutral and charged free-atom species. In fact, we
observed for complex interfaces with multi-component
adsorbate layers comprising organic acceptors and alkali metal
atoms that this approach yields clearly more accurate adsorption
heights270 (compared to X-ray standing wave experiments) than
simulations based on the standard vdWsurf parameters.125

The Many Body Dispersion (MBD) method by Tkatchenko
and coworkers can be seen as a method that neither fits into
the pairwise additive methods nor the non-local correlation
functionals.271 Based on the vdW(TS) or vdWsurf C6 rescaling
approach,161 the MBD method and its variants272,273 create a
set of quantum harmonic oscillators at the positions of the
atoms, parametrized by atomic polarizabilities derived from
Hirshfeld partitioning. These oscillators are coupled within the
dipole approximation to calculate a long-range correlation
energy. Although this approach has shown promise for
hybrid organic–inorganic interfaces,274 the description of the
polarizability response via atom-localized harmonic oscillators
is not able to properly capture the collective polarizability
response of metals. A recent, non-local extension of the MBD
correction (the MBD-NL scheme)258 exists that replaces the
atom-in-molecules parametrizations of atomic polarizabilities
with a non-local functional to compute the polarization.275

The approach remains to be systematically tested, but it is
expected that this correction is universally applicable to
molecules and solids258 and, thus, should perform well for
hybrid inorganic–organic interfaces.

4.2.2 Non-local van der Waals functionals. An alternative
approach to include long-range van der Waals interactions is to
use an xc functional that directly captures non-local correlation.
At the same time, it should avoid a summation over unoccupied
states, in order to keep the functional computationally tract-
able. Today, most non-local van der Waals functionals contain
correlation of the form

Enl
corr ¼

1

2

ðð
r rð ÞF r; r0ð Þr r0ð Þdrdr0: (2)
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Here, r is the electron density and F is a pre-computed kernel.
Different types of functionals differ in the exact form of F,
which determines how the physics of non-local correlation is
captured. Modern functionals base it on the local polarizability,
which, for algebraic reasons, is approximated in a way that
neglects screening effects.242,248,276,277 Like the post-processing
schemes, the non-local correlation can, in principle, be added
to any xc functional, although this is much less straightforward
here. However, the non-local form (requiring a double integra-
tion over space, similar to exchange in hybrid functionals)
made their application within periodic boundary condition
calculations expensive. It was shown that a reparameterization
of the local exchange and correlation energy can substantially
improve the accuracies of vdW-DF.245 The recent reparameter-
izations by Vydrov and van Voorhis (VV09 and VV10) made
these functionals computationally more efficient.278,279 In contrast
to the post-processing schemes, no dedicated re-parameterizations
of the kernels for interfaces exist, nor should they conceptually be
necessary. A new generation of vdW-DF methods has recently been
proposed, that is specifically build to deal with various competing
interaction mechanisms.280,281 However, to the best of our
knowledge, their performance has not yet been systematically
assessed in the context of hybrid interfaces.

4.3 Consistency of the computational method and
benchmarks

Many of the aforementioned functionals, combined with
various dispersion-correction methods, have been applied to
interfaces, including interfaces between rather large organic
molecules and metallic or semiconducting substrates. Their
success varies from case to case, but generally, all modern
approaches for treating long-range dispersion interactions tend
to perform reasonably well. However, that is not to say that all
approaches yield the same results. Anecdotally, here we report
the impact of the computational method on the structure of for
PTCDA on Ag(111) (based on ref. 176 and 282), for which also a
wealth of experimental information exists.283

Fig. 10a shows the adsorption height obtained with various
functional/vdW-correction combinations. For the chosen system
pure GGA-functionals (PW91/PBE/refPBE) yield the unphysical
result that PTCDA barely binds. Conversely, combining the GGAs
with the D3 or the vdWsurf correction yields results in rather
good agreement with experiments,284,285 as does the non-local
VV10-functional. The values for the adsorption height (ca. 3.05 Å)
are similar to those obtained with the Random Phase
Approximation.176 The more outdated vdW-DF and the
vdW(TS) methods also yield adsorption geometries that are
reasonable, but deviate more significantly from the experiment.
Similar conclusions regarding the differences between the
functionals are reached for the adsorption energies shown in
Fig. 10b, although for the adsorption energy the ‘‘experimental
value’’ should not be taken at face value (as it had to be
extrapolated from a different molecule).161 Nevertheless, it
becomes clear that the values obtained with the different
methods scatter notably. Already within the PBE functional,
the different vdW-correction schemes yield adsorption energies

between �2.0 eV and �3.5 eV. The two tested non-local
functionals SCAN+VV10 and vdW-DF, as well as PW91 with
various correction schemes, are also within this energy window.

Fig. 10 Optimized adsorption heights (a) and corresponding adsorption
energies (b) for PTCDA/Ag(111) with different methods. Results for different
functional/vdW-correction scheme combinations. The different functionals
(LDA, PW91, PBE, revPBE), were combined with the Grimme-D3 scheme
and the Tkatchenko–Scheffler correction method in their original (TS),
surface (vdWsurf) and MBD variant. The vdW-DF and the SCAN+rVV10
functional were used as representatives for non-local functionals (right
column in a and b). (c) shows the energy difference between the two stable
adsorption sites of the molecule. Calculations details are given in
Hörmann et al.282 The experimental values are reproduced from
literature:161,284,285 For the adsorption height, they were obtained by X-ray
standing wave experiments,284,285 the adsorption energy was extrapolated
based on the chemically related NTCDA molecule.161
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Unfortunately, these energy differences are not just rigid offsets
between different methods, but affect different adsorption
positions differently. We illustrate this again for PTCDA, which
has two inequivalent stable adsorption positions when adsorbed
on Ag(111). They differ mostly with respect to their orientation
relative to the substrate.283 As shown in Fig. 10c, the relative
energies between the two minima assume values between
�150 meV and +50 meV depending on the chosen approach.
That means that even the relative ordering becomes
methodology-dependent. Interestingly, Fig. 10c suggests that
these variations depend more strongly on the vdW-correction
than on the underlying functional.

On a more positive note, at least qualitatively the potential
energy surface for interfaces seems to be relatively insensitive
to the method. As shown in the Supporting Information of
ref. 165, almost all methods consistently yield the two minima
with very similar alignments of the molecules with respect to
the substrate. Some of the methods yield additional, very
shallow and energetically higher lying minima. Those geome-
tries are not observed in the experiments, but that does not
necessarily mean that they are not real.

Although PTCDA/Ag(111) is just one example, the considerations
above show that the choice of the method matters. This has two
important implications for practical purposes. First, it shows
that the literature results obtained with different methods
cannot be directly compared, at least not on a quantitative
basis. Secondly, if different methods yield different results, the
natural question arises whether there is one method
that is clearly better than the others and could, therefore, be
recommended for interface calculations?

We reckon that for a definite answer to this question not
enough systematic tests have been performed to date (which is
also not straightforward considering that the number of
reliable experimental datasets is limited). In practice, at the
time of this writing, the largest body of data exists for the
PBE+vdWsurf method. For metallic substrates and both
physisorbed and weakly chemisorbed organic adsorbates, it
usually gives good results for the electronic structure212 (work
function within 0.2 eV of the experiment) and the adsorption
height (typically within 0.2 Å of the experiment).176 Similarly
good results for interfaces have been obtained using
PBE+D3.260,286

4.4 Basis sets (plane waves versus atom-centered)

In addition to the choice of the structural model and the
computational approach (which for interfaces typically boils
down to the choice of the functional and the van der Waals
correction), it is also relevant to decide onto which basis
functions the (Kohn–Sham) orbitals are to be mapped (which,
in practice, is typically another factor that determines which
computational code is applied). Most modern band-structure
codes can be separated into two different classes depending on
the type of basis functions they use to represent the electronic
structure: One type are plane-wave-based approaches, which
rely on delocalized basis functions and where the basis can be
systematically improved to achieve monotonic convergence.

However, they require a special treatment for the core electrons.
For a detailed discussion of the various forms of that treatment,
such as pseudopotentials,287,288 projector-augmented waves
(PAWs),289 or linearized augmented plane waves (LAPWs),290

the interested reader is referred to pertinent reviews and books.
The other type are atom-centered basis functions, which are
centered on the nuclei and straightforwardly describe core
electrons, but for which no clear systematic improvement
schemes exist, as the convergence of results with basis-set
complexity is typically not strictly monotonic. For sparse
systems (such as surfaces exposed to vacuum) and low-
dimensional systems, atom-centred basis functions have the
benefit that basis functions are only placed around atoms and
do not cover vacuum regions. We note that also a variety of
other types of basis sets exist (and especially real-space grid
representations appear to gain traction),291–294 but these will
not be considered here. As shown by the seminal paper by
Lejaeghere et al.295 for bulk materials, simulations employing
plane-wave and atom-centered basis functions give the same
results, provided well converged settings are used. Note that
convergence is always defined with respect to a certain
observable. This means that the mere fact that convergence
has been reached for a given property does not mean that this
applies to all quantities of interest, as discussed in more detail
in Section 5. It is, thus, generally important to perform careful
convergence tests, that ensure that the chosen basis set, as well
as related settings, such as cutoff potentials and Brillouin zone
sampling, affect the quantities of interest for a specific study by
less than an ‘‘acceptable’’ error margin.

Thus, it is interesting to discuss briefly how the expected
errors due to underconverged settings differ for the two types of
basis sets, when it comes to the computational description of
interfaces. Two issues deserve particular attention: (i) The
description of the electron density at the surface and its decay
into vacuum, which determines the interface dipole and, thus,
the sample work function, and (ii) the adsorption energy of a
molecule on the surface.

4.4.1 Influence on the interface dipole. As a first step, the
implications of the choice of the basis set for the interface
dipole shall be discussed: By definition, plane waves are
periodic basis functions that encompass the whole space.
At an interface, the same basis functions are, therefore, responsible
for describing the electron density in the slab and the (lack of)
electronic density in the vacuum region. Because the number of
used basis functions is finite, their values in the vacuum region
do not perfectly cancel. This leads to patches of spurious
electron density. Although that electron density is very small,
under certain circumstances it can have a noticeable impact on
the electrostatic potential and the work function. The spurious
electron density can be reduced by increasing the number of
plane waves and by a careful convergence of the SCF procedure,
as will be discussed in more detail in Section 5. Conversely,
atom-centered basis functions (which exist in many flavors, e.g.,
tabulated numerically or as Gaussian-type basis sets) are only
present in the vicinity of matter. Thus, with this approach, no
electron density far away from the slab can exist. However, for
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computational efficiency, atom-centered basis functions are
truncated at a certain distance from the nucleus. This reduces
the number of overlapping basis functions in regions where the
overlap would be very small anyways, and in this way the
natural sparsity in real-space can be used to significantly speed
up calculations. For surfaces, this truncation limits how far
electrons can spill out from the surface. However, accurately
describing this spill-out is absolutely crucial for correctly
describing the surface dipole (see Fig. 11), especially for
metallic substrates. It can also subtly affect the tail of the
electron density above the surface, which is often used to interpret
STM topographs within Tersoff–Hamann simulations.296,297

Particular care has to be taken here, as the default values for
the truncation distance in most codes are designed for densely-
packed bulk materials and can, thus, be too small for surfaces.
Consequently, atom-centered codes tend to yield too small work
functions and interface dipoles. As can be seen from Fig. 11, this
can be solved by increasing (and converging) the truncation
distance manually.

4.4.2 Influence on the adsorption energy. Adsorption
energies are defined as the total energy of the combined system
minus the substrate and the isolated molecule(s):

Eads = Ecombined � Esubstrate � Emolecules (3)

When calculating the energy of the combined system, atom-
centered basis functions are prone to basis set superposition
errors (BSSE).292 This well-documented effect300 is a consequence
of incomplete basis sets and arises from the fact that in the
combined system the adsorbate will ‘‘borrow’’ basis functions
from the substrate to improve the description of its own electron
density, and vice versa. In other words, the combined system has a
larger effective basis set than the individual subsystems, which
artificially lowers the energy of the combined system and leads to
an overestimation of the adsorption energy. The BSSE becomes

particularly relevant when using highly correlated methods. It can
be mitigated by either using a sufficiently large basis, or by
employing the counterpoise correction scheme (using the full
basis set of the combined system also when calculating the
subsystems using ‘‘ghost atoms’’),301 In this context it should,
however, be mentioned that the suitability of this method has
recently been controversially discussed.302

When employing plane-wave basis sets, the number of plane
wave basis functions depends on the chosen cutoff value as well
as on the size of the unit cell. The number of atoms, per se, does
not play a role. Therefore, calculations with such basis sets are
principally BSSE-free. For plane-wave basis sets, the challenge
when calculating adsorption energies occurs for the isolated
molecule as reference system. Since (with few exceptions) plane
wave calculations require periodic boundary conditions, in
practice, the isolated molecule is calculated as a single
molecule in a large unit cell, electrostatically decoupled by
dipole- and quadrupole corrections schemes in all spatial
directions. However, since the cell needed to decouple periodic
replicas might be different from that of a tightly packed
combined system, the basis set used for the description of
the isolated molecule is usually not the same as the basis set for
the combined system and for the substrate. The impact of
varying the size of the unit cell for a given cutoff energy is
exemplarily illustrated for the case of the TCNE molecule in
Fig. 12. The energy variation is rather small (amounting to a few
meV), but in the same spirit as the BSSE, this inconsistency can
lead to small errors for the adsorption energy. Conceptually,
this problem can be mitigated by using an overconverged
basis set, i.e. by increasing the basis set cutoff until the energy
no longer depends on the unit cell size. However, that same
cutoff must be used also for the combined system, making this
strategy quite costly (and, given the small error, often not worth the
effort).

Fig. 11 Change of the work function (DF), relative to the default truncation
distance of 4.00 Å, for different (111) metal surfaces as a function of the
employed truncation distance (increased from the default value of 4 Å) for
atom-centered basis functions, calculated with FHI-aims using the PBE
functional and a 33 � 33 � 1 k-point grid. More details and the full
calculations can be found at https://dx.doi.org/10.17172/NOMAD/2020.12.
07-2.

Fig. 12 Total energy of a TCNE molecule placed into a cubic box of
increasing size, relative to the value obtained for the largest box (with an
edge-length of 40 Å). The results were calculated with VASP298,299 using
the PBE functional and the default cutoff energy of B290 eV for the plane
waves. More details and the full calculations can be found at https://dx.doi.
org/10.17172/NOMAD/2020.12.07-4.
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5 Algorithms, parameters and
convergence: best practices for
interface simulations

Once the major choices regarding the structural model, the
employed xc-functional, and the basis set have been made, the
simulation can be run. To solve the various parts of the
Kohn-equations numerically, several different algorithms are
used. A salient difference to the issues discussed in Sections 3
and 4 is that these algorithms and their settings are often
somewhat hidden from the user, inasmuch as often default
choices exist that are not mandatory to be specified in the
input file.

As we have frequently mentioned in this work, the default
choices are often sub-optimal for interfaces. In this section, we
will, therefore, discuss some of the most common algorithms
together with the usually applied settings. We will specifically
focus on their major pitfalls when modelling hybrid inorganic–
organic interfaces with band-structure based DFT, highlighting
unfortunate instances where defaults can even lead to physically
incorrect results. Although we use periodic boundary conditions
for the examples in this section, we emphasize that the
challenges demonstrated here can be analogously encountered
in cluster calculations.

This section will be organized as follows: First, we will
discuss the most critical settings within the self-consistent field
(SCF) approach. These are (i) how to choose appropriate
convergence settings, (ii) the importance of choosing the right
initial guess for the electronic structure, (iii) different options
to update the electronic structure (and the ideal parameters
to achieve convergence fast), and (iv) the impact of level
broadening and its dependence on the number of atoms in
the system. We then proceed to discuss geometry optimizations,
showing why sometimes completely different geometries are
obtained, when using the same starting geometries, but different
optimization strategies. As a final note, we demonstrate what can
happen when a higher-level xc-functional is applied on top of a
geometry obtained with a lower-level xc-functional.

5.1 SCF convergence

Within the self-consistent field (SCF) technique, the Kohn–Sham
equations are solved iteratively until the results (i.e., one or several
properties of the system) no longer change between two subse-
quent iterations. When this is the case, i.e., when the selected
property no longer changes within a pre-defined threshold, the
SCF is ‘‘converged’’. In principle, any property that can be
computed can also be selected as convergence criterion, including
in particular the total energy, the change of the electron density,
the sum of eigenvalues, etc. In practice, many codes only consider
the total energy (and, for geometry optimizations, the forces on
the atoms). For details on the inner workings of SCF algorithms
and the assessment of performance, we refer to the recent review
by Woods et al.303

5.1.1 Spurious convergence. To illustrate two potential
pitfalls, in Fig. 13 we show the evolution of the total energy

and the dipole moment for a system we recently investigated, a
phenyl-piperazine based self-assembled monolayer bonded to
the Au surface via a dithiocarbamate anchoring group.304 For
this example, the SCF was run with parameters that were
‘‘inherited’’ from a previous calculation (i.e., performed well
there). The details of the settings are not relevant here (they can
be found at https://dx.doi.org/10.17172/NOMAD/2020.12.07-5),
except that the SCF was set to converge when the energy change
between subsequent iterations fell below 10�6 eV (a common,
tight default) and to run for at least 60 steps.

Most importantly, we note that had we used only the change
in energy as a threshold (orange line) as criterion, the calculation
would have stopped at iteration 38. At this point, the SCF visited,
by coincidence, two solutions to the Kohn–Sham equations that
are almost identical in energy, leading to an apparent, spurious
convergence. However, as can be seen from the blue line,
the absolute energy (plotted relative to the energy at the last
iteration) is still significantly above that of the fully converged
energy (obtained at iteration 79 here). Such situations are rare,
but not very. It is, therefore, generally advisable to inspect the
SCF evaluation after each calculation. Sudden, surprising drops
of the energy change are often an indication for spurious
convergence and should be critically second guessed. In order
to avoid this behavior in the first place, it is useful to employ
additional convergence criteria (if the code allows), such as
criteria for the change of the electron density or the sum of
eigenvalues, as it becomes increasingly unlikely that multiple of
these thresholds are met simultaneously unless the solution has
approached the true minimum.

As second point, Fig. 13b illustrates that the convergence of
the interface dipole does not directly correlate with the
convergence of the energy. If our energy threshold for the
energy change had been 10�4 eV (which is often sufficient to
obtain reasonable energies), the calculation would have
finished at SCF step 69 (the spurious convergence at iteration
38 notwithstanding). However, at this point the interface dipole
would still be approximately 50 meV away from the value
obtained when converging the calculation to an energy threshold
of 10�6 eV (see blue curve). Even when continuing the SCF until
the threshold of 10�6 eV is reached, the dipole still changes
several meVs between the last iterations. This indicates that in
this example, even using the relatively tight convergence
criterion above may have been insufficient to obtain a fully
converged value.

5.1.2 Convergence thresholds. We can now ask, which
convergence threshold for the total energy would be ideal to
obtain a numerically accurate result with as few iterations as
possible. For this, we must first discuss how accurate our result
needs to be. When comparing theory and experiment, it is rarely
necessary to obtain energies with an accuracy better than 1
meV, so this is chosen as target accuracy. In fact, as we discuss
below, for interfaces the limits imposed by the various numer-
ical approximations (sampling of k-space, density of the inte-
gration grid, basis set, etc.) usually limits the numerical accuracy
for the total energy to something on the order of 0.1–1 meV per
atom, which translates to roughly 1–100 meV per unit cell, making
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a much tighter target accuracy for energies obsolete. Once could,
therefore, ask if this makes significantly higher convergence
criteria obsolete.

To suggest guidelines for choosing an appropriate threshold,
we exemplarily look at three different systems we have investigated
in the past: (a) A tetracyanoethylene (TCNE) molecule lying flat
on an Ag(100) slab,163 (b) a phenyl-piperazine based self-
assembled monolayer bonded to the Au surface via a
dithiocarbamate anchoring group,304 and (c) a graphene sheet
with an adsorbed 4,40-bis(phenylcarbonitrile) molecule.305 The
three systems are shown in the top panels of Fig. 14a–c.
To illustrate how diverse the SCF procedure evolves, we
re-calculated all of these systems using a plane-wave basis
set,298 an atom-centered basis,306 and a regular real-space grid
(using three different codes).307 For the sake of illustration, we
strictly adhered to default settings, rather than optimizing the

input file (except for switching on the dipole correction
and enforcing an SCF threshold of 10�6 eV for the energy).
Therefore, we emphasize that the results should not be
mistaken as benchmarks, because (a) the time required per
iteration differs between the different packages, and (b)
because when choosing smarter algorithms and settings within
each code, the number of iterations could be substantially
optimized. Instead, the point of the comparisons in Fig. 14 is
to show how different the convergence of different approaches
can be.

When comparing the energy change between iterations DE
(third row) with the value of the total energy (second row), it
becomes clear that a given accuracy for E is typically obtained
when DE is approximately one order of magnitude smaller (e.g.,
to obtain an energy accurate to within 1 meV, DE should be
10�4 eV or less). Notably, that statement only holds when the
SCF has reached a state of ‘‘exponential convergence’’, where
most iterations yield ever smaller values of DE (as opposed to
‘‘sideways movement’’ for the energy, as observed, e.g., for the
blue line in the first 100 steps for system c). As above, we
recommend to manually inspect the SCF behavior to assert that
this exponential convergence region has been reached.

From the fourth row of Fig. 14, which shows the dipole
moment, it becomes clear that the three approaches visit very
different regions of the electronic potential energy surface
before finding the minimum energy solution. In particular,
the plane wave basis (blue line), has relatively large values for
the dipole in the first steps. This behavior is a consequence
of the basis set type (with a finite cutoff): The degree to which
the total energy is converged is primarily determined by the
electron density in the slab. As discussed in Section 4.3, in
plane-wave calculations there are, however, also some small but
non-zero amplitudes for the total wave function in the vacuum
region. This spuriously places electron density into vacuum and,
due to the overall charge neutrality of the unit cell, abstracts
electron density from the slab. As the energy contribution of
this dipole is very small (as discussed in Section 3), the SCF
experiences only a weak ‘‘driving force’’ to remove this spurious
dipole. We emphasize that this (only apparently inefficient)
convergence behavior can be substantially improved by playing
with the basis set cutoff and the size of the vacuum.

At the same time, the fourth row of Fig. 14 demonstrates
that obtaining a converged energy does not necessarily result in
robust and converged values for other quantities, e.g. a DE
threshold of 10�4 eV does not mean that the interface dipole is
converged to 1 meV. Because, in fact, most electronic properties
do not directly correlate with the total energy, it is generally
advisable to monitor not only this quantity, but also the
quantity of interest during the SCF procedure. In fact, the best
practice would be to include an explicit convergence criterion
for the primary quantity of interest directly into the SCF cycle.
I.e., when calculating adsorbate-induced changes of the sample
work function, requiring the unit cell dipole to converge as one
of the criteria to exit the SCF cycle is a very useful strategy.
Although this can generally be implemented with only a few
lines of code, unfortunately it seems that the convergence of the

Fig. 13 Convergence behavior of phenyl-piperazinedithiocarbamate on
Au(111) using reasonable but non-optimized settings. (a) Evolution of the
energy (relative to the last energy given by the calculation) and the
(absolute of) the change of the energy between subsequent iterations.
(b) Evolution of the dipole moment (again relative to the last value given)
and the change of the dipole moment between subsequent iterations. The
original calculation and its settings can be found at https://dx.doi.org/10.
17172/NOMAD/2020.12.07-5.
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Fig. 14 Convergence behavior of the SCF for three model system using the plane-wave codes VASP, GPAW version 19.8.1b1 with a real-space grid, and
the LCAO code FHI-aims. The different systems are (a) TCNE on Ag(100),163 (b) phenyl-piperazinedithiocarbamate on Au(111)304 and (c) bis-cyanophenyl
on graphene.305 From top to bottom, the panels show an atomistic representation of the simulated system, the evolution of the final energy (relative to
the energy obtained after converging the SCF to a threshold of DE o 10�6 eV), the change of the total energy between two subsequent iterations, and
the dipole moment per unit cell. For all numeric settings, the default values as supplied by the codes were used. We emphasize that the results should not
be mistaken as benchmarks, because (a) the time required for the iterations differs between the different packages, and (b) because when choosing
smarter algorithms and settings within each code, the number of iterations could be substantially optimized.
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unit cell dipole is only rarely monitored or used as an SCF
convergence criterion in practice.

In passing, we note that in the seminal work by Lejaeghere
et al., it has been established that all three codes used here give
consistent results for energy-derived values295 when using
properly converged settings. Still, using default settings (and
a DE threshold of 10�6 eV, as commonly done in literature), we
find that the interface dipoles vary by approximately 5–10%
between the three approaches/codes for the three studied
systems. This certainly has to be kept in mind, when comparing
results found in literature and when comparing computed to
experimentally obtained values.

5.2 Initial guess for the SCF procedure

The initial guess for the SCF cycle provides the starting point
for any calculation. Trivially, the closer the starting point is to
the correct electron density, the fewer iterations will be
required to complete the calculation. However, the starting
point can also have a qualitative impact on the outcome of
the calculation: In cases where multiple minima for the elec-
tronic structure exist, the initial guess for the SCF decides into
which solution the SCF will converge. We found this to be of
practical relevance for magnetic and open-shell systems. One
anecdotal example is the adsorption of the (open-shell) mole-
cule Cu-phtalocyanine on Ag(111).308 There, when initializing
the calculation with a spin of 1 mB or larger on the central
ligand, it converges into a metal-centered state. Conversely,
when non-zero initial spins are set on both the central atom
and the four closest nitrogen atoms, the result is a more
extended charge transfer, involving the ligand as well as the
central atom. The two different states also show a different
overall multiplicity: While the metal-centered state is a doublet,
the state involving charge transfer to the ligand has triplet
multiplicity.308

Typically, the initialization of the SCF procedure relies on
one of two strategies: The method traditionally used by most
quantum-chemistry codes, which are geared towards molecules
and employ open boundary conditions, is to provide a guess of
the wave function obtained by an approximate method that
does not need to be calculated iteratively. Examples would be a
guess derived from the extended Hückel method,309 the Harris
functional,310 or the diagonalization of the core Hamiltonian.
From the guess wave function, the electron density (and/or the
density matrix) is constructed. The major advantage of this
strategy is that it provides a high level of control over the initial
guess, as the population of each orbital can be manually
specified. The downside is that such methods are heavily
parameterized and that suitable parameters often do not exist
for heavy atoms or non-trivial bond topologies, as encountered
at interfaces. Therefore, wave function-based guesses are rarely
used in band-structure codes.

Instead, most band structure codes rely on an initial guess
for the electron density, rather than the wave function, for
which the (initial) basis set coefficients are initialized at random.
The electron density guess is commonly obtained using the
so-called superposition of atomic densities (SAD).311,312 Here,

for each atom in the system a hypothetical, non-interacting
electron density is calculated by solving the corresponding
radially-symmetric Kohn–Sham equations. The first guess of
the electron density is then given by the sum of all individual
electron densities. This method has the advantage that it
provides a relatively good idea about the electron distribution
of the core electrons and even a rough description of the valence
electrons. However, it does not contain chemical insight, i.e. the
initial guess is agnostic of the bonding environment.
Consequently, for metals, where the bonding is (mostly)
isotropic, SAD provides a reasonable first guess for the electron
density, but it performs less well for covalently bonded systems,
such as molecules.

We note in passing that a similar concept is applied when
using the Harris functional, where the energy is calculated
non-self consistently from an input density that is constructed
as the sum of the densities of the system constituents.310

However, the choice of constituents is a priori arbitrary, and
should be done such that they only interact weakly with each
other.310 For molecular crystals, it has been shown to be
prudent to use the pre-converged electron density of individual
molecules (rather than atoms), to obtain good results.313

The SAD method has two challenges that should be kept in
mind. First, by construction, the dipole moment of a SAD guess
is zero, as for all atoms the charges in the nuclei are exactly
compensated by the charges in the spherically symmetric
electron shells. Especially for interfaces with substantial charge
transfer the electrostatic potential of the initial guess can,
therefore, differ significantly from the potential of the final
solution. Consequently, because the electrostatic potential
affects the relative ordering of the orbitals (and their occupa-
tion), the initial guess is often far away from the converged
situation. This can lead to a slow convergence or even a
divergence of the SCF procedure. In practice, this is usually
indicated by strong oscillations of the electron density and
dipole moment between subsequent iterations. As we show
below, this can often be mitigated via a strong damping of the
SCF employing small mixing coefficients.

The second challenge arises for open-shell systems. Usually,
by default the SAD density will be of singlet multiplicity with an
equal amount of spin-up and spin-down electrons. A priori, this
will also be the case for systems in which the real situation is
different, like for magnetic systems or (weakly interacting)
singly charged molecules, i.e. cations or anions, at interfaces.
The main problem arising from that initialization is that for
symmetry reason, singlets are always stationary points on the
electronic potential energy surface (either true minima or
saddle points).314 Hence, different spin solution can only be
obtained by preparing an initial guess with a net spin moment.
Unfortunately, the SAD approach allows only limited control
here. Since orbitals/bands cannot be directly addressed, the
initial guess must be constructed by assigning an ‘‘initial’’
spin moment to each atom, which is not necessarily straight-
forward, even if the spin multiplicity of the unit cell is known.
Thus, even when the initial guess has the correct multiplicity,
it can be far from the correct solution. In fact, since semilocal
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functionals only have relatively small barriers between stable
spin solutions (due to the lack of static correlation, as shown
by Cohen et al.314,315), it is easily possible to converge to a
solution with a total spin moment different from the
desired one.

5.3 Density/wave function update algorithms

Once the initial wavefunction (and/or electron density) has
been set up, the SCF algorithm solves the Kohn–Sham equa-
tions for the given charge distribution yielding a new wavefunc-
tion (and/or electron density). It turns out that if one uses the
output directly as input for the next iteration, convergence is
hard to reach, as SCF iterations can show highly oscillatory
behavior or very slow convergence. Typically, the step size
between consecutive SCF steps is restricted by only allowing
the density to deviate by a certain amount from the previous
step. To achieve faster convergence of the SCF, state-of-the-art
programs sacrifice guaranteed convergence for performance
using various acceleration algorithms. In this work, we will
consider three of those, that are often used together: The
density mixing method (with the specific example of the Pulay
method),316 Charge Preconditioning, and Level Broadening.
All of these algorithms have the potential to yield efficient
convergence, but require parameters that ought to be (somewhat)
adapted for each system. Unfortunately, the optimal parameters
differ significantly for metals, molecules, and interfaces, as will be
described below.

5.3.1 Density mixing. The simplest of these strategies is
linear mixing (also known as naı̈ve mixing or underrelaxation),
where a linear interpolation between the input guess and the
output wavefunction/density is taken as new input:

ni+1 = ni + aDn (4)

Here ni is the electron density of the ith iteration (i + 1 being the
next iteration), Dn the difference between the input and the
output of the present SCF step, and a the mixing parameter.
This strategy bears the important advantage of guaranteed
convergence, if very small mixing coefficients are employed.
However, since small mixing parameters require a very large
number of iterations, it is too costly to rely exclusively on this
approach for interfaces. Still, it can be useful for systems that
are hard to converge. If the initial guess is particularly bad (e.g.,
when using SAD-densities for systems with very large interface
dipoles), it is useful to employ linear mixing for the first few
(5–10) iterations. This allows the SCF to reach a ‘‘harmonic’’
part of the solution space, where the more sophisticated
approaches described below can take over.

To accelerate convergence, many codes replace linear mixing
with various forms of nonlinear density mixing. Different
approaches include the Broyden317 and the Pulay scheme,
which is also known as direct inversion in iterative subspace
(DIIS) and which is the most prevalent convergence acceleration
scheme.316,318 While a full mathematical explanation of the DIIS
scheme is beyond the scope of this contribution, the core idea
is readily explained. In every iteration, the ‘‘residual’’, i.e.
the deviation of the charge density from the (expected)

converged situation, is computed and stored. After a given
number of iterations, the residuals from the previous iterations
are combined in a coupled set of equations to determine the
point on the electronic potential energy surface for which a zero
‘‘length’’ of the residual (the ‘‘null vector’’) is expected.
This works best if the electronic structure is already close to
the converged results, i.e. in the ‘‘harmonic’’ part of the energy
surface. Conversely, when far away from the minimum, the error
vectors may point to the wrong direction or change direction
rapidly between consecutive steps making this approach
potentially unstable.

Like in linear mixing, also in the Pulay scheme scaling is used
to interpolate between the present wave function (or density) and
the predicted optimal one. Pulay mixing, thus, contains two
parameters, namely the number of iterations for which the
residuals are stored, and the mixing parameter, in analogy to
eqn (4). These define how many iterations should be stored and
how much the difference between the present and the ‘‘expectedly
correct’’ electron density should be damped.

As will be discussed in more detail below, for metals, where
the SAD electron density is qualitatively close to the final
electron density and the charge rearrangements within the
SCF are mostly short-ranged, it is good to apply a small mixing
parameter (o0.2). For molecules, where the initial guess is
worse, faster convergence is usually achieved by applying larger
mixing parameters (40.4). Simulations of hybrid metal–
organic interfaces, thus, face the challenge that the optimal
values for the constituents differ significantly. This is amplified
by the fact that many of these interfaces exhibit long-ranged
charge-transfer between the substrate and the adsorbate. As
this long-ranged charge transfer and its associated interface
dipole shift the relative levels of the constituents, overshooting
the charge-transfer in one iteration (which is then over-
corrected in the next iteration) poses one of the major caveats
for the SCF. Although this overshooting can be reduced using a
charge-preconditioner (see below), in practice it is best to
choose a relatively small mixing parameter (B0.2, close to
metal value). Generally, this will make the calculations slow
(i.e., require many iterations), but decrease the likelihood
that the SCF exhibits strong oscillations that prevent it from
converging at all.

5.3.2 Charge preconditioning. Bulk metals are isotropically
bonded with a highly homogenous electron density distribu-
tion. At the surface, however, the homogeneity is broken
as electron density ‘‘spills out’’ into the vacuum, forming a
surface dipole. In terms of SCF convergence for a metal slab,
this means that electron density needs to be redistributed
from the center of the slab to its surfaces. Despite the small
values for charge mixing advised in the previous section, most
charge mixing parameters tend to overshoot this long-ranged
bulk-to-surface charge transfer in some SCF iteration, bring-
ing too much electron density to the surface. In the next
iteration, this is then (over)compensated, redistributing the
electron density back into the bulk or possibly even to the
opposite surface of the slab. The resulting oscillatory behavior
of the SCF slows down or outright prevents convergence. This
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phenomenon is a variation of what is commonly known as
‘‘charge-sloshing’’.319

The problem of charge sloshing is routinely countered using
so-called preconditioner algorithms. Multiple variants exist
(e.g., Kerker,320 Broyden,321 or Teter322 preconditioners), that
all rely on the same basic idea: The charge density difference
(between the SCF input and output) is transformed into reciprocal
space (i.e., Fourier-transformed), and the low-frequency
components, which correspond to long range charge density
differences, are then damped or removed. This is most easily
demonstrated on the Kerker preconditioner, which has
the form

aeff ¼ â
G

Gþ q0
(5)

Here, the effective mixing coefficient aeff is given by a, the
‘‘global’’ mixing coefficient of the density mixing algorithm, G,
the Fourier component (i.e., wavelength of the charge-density
difference in reciprocal space), and a parameter q0. The impact
of this parameter is illustrated in Fig. 15. Small values for q0

result in a relatively unperturbed mixing parameter for short-
distance charge rearrangements, and a rapid decay of the
effective mixing for long-range rearrangements. In other words,

small values of q0 efficiently suppress long-ranged charge-
transfer compared to short-range changes. Larger values of q0

lead to a smoother transition, i.e. they still emphasize short-
ranged rearrangements over long-ranged changes, but not as
pronounced. Note that at the same time, even in the short
range the effective mixing parameter is reduced compared to its
global value. Therefore, when choosing larger q0, it is often
effective to concomitantly increase a in order to retain an
efficient convergence behavior.

Choosing or deriving an optimal value for q0 is often
challenging. For bulk materials, optimal values for the different
preconditioner schemes can be deduced based on theoretical
considerations. The situation is, however, more complicated
when dealing with interfaces. The above-mentioned charge-
sloshing results in charge rearrangements perpendicular to the
surface (i.e., in z-direction), while parallel to the surface (i.e., in
x- and y-direction), the slab behaves more like a bulk material.
Clearly, the ideal situation would be to impose a different
damping behavior in each direction. Unfortunately, most (if
not all) implementations of preconditioners are isotropic.
Moreover, the situation is further complicated by the fact that
the magnitude of the bulk-to-surface charge transfer depends on
the thickness of the slab. Depending on the implementation,
even the size of the vacuum may play a numerical role. Finally,
the ideal settings for the preconditioner are strongly, but
non-trivially related to that of the Pulay mixer.

To demonstrate this issue – and to provide some general
guidelines on how to choose parameters – we have tested the
required iterations to converge the TCNE/Ag(100) interface
(from the previous example, see Fig. 14) to DE = 10�4 eV using
various combinations for the SCF settings (varying the Pulay
scaling parameter between 0.05 and 0.6 and the settings for q0

between 0.5 and 3.0 Å�1). The results are shown in Fig. 16 for
both the combined system and the isolated subsystems.
As Fig. 16a shows, the molecule converges quite efficiently
irrespective of the settings, but a large mixing parameter and a
large value for the preconditioner are optimal. The Ag(100) metal
slab, shown in Fig. 16b, is more sensitive to the chosen
parameters (and requires more iterations) and shows the
opposite behavior: Here, small values for mixer and
preconditioner are beneficial.

Fig. 15 Effective mixing parameter aeff as a function of the reciprocal
wave vector G for different values of q0 when applying the Kerker
preconditioner.

Fig. 16 Number of iterations required for (a) the TCNE molecule (nonperiodic) alone (b) the Ag(100) slab alone, and (c) the TCNE molecule on Ag(100) to
converge to 10�4 eV using different settings for the Pulay mixer, a, and the Kerker preconditioner, q0. White fields indicate that convergence was not
reached within 100 iterations The calculations were done with FHI-aims using the PBE functional and a 3 � 3 � 1 G-centered k-grid. Further details can
be found at https://dx.doi.org/10.17172/NOMAD/2020.12.07-6.
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The joint TCNE/Ag(100) system is electronically the most
complicated, and, as shown in Fig. 16c, also the one most
sensitive to the chosen parameters. Indeed, for this system
(which is rather prototypical for interfaces), we find that not all
parameter combinations allow the system to converge at all
(or at least within 100 iterations). Especially the combination of a
large q0 value for the Kerker preconditioner and large values for
the Pulay mixing is very inefficient. Overall, we find that it
follows the trends of the slab, i.e. mixer and preconditioner
should have small values. Interestingly, combinations where
either the preconditioner or the mixer have small values
converge fast, and if either is small, the value of the other tends
to matter less. However, (as also for the slab and the molecule),
too small values for q0 (here 0.5 Å�1) prevent the system from
converging at all, at least within the first 100 SCF steps.

In passing, we note that the energy obtained in all converged
runs is highly reproducible. For the more than 200 different
algorithmic settings for which the SCF converged, employing a
convergence criterion of DE = 10�4 eV lead to a standard
deviation in the final energies of only 2 � 10�5 eV.

5.3.3 Level broadening and occupation. Another class of
commonly applied algorithms to facilitate convergence are so
called ‘‘level broadening’’ or smearing schemes. Those pursue a
two-fold purpose: All (periodic) observables need to be calcu-
lated by integrating over the 1st Brillouin zone. This can be
either done using broadening methods (i.e., replacing the step-
function for the occupation with a different function) or by
interpolation, e.g., using the Tetrahedron method.323 On the
one hand, artificially broadening the energy levels allows for
interpolations in k-space, thus reducing the number of k-points
that need to be calculated to obtain the correct electronic
structure (and, hence, the computational effort). On the other
hand, for metallic systems, broadening schemes also reduce the
so-called ‘‘level-switching’’ problem, which adversely affects the
SCF convergence.

This problem occurs because at zero temperature, the Fermi
function is reduced to a step function with the step at the
Fermi-energy; i.e. all states below the Fermi-energy are fully
occupied, while all states above are empty. For metallic systems,
where the Fermi-energy cuts through a band, small changes of
the electron density in one iteration can easily change the
potential such that some eigenstates are shifted below the
Fermi-energy, while others are shifted above it. In the next
iteration, the electron density is adjusted accordingly, which
again leads to shifts of some eigenstates from above to below the
Fermi energy and vice versa. This can lead to notable charge
rearrangements throughout the SCF, which impede conver-
gence. The core concept of level broadening (or ‘‘smearing’’)
schemes is to replace the zero-Kelvin Fermi-function with
a different occupation function that exhibits a smoother transi-
tion between completely empty and fully occupied states and
allows for fractionally occupied orbitals. All these replacement
functions contain a free parameter s, that governs how fast the
occupation drops from full to empty around the Fermi energy.

In passing, we note that there are two different ways to look
at these schemes: either, each state is at a discrete energy and

(partially) occupied according to the replacement function
(e.g., a Fermi–Dirac-distribution function, see below), or each
state is broadened in energy (using the derivative of the
replacement function) and occupied using a step function.
Both viewpoints are mathematically equivalent. For convenience,
most codes work internally with the former, but plot the density
of states using the latter approach.

The easiest – and most straightforward – way would be to
employ the Fermi–Dirac occupation function with a finite
temperature. Although this does solve the ‘‘level switching
problem’’, it shows very unfavorable behavior for the interpolation
within reciprocal space, i.e. it does not efficiently reduce the
required number of k-points. Therefore, Fermi–Dirac distributions
are usually replaced with a different functional form. Fig. 17
compares the shapes of some of these occupation functions
for a given value of s. For a given state it also illustrates the
corresponding level broadenings, which yield identical
occupations when combined with a step function. The most
commonly used occupation functions are Methfessel-Paxton324

functions, which have the following general form:

f xð Þ ¼ 1

2
erfc

x

s

� �
þ
Xn
m

AmH2mþ1 �
x

s
exp

s
x

� �2
(6)

Fig. 17 Relationship between employing level broadening and using
occupation functions. Panel (a) shows the occupation number for a state
at an energy 1s below the Fermi energy (red dashed line) when using
different occupation functions. Panel b shows the same state broadened
by a corresponding smearing function (using a broadening parameter of
1s). The integral over the state up to the Fermi energy is the occupation,
which is indicated in the plot. Note that the smearing function is the
derivative of the occupation function.
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Here, the first term is the error function, i.e. the integral over a
Gaussian function, while the second term is a sum over
Hermite polynomials up to n’th order. 1st-order Methfessel–
Paxton functions are known to show favorable convergence
(with respect to the number of k-points) for metals. However,
because they allow for negative occupation numbers, they can easily
lead to unphysical results for semiconductors and particularly for
molecules. For interfaces that are not necessarily fully metallic,
it is, thus, advisable to use a Gaussian smearing (which
corresponds to a zeroth-order Methfessel–Paxton occupation
function).

As mentioned above, the main advantage of using smearing
methods is that the energy in the SCF procedure converges
significantly faster with the number of k-points, i.e. it is
possible to perform the same calculation with fewer k-points,
and, thus, less computational effort. However, the disadvantage
is that the total energy in the SCF no longer represents the
‘‘correct’’ total energy at T = 0 K (nor at any other temperature);
even for a Fermi–Dirac type occupation, it would only be an
ensemble-average approximation. Rather, the SCF now
calculates an effective ‘‘free energy’’. As shown for the example
of a 5-layer Cu(111) slab (primitive unit cell, calculated using
VASP) in Fig. 18, the free energy depends on the chosen value of
s, even for a converged k-point grid. Moreover, the free energy is
no longer variational (i.e., it can also increase during the SCF
procedure). Fortunately, once the SCF procedure is converged,
it is still possible to obtain the correct electronic energy by
extrapolating to s = 0.299,325,326 The corresponding energy is
also the one that should be taken for all postprocessing. As
shown in Fig. 18, the result after extrapolation as expected still
varies significantly with the k-point grid but has become rather
independent of s.

Still, one needs to be careful when performing geometry
optimizations. During the SCF, the forces acting on the atoms,
i.e. the derivative of the energy with respect to nuclear displacements,
are obtained from the free-energy, not the back-extrapolated
zero-K energy. This may result in the geometry optimization
requiring more steps (i.e., being slow), or even yielding
incorrect results. For a given calculation, the best s is, thus, a
balance of being large enough to require as few k points as
possible, while not introducing too large errors in the total
energy. Generally, values between 0.01 and 0.2 eV are known to
produce (relatively) sensible results for the energy and the
geometry.

To benefit maximally from the smearing interpolation while
avoiding artificial results, the most prudent approach is to
perform initial calculations (including geometry optimizations)
with a relatively large broadening and few k-points – although
not too few, as this may lead to serious artefacts, as we show
below. The final results should then be verified using a smaller
broadening (0.01 eV), with an appropriately higher k-point
density.

5.4 Local geometry optimization

In this section, we will focus on strategies for efficiently finding
the structure of the (local) energetic minimum. Local in this
context means that we will only consider ‘‘conventional’’ geo-
metry optimization schemes that find the minimum structure
in a specific search basin of the potential energy surface which
is determined by the initial guess structure. For a discussion of
global structure search algorithms the readers are referred to
the recent book by Oganov.327 At first, we will look at sensible
thresholds for the geometry optimization for a simplified
potential energy surface. We will then proceed to a more
complex system. In particular, we will demonstrate why the
choice of the initial guess for the Hesse matrix is imperative for
the performance (and even the qualitative outcome) of a
geometry optimization and look at error bars for adsorption
heights. Finally, we will discuss strategies to make this typically
rather time-consuming task as efficient as possible.

In a geometry optimization, atomic displacements are
performed in consecutive iterations until the forces acting on
the atoms fall below a certain threshold. Generally, it is difficult
to recommend good, generally valid thresholds (since this
depends on the system). Nevertheless, it is instructive to
consider a prototypical example, namely the adsorption of
PTCDA on Ag(111). To simplify the discussion, we will not
describe an actual geometry optimization, but discuss a
simplified potential energy surface where the molecule was
kept planar.282 Fig. 19 shows the adsorption energy as a
function of the adsorption distance together with its derivative in
z-direction, i.e. the force pulling/pushing the PTCDA molecules
towards/away from the surface. The displayed data were calculated
with PBE+vdWsurf 161 and were taken from Hörmann et al.282

(where also further information on the calculations can be
found). Notably, the forces are below 10�1 eV Å�1 for essentially
all displayed adsorption heights, i.e. stopping the geometry
optimization when the (maximum) force per atom falls

Fig. 18 Convergence of the free energy (dashed lines, labeled as ‘‘not
corrected’’) and the energy extrapolated to s = 0 (solid lines, ‘‘corrected’’)
as a function of the number of k-points for a 5 layer Cu(111) slab using an
evenly spaced G-centered k-point grid and obtained using the Gaussian
broadening scheme with different smearing parameters. Note that the
dashed green line coincides with the full green line. All data were
calculated with VASP using the PBE functional and the default value for
the cutoff of 294.4 eV. Further computational details and the full results
can be found in the NOMAD database https://dx.doi.org/10.17172/
NOMAD/2020.12.07-7.
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below 10�1 eV Å�1 would yield an uncertainty of about 0.10 Å on
the adsorption height. Optimizations done with a threshold of
10�2 eV Å�1 (which are probably the majority of calculations in
the literature at present) would here result in an intrinsic
uncertainty of approx. 0.06 Å. This means that it would still
not be appropriate to report adsorption distances with two or
more significant figures behind the decimal point when using
this convergence criterion. To obtain an accuracy of 0.01 Å,
which is at or below the lowest experimental accuracies that can
be achieved with modern structure characterization methods
such as X-ray standing wave measurements,328 the remaining
forces need to fall below 3 � 10�3 eV Å�1 (red region). Naturally,
more accurate results can be obtained by choosing even tighter
criteria, but this would also incur a dramatic increase in the
number of geometry optimization steps required to reach this
threshold.

It is important to emphasize that the connection between
force threshold and accuracy of the geometry depends sensitively
on the system and the method, i.e. the xc-functional and the
employed van der Waals correction scheme,176,282 as they affect
the corrugation and steepness of the energy landscape.
The example here, PTCDA/Ag(111), is primarily bonded through
dispersion, which shows a relatively shallow minimum.
For systems which exhibit stronger molecule-surface interactions,
a deeper and steeper minimum would be expected, i.e. smaller
displacements could lead to larger forces.

To get a first idea about the intrinsic uncertainty of the
adsorption height for a given force threshold, one can, in

principle, start two different geometry optimizations with one
starting guess notably above and the other notably below the
expected adsorption height. However, when doing so one needs
to be aware that between two geometry optimization steps, the
molecule can move over substantial distances. As we discuss
below for a different example, this is often 40.1 Å, i.e. similarly
large as the basin itself. Therefore, at which point in the basin
the optimization ends when employing this approach is, at
least to some extent, arbitrary (i.e., both optimizations could
coincidentally end at very similar geometries or at the opposite
boundaries of the basin). Thus, to get a reasonable idea about
the associated error bar, one either needs to perform multiple
geometry optimizations (and analyze the results statistically), or
reduce the maximum distance each atom can move in one step.
Alternatively, one can manually scan particularly sensitive
geometrical parameters (like the adsorption distance in the
above example) and then determine the distance at which the
energy becomes a minimum from a fit (in analogy to performing
a Birch–Murnaghan fit,329 that is used when calculating the
optimum lattice constant in a bulk optimization).

Most practically relevant optimization schemes start by
calculating the energy gradients with respect to displacements
of the nuclei, i.e. the forces acting on each atom. The most
straightforward method for geometry optimization would be to
follow these gradients, i.e. move the atoms in the direction of
these forces, until the gradients vanish. Such gradient-based
methods, which indeed exist in multiple variants (steepest
descent, conjugate gradient, etc.), are conceptually similar to
linear mixing for the SCF inasmuch as they are guaranteed to
converge, but are also computationally inefficient. Especially
near the energetic minimum, gradient descent methods are
prone to show oscillations, as the optimization will primarily
follow ‘‘hard’’ degrees of freedom (where small displacements
lead to large energy changes) rather than ‘‘soft’’ degrees of
freedom (where large displacements have a modest impact on
the energy). As a result, gradient-based methods produce good
energies reasonably quickly, but may yield geometries where
parts of the molecule are relatively far away from their correct
positions.

Most modern codes instead rely on quasi-Newton optimization
algorithms.330–334 In quasi-Newton methods a harmonic potential
energy surface is assumed. This implies that the energy as
function of the nuclear coordinates E(Q) can be described by a
quadratic expansion around the energetic minimum (E0):

E Qð Þ � E0 þ
X
i

dE

dQi
Qi þ

X
i

X
j

1

2

d2E

dQidQj
QiQj þ . . . (7)

The first derivative of the energy with respect to the nuclear
coordinates are the forces acting on the nuclei, while the second
derivative is commonly termed Hesse matrix (or Hessian).
In principle, if the assumption of a harmonic potential energy
is valid and if the Hessian is known, the equation above can be
inverted, and the minimum geometry is obtained within a single
update. In practice, usually neither of the two conditions actually
applies. In passing, we note that quasi-Newton schemes only

Fig. 19 (a) Total energy (relative to the minimum) of PTCDA on Ag(111)
(calculated with PBE+vdWsurf for a single molecule in a 6 � 6 unit cell, as
described in detail in Hörmann et al.)282 as a function of its distance
(relative to the equilibrium distance). (b) Force per atom acting on the
PTCDA molecule in z-direction.
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update the inverse Hessian, as this is mathematically more
efficient.

The assumption of a harmonic potential energy surface is
only valid, when the structure is already close to the energetic
minimum. This encompasses a relatively small fraction of the
potential energy surface: Typically, the quadratic expansion is a
reasonable model while atoms are within 0.05–0.20 Å of
their equilibrium positions. Because the performance of
quasi-Newton methods quickly deteriorates outside this region,
for interfaces it is generally a good idea to put some effort into
generating the initial (guess) structure, and to consider
carefully, what the preferred adsorption sites and the most
likely orientations of the molecule would be.

As a related issue, the harmonicity of a potential energy
surface strongly depends on the coordinate system that is
chosen. As so often for interfaces, the ‘‘optimal’’ choice differs
for its chemically different constituents. For isotropically
bonded materials with many bonding partners (metals and
ionic materials), the movements of individual atoms are only
weakly coupled. There, a simple Cartesian coordinate system
(moving each atom in x,y,z) is sensible and effective. Conversely,
for covalently bonded systems, such as molecules, the coupling
is strong. Here, coordinate transformations to ‘‘internal
coordinates’’ (which consist of bond lengths, angles, and torsions)
are known to lead to much faster convergence.247,335,336 In practice,
many band structure packages still perform their geometry
optimization exclusively in Cartesian (or fractional) coordinates,
but several ‘‘wrappers’’ exist that allow to circumvent this
limitation.337–340 Although many programs are not very explicit
about the choice of the coordinate system, it is strongly advised
that the user finds out and takes the necessary caution when
interpreting the results of a geometry optimization.

The more relevant challenge for quasi-Newton optimization
schemes is that the Hessian (or its inverse) is not known a
priori. While it could be calculated for the guess geometry, the
computational effort for this is enormous: If calculated numerically,
it requires 6 N evaluations of the forces on all atoms (where N is
the number of unconstrained atoms, typically a few 10 to 100).
This is as expensive as performing 6N geometry optimization
steps. Even if ‘‘analytic’’ frequencies were used (employing
density functional perturbation theory, which is available in a
few code packages), this would still be computationally inefficient
(despite a significant reduction of the necessary effort).

Therefore, the typically applied strategy is to start from an
estimated Hessian as initial guess and to update it as the
geometry optimization progresses. Following the common
theme of interfaces, the optimal guess Hessians differs for
different material classes. For the reasons discussed already
in the context of choosing the coordinate system, isotropically
bonded materials (metals/insulators) are commonly initialized
using a scaled diagonal Hessian. This basically corresponds to
assuming springs that bind each atom individually to its
equilibrium position, neglecting any coupling between the
atoms. Conversely, for covalently bonded systems, it is ideal
to start from a Hessian in internal coordinates (bond lengths,
angles, and dihedrals) and to choose the corresponding force

constants based on pre-tabulated values (i.e., based on a force
field).341,342

To illustrate the importance of the guess Hessian, we have
calculated a low coverage monolayer of cyano-biphenylthiole on
Au(111). As initial guess, we chose an almost upright, slightly
tilted molecule, with plenty of space to each side, as shown in
the central panel of Fig. 20. The optimization is performed in
Cartesian coordinates. From a physics point of view we know
that, triggered by van der Waals interactions, the molecule will
‘‘fall over’’,147 i.e., we expect a large change in the tilt angle
during the geometry optimization. Thus, the initial structure is,
geometrically speaking, quite far away from the actual minimum.

For our example we used two different initial guesses for the
Hesse matrices, a scaled diagonal guess (which is the default in
many codes) and a Lindh guess,341 which generates the guess
based on pre-determined parameters for bond-lengths, angles,
and dihedrals. In both cases, the geometry optimization was
stopped when the remaining force on each atom fell below
0.01 eV Å�1, which is a typical, rather tight threshold employed
in geometry optimizations. For the present example, the
geometry optimization required more than 100 steps for both
types of Hesse matrix initializations.

The resulting geometry for the diagonal Hessian is shown in
the right panel of Fig. 20a. Only some small, short-ranged
rearrangements of the atom positions have taken place
(causing, e.g., an increase of the inter-ring twist). However,
the tilt angle of the molecular axis relative to the surface normal
(identified before as the degree-of-freedom of primary
importance) remains essentially unchanged. During the
optimization, the total energy changes by slightly more than 1 eV
relative to the energy of the initial geometry. Conversely, performing
the same optimization using the Lindh-guess leads to much larger
changes. Here, the energy decreased by almost 3 eV.

Geometrically, the most striking difference between the two
geometry optimizations is the tilt angle relative to the surface.
It is visibly different between the diagonal guess, where the
molecule remains upright, and the Lindh guess (left part of
Fig. 20a), where both rings are ‘‘in contact’’ with the Au surface.
This is also reflected in the interface dipole DF, which, for the
diagonal guess, remains at approx. 0.75 eV, but even goes to
negative values for the optimization using the Lindh guess
(see Fig. 20d).

Since the two geometry optimizations exited gracefully, the
two resulting geometries could easily be interpreted as being
two separate minima. However, it is unlikely that this is indeed
the case. Had we continued the optimization to an even tighter
threshold, even with the diagonal guess the optimization would
eventually find the same minimum structure – however, very
inefficiently, making the associated computational effort too
large to be tractable. We can backtrack the Lindh optimization
and ask what would have happened, had we used a lighter
threshold: Had we chosen to run the optimization until the
remaining forces fell below 5 � 10�2 eV Å�1 (which is, per se,
not unreasonable for large systems), also the optimization with
the Lindh Hesse matrix would have finished with a de-facto
upright standing molecule.

PCCP Perspective

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
M

ar
ch

 2
02

1.
 D

ow
nl

oa
de

d 
on

 1
1/

7/
20

25
 2

:5
6:

02
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0cp06605b


This journal is © the Owner Societies 2021 Phys. Chem. Chem. Phys., 2021, 23, 8132–8180 |  8161

The present and the previous example illustrate two
important messages: (1) Even when a calculation converges
nicely, it is important to critically second-guess the resulting
geometry. (2) It is important to use sufficiently tight thresholds.
The ‘‘ideal’’ value of the threshold depends on the physics of
the system, the required accuracy of the geometry, and also the
employed geometry optimization scheme and the employed
parameters (such as the values for the guess Hessian in the
present example).

It is also instructive to briefly consider why the optimization
proceeds so slowly here (convergence only after more than
100 steps), even when using the Lindh-matrix as initialization.
Three factors play a major role: First, as mentioned above, the
interactions that primarily cause the molecule to tilt are van der
Waals interactions. These are, however, not contained in the
Lindh parameterization. Secondly, because van der Waals
forces decay very quickly with distance, they ‘‘pull’’ more
efficiently on the bottom ring than on the top ring. This reduces
the overall tendency of the molecule to change its tilt. The
major factor is, however, the maximum step size. All geometry
optimizations employ a maximum distance by which a given
atom can move between subsequent steps (typically about a
tenth of an Å; for Fig. 21, the default value of 0.2 Å was chosen),
in order to avoid creating unphysical structures with broken
bonds. Here, for the molecule to fall over, the nitrogen atom
has to move by several Å. Even in the most ideal case, the step
size limit (for which, again, the default in the present example
was clearly suboptimal) requires several dozens of steps to
allow reaching the equilibrium structure. This problem can

be mitigated by increasing the corresponding parameter in the
input, or by using dedicated optimization tools (e.g.,
GADGET337).

The efficiency of quasi-Newton schemes for interfaces is,
however, fundamentally limited by the physics of the interface.
In quasi-Newton optimization schemes, the effective step size is
always determined by the smallest eigenvalue of the inverse Hessian
(the stiffest mode, since this leads to the largest energy change),

Fig. 21 Potential energy surface for the translation of a rigid PTCDA
molecule 2.9 Å above the Ag(111) surface, calculated for a 6 � 6 supercell
using PBE+vdWsurf, as obtained by Hörmann et al.282 v1 and v2 denote the
primitive lattice vectors of the substrate, z the adsorption height and j the
rotation angle of the molecule relative to the substrate. The potential
energy surface shows a minimum on the Ag-bridge site, a low-energy
saddle point along v1 and a high-energy saddle point along v2.

Fig. 20 Geometries of a cyano-biphenylthiole molecule on Au(111), calculated in a 5 � 2O(3) unit cell with FHI-aims using the PBE+vdWsurf method and
a 3 � 2 � 1 G-centered k-point grid. A three-layer metal slab was used. All atoms of the molecule and the topmost layer of the slab were allowed to relax
until the remaining forces on all atoms fell below 0.01 eV Å�1. The calculations can be found on the NOMAD database. [https://dx.doi.org/10.17172/
NOMAD/2020.12.07-9]. (a) Shows the starting geometry (center) and the final result after the optimization using a diagonal guess for the Hesse matrix
(right) or using a Lindh guess (left). (b) Shows the evolution of the total energy relative to the energy of the starting point, for the two geometry
optimizations. (c) Shows the remaining maximum force component F at each iteration step, (d) gives the interface dipole DF.
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while the maximum move occurs along the softest mode
(described by the lowest eigenvalue of the Hessian). In other
words, the convergence speed depends on the ratio of highest
to lowest eigenvalue of the Hessian (the so-called ‘‘condition
number’’):337 the higher the ratio, the slower the convergence.
Although coordinate transformations can favorably shift the
condition number337 (e.g., by going from Cartesian to internal
coordinates), at interfaces, it will remain intrinsically high. The
large substrate cell contains some very soft modes originating
from a backfolding of the acoustic modes of the primitive
substrate unit cell. Also intermolecular interactions are very
soft, and so is the (often van der Waals driven) interaction
between substrate and adsorbate. Therefore, the maximum
move occurs along these modes. Conversely, covalent bonds
are very stiff (particularly double and triple bonds with the
CN-bond in the above example as the prototypical ‘‘worst case’’
scenario), determining the step size. Because this broad
distribution of modes is a fundamental property of interfaces,
which also does not change when using a different coordinate
system, even optimizations that work in internal coordinates
would be slow here.

It is important to stress that the described behavior is quite
general for interfaces, and not limited to the somewhat extreme
biphenylthiole example from above, which has been chosen
also because it illustrates the problems particularly clearly.
Other examples where convergence is slow include cases in
which the molecule ought to rotate on the surface to reach a
minimum structure. There, the necessary significant changes
in the Hessian matrix are not easily captured by the update
algorithm when working in Cartesian coordinates, resulting in
very slow convergence. A similar problem occurs when forces
on individual atoms are small, but all point in the same
direction, i.e. when the molecule translates.

A further peculiarity of quasi-Newton optimizers to keep in
mind is that, unlike most other geometry optimization
schemes, they are not guaranteed to follow the direction of
the gradient downward in energy. Rather, the optimization will
proceed to the closest stationary point, which can also be a
saddle point, if the present guess geometry is sufficiently close
to it (i.e., in its ‘‘harmonic’’ region).292 For interfaces, this is
mostly an issue for degrees of freedom that move unbounded
between symmetry equivalent positions, such as translation
across the surface or rotation of the adsorbate, as shown in
Fig. 21. For these motions equivalent minima are separated
by a saddle point. For reasonably complicated adsorbates, there
is little chemical intuition where the minimum should be,
making it likely for novice (and even veteran) computational
scientists to start the geometry optimization near a
saddle point.

To reduce the chances of landing on a saddle point, it is
possible to pre-optimize the geometry with a different method,
such as steepest descent. This is guaranteed to follow the
direction of the gradient. It is furthermore a robust method
for pre-optimizations when the geometry is far away from the
harmonic region of the potential energy surface. Therefore,
Conjugate Gradient preoptimizations are especially advisable

when there is little intuition about the potential energy surface
and the positions of the energetic minima.

We note that also other geometry optimization algorithms
exist that sometimes may be superior to quasi-Newton
methods. Since these are not very widespread (yet), here we
would like to mention only two: damped molecular dynamics
(DMD) and Bayesian Optimization.166,343 Both have the
advantage of not relying on a harmonic expansion, i.e. they
should perform well also far away from the minimum. In our
experience, DMD at interfaces suffers from the simultaneous
presence of soft and hard modes: Hard modes necessitate small
timesteps, since otherwise the molecule breaks up (which
happens frequently, e.g., when CN groups are involved), but
too small timesteps make it harder for the molecule to move
efficiently along soft modes. Overall, while DMD with
optimized parameters may show a faster convergence than
quasi-Newton methods ever will, finding these parameters
can be tricky and (unless good values are known beforehand)
is, in our experience, hardly worth the effort.

Bayesian Optimization is a relatively new method, for which
not much experience has been accumulated so far in the
context of surface science. Generally, Bayesian Optimization
techniques work well when there are only few degrees of
freedom, but the computational effort becomes too large for
larger systems.344 Explained in a very simplified way, Bayesian
Optimization relies on calculating a few selected geometries
and constructing a (conditional) probability distribution for the
energy of other geometries, i.e. effectively interpolating between
them. In contrast to the other optimization methods, it can,
therefore, provide a general (at least qualitative) overview of the
potential energy surface, including the positions and locations
of the minima and saddle points. We presently recommend to
employ Bayesian Optimization following the strategy described
by the Rinke group:349 Keep the internal structure of the
adsorbate (bond lengths, angles, etc.) and the substrate fixed,
only moving and rotating the molecule as a whole across the
surface. This procedure allows to quickly identify the attraction
basins of different local minima on the surface. Moreover, it
provides a good overview of (but certainly no exact result for)
the correct values for these soft degrees of freedom. The
obtained geometries are then used as starting points for
quasi-Newton optimizations, which then find the minimum
structures (usually) very efficiently. In this case, the Bayesian
Optimization replaces the above-mentioned preoptimization
with conjugate gradient and additionally allows a more
systematic screening of the entire potential energy surface,
revealing several local minimum structures.

Besides the different geometry optimization strategies mentioned
here, also other settings in the calculation can influence the
optimized geometry. We illustrate this for the example of
TCNE on Cu(111). There, we performed various geometry
optimizations starting with a flat lying molecule from the same,
randomly (i.e., deliberately, not intentionally) chosen position
while varying (i) van der Waals corrections, (ii) k-points, (iii)
substrate relaxation strategies (fixing the whole substrate vs.
optimizing the two uppermost Cu layers). Fig. 22 illustrates the
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geometry optimization results for all combinations of settings.
When fixing the substrate and using a vdW correction without
surface reparameterization, the TCNE molecule only binds with
two CQN groups while the others are bent away from the
surface. Introducing a surface-parametrized vdW correction
partly prevents this behavior due to the now stronger
adsorbate-surface interaction, but there are still differences
between the optimization with a single k-point only and a well

converged k-grid (different adsorption site and bending).
Optimizing the uppermost substrate layers makes the situation
more reproducible, at least in the considered case. Here the
surface parametrized vdW correction leads to identical results
independent of k-point density and also without surface
parametrization the ‘‘correct’’ adsorption geometry is found
with the 6 � 6 k-point grid. This shows that for reliable results,
not only the geometry optimization algorithm must be chosen

Fig. 22 Geometry optimizations of a flat lying TCNE molecule on Cu(111) with varying computational strategies: changing k-point densities, different
van der Waals corrections and fixing the full substrate vs. relaxing the two uppermost layers. The grey wireframes indicate the adsorption position
obtained with the most elaborate strategy (relaxed surface, 6 � 6 k-points and vdWsurf correction). Dark Cu atoms were fixed, lighter Cu atoms were
allowed to relax during the geometry optimizations. All calculations were done with FHI-aims. Additional details can be found in https://dx.doi.org/10.
17172/NOMAD/2020.12.10-1.
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suitably, but also the other methodological choices (discussed
earlier in this manuscript) need to be chosen appropriately.

Before we conclude the section on geometry optimization,
we want to briefly comment on the possibility of optimizing the
geometry at a given level of theory, while then performing a
single-point calculation on that geometry at a higher level of
theory to obtain a supposedly more accurate electronic
structure of the interface. Due to the high cost of geometry
optimizations, this is a tempting scheme, which is frequently
applied in quantum chemistry. For interfaces, this usually
means that the geometry is obtained using a dispersion-
corrected semilocal functional (e.g., PBE), and then the electronic
structure is computed with a more expensive hybrid functional
(e.g., PBE0). In most cases, this approach works well and is very
useful when trying to gain a more quantitative insight. However,
because electronic and geometric structure are strongly coupled,
this approach bears the risk of running into serious artefacts,
especially when the two methods predict qualitatively different
electronic structures of the interface. Obvious manifestations of
qualitatively different solutions occur, when the application of
hybrid functionals leads to a strong localization of the electrons,13

when the order of occupied and unoccupied states swap,43,103 or
when different spin-configurations are obtained by the two
methods.308 A less obvious, but nonetheless salient difference
can occur when modelling the adsorption of flat-lying conjugated
organic molecules undergoing significant charge transfer with the
substrate. This is demonstrated in Fig. 23 for the adsorption of
tetrafluorobenzoquinone (TFBQ) on Cu(111).237

Here, calculating the projected density of states for the
adsorbed molecule using PBE+vdWsurf for both the geometry
and the electronic structure (shown in Fig. 23b) shows a
partially filled molecular feature at the Fermi energy, i.e., a
metallic character of the adsorbate.345 Re-calculating the electronic
structure at a higher rung, i.e. with the hybrid functional PBE0
(Fig. 23d) yields an electronic structure that is similar inasmuch as
it still contains a partially filled adsorbate-derived feature at the
Fermi-energy. The situation is still qualitatively different, since
now the projected density of states exhibits a clear double peak
structure (indicated by arrows). Following the Newns–Anderson
model346 (and, in fact, much of established chemistry), such
double-peak structures are characteristic for the formation of
bonding and antibonding states due to strong chemisorption,
i.e. the formation of a new, partially covalent bond.

However, when also optimizing the geometry at the
PBE0+vdWsurf level, the density of states near the Fermi-
energy vanishes, as does the double peak structure (see
Fig. 23c). In other words, the interface chemistry is completely
different: The adsorbate is no longer metallic, i.e. no longer
exhibits a fractionally filled state, the LUMO-peak moves to
lower energies and loses its double-peak structure, indicating
that the bond between substrate and adsorbate is
predominantly of ionic, not covalent, character. This behavior
is not a peculiarity of the TFBQ molecule. Rather, it originates
from the fact that semilocal and hybrid functionals yield
notably different bond lengths for single and double
bonds.347 Consequently, when performing a hybrid functional

calculation with a semilocal geometry, the individual bonds are
out of their equilibrium, which makes the system too reactive,
triggering a tendency to form new, covalent bonds.

6 Summary

In this work, we discuss various relevant technical, mathema-
tical, physical, and chemical aspects that need to be considered
when performing state-of-the-art first-principles simulations on
hybrid inorganic–organic interfaces. Those interfaces pose a
significant challenge, since they display strongly varied physics:
they contain covalent, metallic, ionic, hydrogen and van der
Waals bonds, often all at the same time. Charge transfer,
localization, and the emergence of collective electrostatic
effects that shift the relative level alignment of substrate and
adsorbate complicate the electronic structure. Due to the
different bond types, interfaces contain very hard and very soft
degrees of freedom. All of these effects need to be accounted for
accurately. This is often a considerable challenge due to the
large size of the systems used to model such interfaces, which
makes the simulations computationally very demanding.
Therefore, we discuss different methods to model hybrid

Fig. 23 Projected densities of states (PDOS) of tetrafluorobenzoquinone in a
p(4 � 4)Cu(111) cell projected onto the adsorbate layer. (a) Is a representation
of the geometry in a 2 � 2 supercell. (b) Shows the result for the projected
DOS obtained with PBE after also optimizing the geometry with PBE. For the
results in (d) the same geometry was used, but the electronic structure of the
interface was recalculated using PBE0. For (c) PBE0 was used for re-
optimizing the geometry and for calculating the electronic structure of the
interface. All calculations were done using FHI-aims and a 6 � 6 G-centered
k-point grid. All geometry optimizations were performed including the
vdWsurf correction. For further details see Wruss et al.348 and the calculations
in the NOMOAD database at 10.17172/NOMAD/2020.12.11-2.
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inorganic–organic interfaces, study the choices and reasoning
behind different ways to construct atomistic models of the
interfaces, and debate the impact of a variety of choices
concerning the numerical algorithms and parameters
employed in calculating the electronic structure and in per-
forming geometry optimizations. Throughout this review, we
highlight the advantages and disadvantages of different
approaches in order to provide the reader with the basis to
make educated and informed choices. We provide some gen-
eral ‘‘best practice rules’’ throughout the work, which are
summarized in Table 1. We emphasize that these rules reflect
our current knowledge – they are certainly not complete, nor
are they necessarily completely universal.

It is just as important to be aware of the many possible
algorithms and options that can be chosen to calculate the
electronic structure. We lay the focus of this work on illustrating
some of the pitfalls that exist when using the default values and
algorithms that pertinent codes use. Based on several examples –
some from our previous work, but most specifically calculated
for this work – we show how the application of inappropriate
defaults or other sub-optimal settings can easily lead to
quantitatively or also qualitatively incorrect results. Our account
is based on personal experience and the current state-of-the-art
of available methods. We expect (and indeed hope) that some of
the best practice suggestions might become obsolete in the
future as more advanced methods become available. We hope

Table 1 Suggested ‘‘best practice’’ rules for interface simulations

Best practice rules for interface simulations

The structural model
� Open versus periodic boundary conditions: cluster calculations with proper embedding and slab calculations (with appropriate supercells) give
conceptually equivalent results when properly converged. Clusters can be more efficient when modelling inherently non-periodic or diluted effects
(e.g., defects or excitations). Slab calculations are typically easier to converge.
� When using periodic boundary conditions, employ a dipole correction or a Poisson solver for mixed boundary conditions.
�Make sure the position of the vacuum level is further away from the ends of the slab than the separation between the dipoles (i.e., more than the
length of the lattice vectors in x and y)
�When calculating charged unit cells, use a charge compensation scheme (CREST, metallic boundary conditions, generalized dipole correction, etc.)
� Periodic boundary conditions often require stretching or compressing the unit cells of adsorbate or substrate to obtain a common
(commensurate) unit cell. Test carefully that this scaling does not affect the electronic properties.
� There are often many local minima for the adsorption of an organic molecule on a surface. Explore the potential energy surface sensibly, if
necessary, by using multiple starting points for geometry optimizations, preferably by a global structure search algorithm, such as Gaussian
Process Regression or Genetic Algorithms.
�When simulating an interface, use at less than 4 layers for the substrate only in well-justified circumstances. If feasible, converge the number of
layers for the property of interest.
�When optimizing adsorbate geometries, relax at least the two topmost substrate layers; keep half of the slab or more constrained to speed up the
geometry optimization and reproduce bulk-like behavior for the slab.

The electronic structure method
� Van der Waals forces are very important for interface systems. Always use a van der Waals-inclusive method (either couple with a correction
scheme or use a non-local functional)!
� Different functionals will yield different results. Resist the urge to vary functionals just to obtain the desired results. Try to understand why one
functional provides the desired result and another one doesn’t.
� Understand numerical limitations of the electronic structure method. Metal–organic interfaces are typically well described with semilocal
functionals. Semiconductor–organic interfaces require (tuned) hybrid functionals and a method to account for doping.
� Obtain geometry and electronic structure at the same level of theory if possible. If not, be aware that even small changes of the geometry may
affect the interface physics/chemistry.
� For systems with large interface dipoles, use a linear mixer with a small mixing coefficient before switching to the Pulay mixer.
� Use relatively small coefficients for preconditioner and mixing. Very small preconditioner values reduce the impact of the mixing parameter.
� Start with a reasonably large broadening parameter (B0.1–0.2 eV), verify results with a smaller value (B0.01) and a denser k-point mesh.

Numerical settings and algorithms
� Be aware which numerical accuracy for which property is desired. Choose numerical settings tight enough to converge a property to a meaningful
numerical accuracy. Any tighter and you waste computational time. Any looser and you generate underconverged results.
� Always converge the settings of the calculations for the property of interest. This is not always the total energy! Monitor convergence for each
desired property explicitly.
� Check for spurious convergence by inspecting the evolution of the SCF. Suddenly reaching the requested threshold is suspicious.
� Converge, converge, converge! Converge your numerical settings, but also converge the thresholds for the SCF. Convergence tests are
time-consuming and boring, but they are the only way to reliably obtain accurate and robust results.
Understand the defaults of the software package you are using.
� The convergence behavior differs between similar systems – do not lightheadedly adopt settings developed for another system.

Geometry
� Get an overview of the potential energy surface, e.g. by using Gaussian Process or Bayes Linear regression. Start geometry optimizations near
expected minima.
� Create good guess structures before starting the geometry optimization; ideally, multiple guess structures should be used to obtain an idea about
the reproducibility.
� Optimize in internal coordinates if possible; be aware of the initialization of the guess for the Hesse matrix; avoid diagonal matrices if possible.
� For systems that are (partially) open-shell, break the spin-symmetry by assigning non-zero initial spin to the atoms.
� When optimizing geometries, be aware of the limits of the force thresholds. If possible, map out important degrees of freedom explicitly to
determine the minimum accurately. Alternatively, start multiple geometry optimizations from different starting points.
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that the lessons contained in this work, at the very least, will help
to spot spurious results in literature and to avoid falling for
artefacts in one’s own work.

At the same time, we try to suggest sensible values and
default values for interface simulations, that will not only
provide correct results, but will also allow to develop faster
and more efficient computational workflows. Of course, every
interface is special, and those defaults will not always be
optimal. We do our best to explain the reasoning for those
values and emphasize the correlation with the underlying
physics of the interface, to allow the reader to tailor these
suggestions to their own system.
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K. Müllen, S. C. B. Mannsfeld, R. Forker and T. Fritz,
Flexible 2D Crystals of Polycyclic Aromatics Stabilized by
Static Distortion Waves, ACS Nano, 2016, 10(7), 6474–6483,
DOI: 10.1021/acsnano.6b00935.

117 J. R. Reimers, M. J. Ford and L. Goerigk, Problems,
Successes and Challenges for the Application of
Dispersion-Corrected Density-Functional Theory Com-
bined with Dispersion-Based Implicit Solvent Models to
Large-Scale Hydrophobic Self-Assembly and Polymorph-
ism, Mol. Simul., 2016, 42(6–7), 494–510, DOI: 10.1080/
08927022.2015.1066504.

118 J. Behler, Perspective: Machine Learning Potentials for
Atomistic Simulations, J. Chem. Phys., 2016,
145(17), 170901, DOI: 10.1063/1.4966192.

119 N. Bernstein, J. R. Kermode and G. Csányi, Hybrid Atomis-
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O. T. Hofmann, R. Forker, G. Fratesi, G. P. Brivio,
E. Zojer and T. Fritz, Complex Stoichiometry-Dependent
Reordering of 3,4,9,10-Perylenetetracarboxylic Dianhy-
dride on Ag(111) upon K Intercalation, ACS Nano, 2016,
10(2), 2365–2374, DOI: 10.1021/acsnano.5b07145.

126 G. Koller, S. Surnev, M. G. Ramsey and F. P. Netzer, Sex-
iphenyl on a Ni(110)(2 � 1)-O Surface: A Single-Molecule
STM Study, Surf. Sci., 2004, 559(2–3), L187–L193, DOI:
10.1016/j.susc.2004.04.019.

127 M. Wagner, P. Puschnig, S. Berkebile, F. P. Netzer and
M. G. Ramsey, Alternating Chirality in the Monolayer
H2TPP on Cu(110)–(2 � 1)O, Phys. Chem. Chem. Phys.,
2013, 15(13), 4691, DOI: 10.1039/c3cp44239j.

128 G. Meyer, B. Neu and K.-H. Rieder, Controlled Lateral
Manipulation of Single Molecules with the Scanning Tun-
neling Microscope, Appl. Phys. Mater. Sci. Process., 1995,
60(3), 343–345, DOI: 10.1007/BF01538415.

129 STM and AFM Studies on (Bio)Molecular Systems: Unra-
velling the Nanoworld, ed. Samorı̀, P., Topics in Current
Chemistry, Springer Berlin Heidelberg, Berlin, Heidelberg,
2008, vol. 285, DOI: 10.1007/978-3-540-78395-4.

130 P. Kocán, Y. Yoshimoto, K. Yagyu, H. Tochihara and
T. Suzuki, Adsorption of PTCDA on Ge(001), J. Phys. Chem.
C, 2017, 121(6), 3320–3326, DOI: 10.1021/acs.jpcc.6b09793.

131 P. S. Weiss and D. M. Eigler, Site Dependence of the
Apparent Shape of a Molecule in Scanning Tunneling
Micoscope Images: Benzene on Pt{111}, Phys. Rev. Lett.,
1993, 71(19), 3139–3142, DOI: 10.1103/PhysRevLett.71.3139.

132 M. N. Faraggi, N. Jiang, N. Gonzalez-Lakunza, A. Langner,
S. Stepanow, K. Kern and A. Arnau, Bonding and Charge
Transfer in Metal–Organic Coordination Networks on
Au(111) with Strong Acceptor Molecules, J. Phys. Chem. C,
2012, 116(46), 24558–24565, DOI: 10.1021/jp306780n.

133 P. Maksymovych, O. Voznyy, D. B. Dougherty, D. C. Sorescu
and J. T. Yates, Gold Adatom as a Key Structural Compo-
nent in Self-Assembled Monolayers of Organosulfur Mole-
cules on Au(111), Prog. Surf. Sci., 2010, 85(5–8), 206–240,
DOI: 10.1016/j.progsurf.2010.05.001.

134 D. Wegner, R. Yamachika, Y. Wang, V. W. Brar,
B. M. Bartlett, J. R. Long and M. F. Crommie, Single-
Molecule Charge Transfer and Bonding at an Organic/
Inorganic Interface: Tetracyanoethylene on Noble Metals,
Nano Lett., 2008, 8(1), 131–135, DOI: 10.1021/nl072217y.

135 P. Maksymovych, D. C. Sorescu and J. T. Yates, Gold-
Adatom-Mediated Bonding in Self-Assembled Short-
Chain Alkanethiolate Species on the Au(111) Surface, Phys.
Rev. Lett., 2006, 97(14), 146103, DOI: 10.1103/
PhysRevLett.97.146103.

136 G. Yang and G. Liu, New Insights for Self-Assembled
Monolayers of Organothiols on Au(111) Revealed by Scan-
ning Tunneling Microscopy, J. Phys. Chem. B, 2003,
107(34), 8746–8759, DOI: 10.1021/jp0219810.

137 R. Mazzarello, A. Cossaro, A. Verdini, R. Rousseau,
L. Casalis, M. F. Danisman, L. Floreano, S. Scandolo,
A. Morgante and G. Scoles, Structure of a CH 3 S Monolayer
on Au(111) Solved by the Interplay between Molecular
Dynamics Calculations and Diffraction Measurements,
Phys. Rev. Lett., 2007, 98(1), 016102, DOI: 10.1103/
PhysRevLett.98.016102.

138 O. Voznyy, J. J. Dubowski, J. T. Yates and P. Maksymovych,
The Role of Gold Adatoms and Stereochemistry in Self-
Assembly of Methylthiolate on Au(111), J. Am. Chem. Soc.,
2009, 131(36), 12989–12993, DOI: 10.1021/ja902629y.

139 A. Della-Pia, M. Riello, J. Lawrence, D. Stassen, T. S. Jones,
D. Bonifazi, A. De-Vita and G. Costantini, Two-
Dimensional Ketone-Driven Metal-Organic Coordination
on Cu(111), Chem. – Eur. J, 2016, 22(24), 8105–8112, DOI:
10.1002/chem.201600368.

140 G. Wang, A. Rühling, S. Amirjalayer, M. Knor, J. B. Ernst,
C. Richter, H.-J. Gao, A. Timmer, H.-Y. Gao, N. L. Doltsinis,
F. Glorius and H. Fuchs, Ballbot-Type Motion of N-
Heterocyclic Carbenes on Gold Surfaces, Nat. Chem.,
2017, 9(2), 152–156, DOI: 10.1038/nchem.2622.

141 J. V. Barth, G. Costantini and K. Kern, Engineering Atomic
and Molecular Nanostructures at Surfaces, Nature, 2005,
437(7059), 671–679, DOI: 10.1038/nature04166.

142 O. Dulub, U. Diebold and G. Kresse, Novel Stabiliza-
tion Mechanism on Polar Surfaces: ZnO(0001)-Zn,
Phys. Rev. Lett., 2003, 90(1), 016102, DOI: 10.1103/
PhysRevLett.90.016102.

143 J. V. Lauritsen, S. Porsgaard, M. K. Rasmussen,
M. C. R. Jensen, R. Bechstein, K. Meinander,
B. S. Clausen, S. Helveg, R. Wahl, G. Kresse and
F. Besenbacher, Stabilization Principles for Polar Surfaces
of ZnO, ACS Nano, 2011, 5(7), 5987–5994, DOI: 10.1021/
nn2017606.

144 C. Woll, The Chemistry and Physics of Zinc Oxide Surfaces,
Prog. Surf. Sci., 2007, 82(2–3), 55–120, DOI: 10.1016/
j.progsurf.2006.12.002.

145 J. Niederhausen, A. Franco-Cañellas, S. Erker, T. Schultz,
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B. Bröker, J. Niederhausen, T. Hosokai, I. Salzmann, R.-P.
Blum, R. Rieger, A. Vollmer, P. Rajput, A. Gerlach,
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Tuned Range Separated Hybrid Functionals in Ground-
State Calculations: Consequences and Caveats, J. Chem.
Phys., 2013, 138(20), 204115, DOI: 10.1063/1.4807325.

235 J. F. Janak, Proof That q E q n i = e in Density-Functional
Theory, Phys. Rev. B: Condens. Matter Mater. Phys., 1978,
18(12), 7165–7168, DOI: 10.1103/PhysRevB.18.7165.

236 V. Atalla, M. Yoon, F. Caruso, P. Rinke and M. Scheffler,
Hybrid Density Functional Theory Meets Quasiparticle
Calculations: A Consistent Electronic Structure Approach.,
Phys. Rev. B: Condens. Matter Mater. Phys., 2013,
88(16), 165122, DOI: 10.1103/PhysRevB.88.165122.

237 E. Wruss, E. Zojer and O. T. Hofmann, Distinguishing
between Charge-Transfer Mechanisms at Organic/Inorganic
Interfaces Employing Hybrid Functionals, J. Phys. Chem. C,
2018, 122(26), 14640–14653, DOI: 10.1021/acs.jpcc.8b03699.

238 A. M. Reilly, R. I. Cooper, C. S. Adjiman, S. Bhattacharya,
A. D. Boese, J. G. Brandenburg, P. J. Bygrave, R. Bylsma,
J. E. Campbell, R. Car, D. H. Case, R. Chadha, J. C. Cole,
K. Cosburn, H. M. Cuppen, F. Curtis, G. M. Day,
R. A. DiStasio Jr, A. Dzyabchenko, B. P. van Eijck,
D. M. Elking, J. A. van den Ende, J. C. Facelli,
M. B. Ferraro, L. Fusti-Molnar, C.-A. Gatsiou, T. S. Gee,
R. de Gelder, L. M. Ghiringhelli, H. Goto, S. Grimme,
R. Guo, D. W. M. Hofmann, J. Hoja, R. K. Hylton,
L. Iuzzolino, W. Jankiewicz, D. T. de Jong, J. Kendrick,
N. J. J. de Klerk, H.-Y. Ko, L. N. Kuleshova, X. Li, S. Lohani,
F. J. J. Leusen, A. M. Lund, J. Lv, Y. Ma, N. Marom,
A. E. Masunov, P. McCabe, D. P. McMahon, H. Meekes,
M. P. Metz, A. J. Misquitta, S. Mohamed, B. Monserrat,
R. J. Needs, M. A. Neumann, J. Nyman, S. Obata,
H. Oberhofer, A. R. Oganov, A. M. Orendt, G. I. Pagola,
C. C. Pantelides, C. J. Pickard, R. Podeszwa, L. S. Price,
S. L. Price, A. Pulido, M. G. Read, K. Reuter, E. Schneider,
C. Schober, G. P. Shields, P. Singh, I. J. Sugden,
K. Szalewicz, C. R. Taylor, A. Tkatchenko,
M. E. Tuckerman, F. Vacarro, M. Vasileiadis, A. Vazquez-
Mayagoitia, L. Vogt, Y. Wang, R. E. Watson, G. A. de Wijs,
J. Yang, Q. Zhu and C. R. Groom, Report on the Sixth Blind
Test of Organic Crystal Structure Prediction Methods, Acta
Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater., 2016,
72(4), 439–459, DOI: 10.1107/S2052520616007447.

Perspective PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
M

ar
ch

 2
02

1.
 D

ow
nl

oa
de

d 
on

 1
1/

7/
20

25
 2

:5
6:

02
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0cp06605b


8176 |  Phys. Chem. Chem. Phys., 2021, 23, 8132–8180 This journal is © the Owner Societies 2021

239 M. Rohlfing and T. Bredow, Binding Energy of Adsorbates
on a Noble-Metal Surface: Exchange and Correlation
Effects, Phys. Rev. Lett., 2008, 101(26), 266106, DOI:
10.1103/PhysRevLett.101.266106.

240 T. Olsen and K. S. Thygesen, Random Phase Approxi-
mation Applied to Solids, Molecules, and Graphene-
Metal Interfaces: From van Der Waals to Covalent Bond-
ing, Phys. Rev. B: Condens. Matter Mater. Phys., 2013,
87(7), 075111, DOI: 10.1103/PhysRevB.87.075111.

241 J. Hermann, R. A. DiStasio and A. Tkatchenko, First-
Principles Models for van Der Waals Interactions in Mole-
cules and Materials: Concepts, Theory, and Applications,
Chem. Rev., 2017, 117(6), 4714–4758, DOI: 10.1021/
acs.chemrev.6b00446.

242 K. Berland, V. R. Cooper, K. Lee, E. Schröder,
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268 T. Bučko, S. Lebègue, J. G. Ángyán and J. Hafner, Extending
the Applicability of the Tkatchenko–Scheffler Dispersion
Correction via Iterative Hirshfeld Partitioning, J. Chem.
Phys., 2014, 141(3), 034114, DOI: 10.1063/1.4890003.

269 T. Gould, S. Lebègue, J. G. Ángyán and T. Bučko, A
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