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Simulation of nitrogen nuclear spin magnetization
of liquid solved nitroxides†

Andriy Marko, * Antonin Sojka, Oleksii Laguta and Petr Neugebauer

Nitroxide radicals are widely used in electron paramagnetic resonance (EPR) applications. Nitroxides are

stable organic radicals containing the N–O� group with hyperfine coupled unpaired electron and nitrogen

nuclear spins. In the past, much attention was devoted to studying nitroxide EPR spectra and electron spin

magnetization evolution under various experimental conditions. However, the dynamics of nitrogen

nuclear spin has not been investigated in detail so far. In this work, we performed quantitative prediction

and simulation of nitrogen nuclear spin magnetization evolution in several magnetic resonance experiments.

Our research was focused on fast rotating nitroxide radicals in liquid solutions. We used a general approach

allowing us to compute electron and nitrogen nuclear spin magnetization from the same time-dependent

spin density matrix obtained by solving the Liouville/von Neumann equation. We investigated the nitrogen

nuclear spin dynamics subjected to various radiofrequency magnetic fields. Furthermore, we predicted a

large dynamic nuclear polarization of nitrogen upon nitroxide irradiation with microwaves and analyzed its

effect on the nitroxide EPR saturation factor.

I. Introduction

Organic nitroxide radicals play a vital role in EPR spectroscopy.1,2

Nitroxides are stable molecules with an unpaired electron (see
Fig. 1A), which is usually localized in the middle of the N–O�

bond, featuring a strong hyperfine interaction with the nitrogen
nuclear spin.3 Various materials, which are usually EPR silent,
can be made suitable for EPR experiments by introducing
nitroxides into investigated samples. By shape analysis of
nitroxide EPR spectra, one can monitor such parameters as
viscosity, polarity of micro-environment, proticity and the
presence of oxygen.4–7 Also, nitroxides can be used as a polarizing
agent for Dynamic Nuclear Polarization (DNP) to enhance Nuclear
Magnetic Resonance (NMR) signals.8–10 Since nitroxides can be
attached to large macromolecules, they are often employed as
spin labels to access valuable information about the structure and
dynamics of organic polymers and bio-molecular systems. In
frozen solutions, spin-labeled molecules can be effectively studied
by the pulsed EPR technique at low temperatures.11 For example,
nitroxide spin labels combined with pulsed electron–electron
double resonance can detect macromolecule conformational
flexibility at the nanometer scale.12–16 Recent methodological
developments aim to extend the sensitivity of this technique to
the range above 10 nm.17–19

EPR spectra are sensitive to the rotational motion of radicals
in liquids. Description of the shape of EPR spectra is determined
by the time scale of random rotations, which cause fluctuations
of magnetic spin interactions. For a fast radical motion, when
the time scale of random fluctuations is much shorter than the
changes in the spin system density matrix, EPR spectra can be
described in the frames of Bloch–Wangsness–Redfield density
matrix perturbation theory, which is frequently used in
NMR.20–24 Usage of viscous solvents or attachment of nitroxides
as spin labels to large macromolecules in liquid solutions can
strongly affect their dynamical characteristics, which do not
allow anymore to treat nitroxides molecular dynamics in
the fast motion regime or to consider them as the isotropic
Brownian rotational diffusion. To describe slow motion EPR
spectra, several theoretical approaches have been developed.25

Quite some time ago, linear response theory involving perturbation
theory was employed to analyze EPR spectra of the system beyond
the fast motion limit.26–28 Computation of EPR spectra via the
solution of the stochastic Liouville equation (SLE) with the
nitroxide spin label motion represented by diffusion operator was
very successful.29,30 The software packages based on this method
played a very important role in many structural and dynamics
studies of large macromolecules.31–34 To account for complex spin
label dynamics affected by macromolecular environment such as
spin labeled proteins in solution, the methods to obtain EPR
spectra from molecular dynamics trajectories are developed.35–40

Despite the fact that the EPR response of the nitroxide
unpaired electron spin has been studied under various conditions
experimentally as well as theoretically, the nitroxide nitrogen
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nuclear spin dynamics has not been investigated in detail so far.
The major difficulty in observing the nitrogen nuclear spin
magnetization is caused by the strong hyperfine coupling, which
leads to short nuclear spin relaxation times and large broadening
of NMR lines. In this work, we attempted to predict the nitroxide
nitrogen nuclear spin dynamics in various magnetic resonance
experiments on liquid samples. To this end, we employed a
nitroxide spin Hamiltonian including typical electron and nuclear
spin interactions, which are modulated by a fast stochastic
motion of the molecular isotropic rotational diffusion process.
We computed the nuclear spin magnetization by solving numerically
the master Liouville/von Neumann (LvN) equation for the spin
system density matrix in semi-classical approximation.24 The
solutions were computed using the spin relaxation operator
obtained by the Monte-Carlo method to model stochastically
changing magnetic spin interactions and ensemble averaging.
Here, it should be mentioned, that the computational
approach, which we adapted in our work, is not the only way
to deal with nitroxide spin dynamics. Also, other existing
methods based on Bloch–Wangsness–Redfield perturbation
theory, solution of stochastic Liouville equation or usage of
molecular dynamics trajectories, could be employed for the
computation of nitroxide spin magnetization evolution.25,40,41

The simulation results, especially those which we obtained for the
nitroxide EPR spectra, could be obtained using the functions built
in the widely used spin dynamics software suites such as, e.g.,
EasySpin or Spinach.33,34 We have chosen our computational
approach based on a direct solution of the LvN equation since
it has a straight forward concept, can be relatively easy repeated
starting from scratch, and allows us to clearly follow all details
of nitroxide nitrogen nuclear spin dynamics. The numerical
algorithm developed in this work enabled us to simulate
experiments with complicated time-dependence of magnetic
fields B0 and B1 including the variation of magnitude, frequency,
and phase.

Furthermore, special attention was devoted to analyzing
the nitrogen nuclear spin dynamics upon the application of
microwave irradiation with an electron spin resonance frequency.
We predicted a large DNP of nitrogen by irradiation of nitroxide
EPR line and investigated the effect of nitrogen nuclear spin
dynamics on the nitroxide EPR saturation factor. This analysis
might help to understand all DNP transfer mechanisms, which
are being currently examined intensively.42–45 The computational

concept elaborated in this work can also be used to simulate
frequency scan EPR experiments.46

II. Theory and methods
A. Nitroxide spin Hamiltonian

To define nitroxide magnetic interaction tensors, a molecular
frame with the x-axis along the NO bond is introduced, as
shown in Fig. 1B. In this research, we focus on liquid solved
nitroxides, which can randomly rotate in the solvent due to
thermal motion. This rotation leads to the reorientation of the
nitroxide molecular frames and, consequently, to the variation
of the magnetic interaction tensors in the laboratory coordinate
system linked to the spectrometer static magnetic field B0. The
rotating nitroxide spin system is described by a time-dependent

Hamiltonian, ĤðtÞ, which is expressed via the time-dependent
magnetic interaction tensor values in the laboratory coordinate
system and, of course, via the electron and nuclear spin
operators Ŝ and Î, respectively. To simplify our derivations,
we will further use the Hamiltonian operator divided by the

Planck constant h�, i.e., ĤðtÞ ¼ ĤðtÞ=�h. Generally, we assume
that Ĥ(t) consists of (i) electron and nitrogen nuclear Zeeman
interaction terms Ĥe

Z(t) and ĤN
Z , respectively, (ii) nitrogen

nuclear quadrupole interaction ĤN
Q(t), (iii) electron nitrogen

nuclear hyperfine coupling ĤHF(t), and (iv) coupling of the
electron spin to the radical rotational motion ĤSR(t). Hence,
Ĥ(t) is presented as

Ĥ(t) = Ĥe
Z(t) + ĤN

Z + ĤN
Q(t) + ĤSR(t) + ĤHF(t). (1)

The electron Zeeman interaction Hamiltonian term is explicitly
given by the following expression:

Ĥ
e

ZðtÞ ¼ �
ge
ge
B0gðtÞŜ; (2)

wherein ge E �1.76086 � 1011 rad (T s)�1 is the electron
magnetogyric ratio, ge E 2.0023 is the g-factor of free electron
and g(t) is the value of the time-dependent nitroxide g-tensor in
the laboratory coordinate system. In the principal axes, which
in a good approximation coincide with the molecular frame
defined in Fig. 1B, the value of g-tensor is constant. For our
illustrative simulation, we will choose the typical principal axis
g-tensor value gpa = diag(2.0088, 2.0066, 2.0022). For the fitting
of the real experimental EPR spectra discussed later (shown in

Fig. 1 (A) Examples of nitroxide radicals: 1 – (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-yl)oxyl commonly known as TEMPOL. 2 – (2,2,5,5-
tetramethylpyrrolidine-1-yl)oxyl. (B) The fragment of nitroxide radical containing a nitrogen atom N and three atoms O, C, C covalently bound to N.
{x,y,z} is the coordinate frame associated with nitroxide. Its x-axis connects atoms N and O and y-axis links the two carbon atoms bound to N.
(C) Orientation of the nitroxide molecular frame {x,y,z} in the laboratory coordinate system {X,Y,Z} determined by the Euler angles (a,b,g).
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the ESI†), we will use a slightly different gpa value, which
can depend on the solvent type, temperature, specification of
nitroxide molecule, etc.

A similar formula to (2) is used to express the nitrogen
nuclear spin Zeeman interaction,

ĤN
Z = �gNB0Î, (3)

with the nitrogen magnetogyric ratio gN E 1.9331 � 107 rad
(T s)�1 for the isotope 14N and gN E �2.7116 � 107 rad (T s)�1

for the isotope 15N. In comparison to the electron Zeeman
interaction, the nuclear Zeeman interaction anisotropy is
neglected and HN

Z is assumed to be time independent.
The nitroxide hyperfine coupling between the unpaired

electron and nitrogen nuclear spins is described by

ĤHF(t) = ÎA(t)Ŝ, (4)

wherein A(t) is the time-dependent hyperfine interaction tensor
in the laboratory coordinate system. In this work, we use the
hyperfine tensor principal axis value equal to Apa = 2p �
diag(15, 15, 90) � 106 rad s�1.

In the case of the isotope 14N with a spin 1, the nitroxide
nitrogen nucleus exhibits quadrupole interaction described by
the Hamiltonian,

ĤN
Q(t) = ÎQ(t)Î, (5)

wherein Q(t) is the quadrupole interaction tensor which has the
principal axis value equal to Qpa = 2p � diag(0.1, 1.6, �1.7) �
106 rad s�1.47,48

In order to correctly predict relaxation times of electron spin
magnetization in EPR experiments, the coupling of electron
spin to nitroxide rotation was introduced.49–51 It is given by the
Hamiltonian term

ĤSR(t) = �g(t)(g(t) � ge13)Ŝ, (6)

where g(t) is the angular velocity of the nitroxide moiety.
Here we consider samples with a low nitroxide concentration

neglecting Heisenberg spin exchange interaction, which can
change EPR spectra significantly.52–54 Also, we neglect the
translational diffusion of nitroxides, which can cause additional
spin relaxation in inhomogeneous magnetic fields.24,55,56

For the simplification of our analysis, we assume that the
principal axes of all magnetic tensors coincide, although the
magnetic tensors with arbitrary principal axes orientations can
be treated with almost the same efforts in our computation
approach.

In order to determine the time-dependent laboratory frame
magnetic tensors, which enter (2), (4), (5) and (6), from their
principal axes values we will use the formula,

X(t) = T�1(X(t))XpaT(X(t)), (7)

where X can be g, A or Q tensor. and T(t) is the time-dependent
transformation matrix of the molecular frame to the laboratory
coordinate system determined by the Euler angles X(t) =
(a(t),b(t),g(t)), (see Fig. 1C).

B. The master equation

For the description of state evolution of nitroxide spin systems
we employ a standard quantum statistical method in which the
state of an ensemble of identical spin systems at a time point t
is represented by the density matrix, ŝ(t). The time evolution of
the density matrix is determined using the LvN equation,

@ŝðtÞ
@t
¼ �i ĤðtÞ; ŝðtÞ

� �
; (8)

where Ĥ(t) is the spin system Hamiltonian described in the
previous section. For liquid solved radicals the time-dependent
Hamiltonian Ĥ(t) is assumed to consist of a stationary part Ĥ0

and a stochastically changing part Ĥ1(t), i.e.,24,57

Ĥ(t) = Ĥ0 + Ĥ1(t). (9)

In our case Ĥ0 is the isotropic parts of Zeeman and hyperfine
interactions given by

Ĥ0 ¼ �ge
g0

ge
B0Ŝ� gNB0Îþ A0ÎŜ; (10)

wherein g0 and A0 are the averaged values of the g- and
hyperfine interaction tensors, g0 = trace{g}/3 and A0 = trace{A}/
3, respectively. For the assumptions made later we present Ĥ1(t)
as a sum of the two terms

Ĥ1(t) = Ĥ1a(t) + ĤSR(t), (11)

wherein

Ĥ1aðtÞ ¼ �
ge
ge
B0 gðtÞ � g013ð ÞŜþ Î AðtÞ � A013ð ÞŜþ ÎQðtÞÎ

(12)

includes anisotropic parts of Zeeman, hyperfine and quadrupole
interactions. In order to determine the density matrix for our
system we follow the semi-classical procedure based on the
ensemble averaging described in ref. 24. It yields the master
equation

@ŝðtÞ
@t
¼ �i Ĥ0; ŝðtÞ

� �
� RðŝðtÞ � ŝeqÞ; (13)

where ŝeq is the equilibrium density matrix given by the formula

ŝeq �
exp �bĤ0

� �
trace exp �bĤ0

� �� �; (14)

with b � kBTð Þ�1 denoting the inverse product of the system
temperature, T , and the Boltzmann constant, kB. Eqn (13) coincides
with eqn (4200) from ref. 24, ch. VIII, if the relaxation operator is
defined as

Rð:::Þ ¼ 1

2

ð1
�1

Ĥ1ðtÞ; e�iĤ0tĤ1ðt� tÞeiĤ0t; . . .
� �� �

dt; (15)

wherein the bar over the double commutator stands for the
ensemble averaging. For fast isotropic rotational diffusion of
nitroxides in liquids we will assume that the averaged double
commutator does not depend on the absolute time t. Therefore
we will continue the calculation of R with t = 0.24,57

In order to analyze experiments in which samples are
irradiated by an alternating magnetic field B1(t) we introduce
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an additional term i[Ĥirr(t),ŝ(t)] into eqn (13), which
corresponds to the spin interaction with the field B1(t), i.e.,

@ŝðtÞ
@t
¼ �i Ĥ0; ŝðtÞ

� �
� i Ĥ irrðtÞ; ŝðtÞ
� �

� RðŝðtÞ � ŝeqÞ; (16)

wherein

Ĥirr(t) = �B1(t)(geŜ + gNÎ), (17)

In this work we consider a linear polarized field B1(t) along the
x-axis of the laboratory frame with an arbitrary magnitude,
frequency and phase dependence B1(t) = (B1(t),0,0).

To proceed further with the solution and interpretation of
the master eqn (16), it is rewritten in the Liouville space. We do
it by constructing a vector r out of the density matrix ŝ, by using
the (ith,jth) density matrix element for the ((i � 1) �n + j)-th
component of the vector column r, where n is the dimension of
the spin system Hilbert space. Furthermore, the equation for r

is obtained by the transformation of the commutators, which
stay at the right side of eqn (16), to the Liouville space. This
transformation, which is well described in the literature,58

yields the equation

@rðtÞ
@t
¼ ^̂

LðtÞ � ^̂
R

� 	
rðtÞ þ ^̂

Rreq; (18)

with the superoperator ^̂
LðtÞ defined as

^̂
LðtÞ ¼ �i Ĥ0 þ Ĥ irrðtÞ

� �
� 1� 1� Ĥ0 þ Ĥ irrðtÞ

� �� �
(19)

and the relaxation superoperator

^̂
R ¼ 1

2

ð1
�1

^̂
C Ĥ0; Ĥ1; t
� �

dt; (20)

which is the time integral of a correlation superoperator,
^̂
C Ĥ0; Ĥ1; t
� �

, constructed out of the Hilbert space Hamiltonian
operators Ĥ0 and Ĥ1 via

^̂
C Ĥ0; Ĥ1; t
� �

¼ Ĥ1ð0Þ � 1� 1� Ĥ1ð0Þ
� �

� e�iĤ0tĤ1ð�tÞeiĤ0t � 1� 1� e�iĤ0tĤ1ð�tÞeiĤ0t
� �

:

(21)

Explicitly, ^̂
C Ĥ0; Ĥ1; t
� �

is computed with the parameters
corresponding to fast rotational diffusion in the next section.

III. Results
A. Solution of the master equation

Determination of vector r(t) from eqn (18) requires explicit

values of the superoperators ^̂
LðtÞ, which determines the coherent

spin motion, and ^̂
R responsible for spin relaxations. The strategy

to compute these superoperators and the algorithm to solve the
master equation numerically are presented in this section.

1. Computation of the superoperator ^̂
LðtÞ. The computation

of the superoperator ^̂
LðtÞ is straightforward using expression

(19), which contains the Hamiltonian operators Ĥ0 and Ĥirr(t).
The isotropic Hamiltonian Ĥ0 is determined using expression

(10) with a given value of the static magnetic field B0 and the
principal axes values of the magnetic tensors gpa and Apa

provided in the Section II.A. The Hamiltonian Ĥirr(t) requires a
definition of the alternating magnetic field B1(t). In this work,
the electron and nuclear spin magnetization are simulated by
solving master eqn (18) with a linearly polarized B1(t) field along
the X-axis of the laboratory frame. The magnitude of the vector
B1(t) is assumed to have the following quite general form

B1(t) = B1 cos(F(t)), (22)

with the phase F(t) determined by the time-dependent
frequency n(t) via the formula

FðtÞ ¼ F0 þ 2p
ðt
0

nðt 0Þdt 0: (23)

wherein F0 is the initial phase. For a frequency scan experiment
we assume that n(t) varies with the rate _n in the interval (nm �
Dn/2, nm + Dn/2) with a mean frequency nm and a width Dn.
In this case the frequency offset dn(t) = n(t) � nm is equal to

dnðtÞ ¼ �Dn
2
þ _nt: (24)

Here we consider B1(t) oscillating with a linearly varying
frequency although other frequency dependencies can be easily
implemented in our simulations. Application of a B1(t) field
with a varied frequency corresponds to the frequency scan
magnetic resonance experiments, which are being actively
developed at present in EPR.46

2. Computation of the relaxation superoperator ^̂
R. In

comparison to ^̂
LðtÞ, the determination of ^̂

R by eqn (20) is more
complicated and needs some additional assumptions. The

correlation superoperator ^̂
C Ĥ0; Ĥ1; t
� �

entering integral (20)
can be computed if both parts Ĥ1a(t) and ĤSR(t) of the time-
dependent Hamiltonian Ĥ1(t) are known exactly. However,
utilization of some general properties of Ĥ1a(t) and ĤSR(t)
without detailed information about them allow us to simplify

the calculation of ^̂
C Ĥ0; Ĥ1; t
� �

noticeably. Eqn (12) and (7)
show that Ĥ1a(t) is determined by the nitroxide radical
orientation X(t). The spin rotation coupling term (6) depends
additionally on the nitroxide angular velocity g(t). Using
molecular dynamic simulations, it was shown that the angular
velocity correlation time, tZc, is much shorter than the rotational
correlation time tc determined by the function X(t).51

According to the literature,51,59 this allows us to neglect the
cross correlation terms of Ĥ1a(t) with ĤSR(t) in the explicit form
of eqn (21), which yields,

^̂
C Ĥ0; Ĥ1; t
� �

� ^̂
C Ĥ0; Ĥ1a; t
� �

þ ^̂
C Ĥ0; ĤSR; t
� �

: (25)

Now in order to compute the first term on the right side of the
last equation we define K nitroxide rotation trajectories X(t)
and hence compute Ĥ1a(t) for each trajectory explicitly. To
define one X(t) in a time interval (�T,T) we split this interval
in 2N steps with a length of Dt = T/N or introduce a discrete
time variable ti with i = �N, �N + 1,. . .,N and t�N = �T, t�N+ 1 =
�T + Dt, . . ., tN = T. The value of T is chosen much longer than
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the rotational correlation time tc of our liquid solved nitroxides,
and N is large enough to make Dt much shorter than tc.
Furthermore, we assign to each time ti a nitroxide orientation
X(ti) = (ai,bi,gi), wherein ai,bi,gi are the corresponding Euler
angles. In the first trajectory, the initial orientation is set to
X(0) = (0,0,0), i.e., collinear to the laboratory coordinate system
axes. To define other orientations X(ti) we employ random
number generation and iteration procedure. For each i, we
assign an axis ni, which can be randomly oriented in all possible
space directions with equal probability, and a normally
distributed random angle fi, with the averaged value equal to
zero and dispersion sf. For any positive i, the orientation X(ti) is
obtained via a rotation of the frame X(ti�1) by the angle fi about
the axis ni. For negative i, X(ti) is obtained in the same way from
the frame X(ti+1). This completes the definition of the first
stochastic rotation trajectory with X(0) = (0,0,0).

The discrete trajectory X(ti) defined above allows us to
compute the values of the magnetic tensors g(ti), A(ti), and
Q(ti) using formula (7) and, thus, of the Hamiltonian Ĥ1a(ti) for
each time point ti. Schematically the process of the Ĥ1a(ti) value
assignment is shown in Fig. 2. The procedure described above
gives us a way to model rotational diffusion of nitroxide
radicals in liquid solvents by the Monte-Carlo method.
For the ensemble averaging required by expression (21), we
repeat the generation of rotational trajectory K times by a
systematic variation of the initial orientation X(0) to cover all
possible directions homogeneously. In this way the value of
^̂
C Ĥ0; Ĥ1a; t
� �

is calculated as a function of time t.
In order to demonstrate some of its properties we compute

^̂
C Ĥ0; Ĥ1a; t
� �

with Ĥ0 = 0 or we set exp(�iĤ0t) E 1 in expression
(21). This assumption can be made for very short rotational
correlation times, when the Ĥ0t matrix element absolute values
are much smaller than the ones in the range (�tc o t o tc),
which is typical for low B0 fields.

For nitroxide isotope 14N, the computation of ^̂
C 0; Ĥ1a; t
� �

yields a sparse 36 by 36 matrix for each time ti. Fig. 3 shows

time dependence of ^̂
C 0; Ĥ1a; t
� �

normalized diagonal elements

ckðtÞ � ^̂
Ckk 0; Ĥ1a; t
� �

=
^̂
Ckk 0; Ĥ1a; 0
� �

. The functions ck(t) were
computed employing randomly generated trajectories as
described above with the parameter sf, which characterizes
random rotation at each step of the trajectory generation, equal
to 2.31. For the simulations, we used the magnetic tensor
principal axes values provided in Section II. A and the value
of the static magnetic field B0 = 1.2 T. As shown in Fig. 3 all 36

curves of ck(t) are almost identical. That is, they are presented
virtually by one curve. This curve can be well approximated
by an exponential function exp(�|t|/tc). Hence, by plotting
ln(ck(t)) the rotational correlation time, tc, which is
approximately equal to 0.02 ns in this case, is determined
(see Fig. 3B).

Now we consider the second term in the expression (25),
which is determined by the variation of the angular velocity g (t).

We assume that the ^̂
C Ĥ0; ĤSR; t
� �

matrix elements decay within
a characteristic time tZc, which is in the range from 10 to 100 fs as
follows from molecular dynamics simulations.51 For such short

correlation times, the matrix ^̂
C Ĥ0; ĤSR; t
� �

can be substituted

with ^̂
C 0; ĤSR; t
� �

on the time scale of tZc even for Ĥ0 calculated

for high magnetic fields. Assuming that ^̂
C 0; ĤSR; t
� �

decays

exponentially, that is ^̂
C 0; ĤSR; t
� �

¼ ^̂
C 0; ĤSR; 0
� �

expð�jtj=tZcÞ,
expression (20) can be transformed to

^̂
R ¼ 1

2

ð1
�1

^̂
C Ĥ0; Ĥ1a; t
� �

dtþ tZc
^̂
C 0; ĤSR; 0
� �

; (26)

The value of ^̂
C 0; ĤSR; 0
� �

is calculated according to (21) by the
ensemble averaging of (ĤSR(0) # 1 � 1 # ĤSR(0))2 over all
possible initial orientations of nitroxide and angular velocity g(0).
The absolute value of the nitroxide angular velocity is assumed to be
constant throughout the ensemble and determined by the formula

Z 0ð Þ ¼ kBT =Ið Þ1=2, where I is the inertia moment of nitroxide.
For TEMPOL with I � 4:975�45 kg�m2 at a temperature of 300 K,
the last formula yields Z(0) E 9.125 � 1011 rad s�1. The strategy to
compute the relaxation superoperator described above is used to
determine the electron and nuclear spin dynamics of nitroxide in the
next sections.

From the above described algorithm of the relaxation super-

operator determination, it follows that ^̂
R depends among other

parameters on sf and tZc, which characterize random nitroxide
molecular motion and are influenced by solvent viscosity and
temperature in real samples. This relation allows us to
account for solvent and temperature effect in our simulation.
For instance, the utilization of a lower viscosity solvent
would correspond to an increase in parameters sf and tZc,
whereas a higher viscosity solvent would require a decrease of
these parameters. Similarly, heating and cooling of the sample
can be modeled by the increase and decrease of sf and tZc,
respectively.

Fig. 2 Illustration of the Monte-Carlo simulation of the random nitroxide rotations. For simplicity reasons, rotational diffusion is presented in a two
dimensional picture. Hexagons with coordinate axes correspond to a TEMPOL moving along rotational trajectory with a time increment Dt from
T = �NDt to T = NDt. At each step the nitroxide radical is rotated around a randomly chosen axis by a normally distributed angle.
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3. Numerical solution of the master equation. In order to
solve the master eqn (18), it is integrated over time window
(t0,t0 + Dt). This yields the following equation

rðt0 þ DtÞ ¼ rðt0Þ þ
ðt0þDt
t0

^̂
Aðt 0Þrðt 0Þ þ a
� 	

dt 0; (27)

wherein ^̂
AðtÞ ¼ �i ^̂LðtÞ � ^̂

R and a ¼ ^̂
Rreq. For our purpose, the

time increment Dt is chosen short enough to neglect the

variation of the superoperator ^̂
LðtÞ within it. This can be

achieved when Dt is much shorter than the B1(t) oscillating

period n0 þ _ntð Þ�1. Assuming that the superoperator ^̂
AðtÞ is

constant within the time (t0,t0 + Dt), the value of the vector r

at the time point t0 + Dt can be approximately found from r (t0)
by applying formula (27) iteratively. This gives us the following
expression,

rðt0 þ DtÞ � rðt0Þ þ ^̂
Aðt0Þrðt0Þ þ a

� 	
Dt

þ . . .þ ^̂
An�1ðt0Þ ^̂

Aðt0rðt0Þ þ a
� 	Dtn

n!
;

(28)

with n denoting the number of iterations or the order of
precision. Obviously, an increase of n or reduction of Dt will
increase the precision of r(t), but will extend the computational
time. In this work, Dt and n were chosen large and small
enough, respectively, that further increase of n or decrease of
Dt did not make any visible changes in the simulated signals.

Using eqn (28), r can be computed for any time t by doing
enough Dt steps starting from zero time and the equilibrium
density matrix. For instance, in order to simulate the CW-EPR
spectrum, r(t) is computed for the time Dn= _n wherein Dn stands
for the frequency range necessary to record this spectrum.
Furthermore, the vector r(t) is transformed back to the Hilbert
space density matrix s(t), which is used to compute spin
magnetization M(t) via the formula

M(t) = trace(M̂s(t)) (29)

where M̂ is the operator of the spin magnetic moment equal to
geh�Ŝ or gNh� Î for electron and nitrogen nucleus, respectively.
Expression (29) gives values of the spin magnetization in the
laboratory frame. In order to obtain the transverse magnetization

value in the frame rotating with the time-dependent phase F(t)
around the z-axis of the laboratory frame, M(t) is transformed via
the formula

mx,(y)(t) = Re(Im){e�iF(t)(Mx(t) + iMy(t))}. (30)

For a CW-EPR experiment with linearly varied frequency, the
magnetization values mx and my can be plotted versus the
frequency n or the frequency offset dn yielding the usual
adsorption and dispersion spectra.

B. Electron spin dynamics of liquid solved nitroxides

The EPR spectra of organic radicals and particularly of nitroxides
solved in liquids were already studied for a long time. Their
dependence on various experimental and system parameters is
well understood and modeled.33 The effects of the static and
microwave magnetic fields, temperature and stochastic
rotational molecular motion on the spectral form are well known.
Based on this knowledge, we will rather evaluate and calibrate our
simulation procedure for later use in the computations of
nitroxide nuclear spin dynamics then improve the performance
of the established methods for the simulation of EPR spectra.

In order to simulate spin magnetization according to the
computational strategy described above, a self-written MATLAB
program was used. The input parameters of this program are
summarized below.
� Temperature: T .
� The value of the static magnetic field: B0.
� Parameters characterizing alternating magnetic field: B1,

F0, n0, Dn and _n.
� Values of the magnetic tensors in the principal axes frame:

gpa, Apa, Qpa.
� Parameters for the computation of the relaxation super-

operator ^̂
R from the random rotational trajectories: K, sf, Dt,

T , I and tZc.
� Time increment Dt and the precision order n for the

propagation of r(t).
For the demonstration of the program performance, we

simulated frequency scan EPR spectra at a low magnetic field
of 1.2 T and a high field of 14 T (see Fig. 4). Parameters B1 and
F0 characterizing the MW field were constant in both cases.

Fig. 3 (A) The functions ck(t) defined as the normalized diagonal elements of the superoperator ^̂
C 0; Ĥ1a; t
� �

. They were simulated with K = 27 000 random
rotational trajectories, T = 150 ps, Dt = 0.1 ps and sf = 2.31. (B) The plot of the functions ln(ck(t)) which yields rotational correlation time tc E 0.02 ns.
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The central frequency n0 of the scanned frequency range (n0 �
Dn/2, n0 + Dn/2) was tuned to the frequency of the central
nitroxide EPR line in each case. The frequency scan rate _n was
chosen according to the condition _n { T2

�2 to avoid the
appearance of non-stationary effects in the computed spectra.
The parameters of radical random rotational motion (sf and
Dt) were also set equal in both simulations. By choosing sf =
2.31 and Dt = 0.1 ps for the generation of nitroxide random
rotational trajectories, we obtained tc = 20 ps. This value is in a
good agreement with the rotational correlation times of
the water solved TEMPOL at room temperature obtained by
molecular dynamic simulations and by fitting of the CW-EPR
spectra.51,62

Fig. 4 shows a significant broadening of the EPR line at high
magnetic fields. This is attributed to the shortening of the T2

relaxation time by high magnetic fields, which increase the
effects of the g-tensor anisotropy. Using simulated mx(n) and
my(n) we determined the electron spin transverse relaxation
times for each hyperfine line of the 14N-nitroxide EPR spectrum
with nitrogen nuclear spin projection iz equal to �1, 0 or 1.
To this end we employed the formula

T
ðizÞ
2 ¼ 1

2p
d

dn
myðnÞ
mxðnÞ


 �����
����
n¼n0ðizÞ

(31)

which can be obtained from the stationary solution of the Bloch
equation.24 In formula (31), n0(iz) = n0 + izA0/(2p) corresponds to
the spectral position of the hyperfine line with the nuclear spin
quantum number iz. In this way, we estimated T2 times from
the spectra for B0 equal to 1.2 T and 14 T shown in Fig. 4A and B
and also from the frequency scan EPR spectra simulated with
other B0 values in the range from 0.035 T to 18.6 T shown in
Section S1 of the ESI.† The obtained T2 values for the three
hyperfine lines are shown in Fig. 5 as a function of the static
magnetic field.

In frames of our computational model, we determined
electron spin T1 relaxation times for the same range of B0

fields. For this purpose, we computed the recovery of
longitudinal electron spin magnetization after a 5 ms long

MW pulse with the frequency fixed at the central nitroxide line
and with a magnitude of 0.2 mT. The length of the pulse was
long enough for the magnetization to almost reach their
stationary values. Assuming the exponential form for the decay
of Meq � Mz(t) the T1 relaxation times were determined (see
Fig. 5A). Details of the longitudinal electron spin magnetization
simulations, as well as the estimation of T1 times from the
simulated data, are presented in the ESI† (see S2).

The frequency scan CW-EPR spectra and the relaxation
times, which were simulated in this section, exhibit the most
important spectral characteristics of fast rotating nitroxides
solved in liquids and agree well with the known experimental
data. A more detail comparison of the nitroxide spectra
computed using our computational approach based on direct
solution of the LvN equation to the experimental data and
spectra computed by other EPR computational tools (e.g. Easy-
Spin) is presented in the ESI† (see S3 and S4). With this
calibration of our computational method, we proceed to the
simulation of nitroxide nitrogen nuclear spin magnetization.

C. Nitrogen nuclear spin dynamics

The main goal of this work is to gain insights into the nitrogen
nuclear spin dynamics of fast rotating nitroxide radicals in
liquid solutions. To complete this task, we will employ the
nitroxide spin Hamiltonian specified in the Section II.A and the
model for the molecular rotational diffusion described in the
Section III.A. Also, we will use the computational method
introduced above which can deliver accurate EPR spectra and
relaxation times for nitroxides in a broad frequency range.
However, before doing detailed computation, we infer some
essential characteristics of the nitrogen nuclear spin dynamics
qualitatively.

In nitroxide molecules, the nitrogen nuclear spin is in close
vicinity of the unpaired electron spin, which produces a strong
magnetic field Be at the nitrogen nucleus position. The
characteristic magnitude of this field can be estimated as the
energy, which is introduced by the isotropic hyperfine coupling
Hamiltonian term A0ŜÎ, divided by the nitrogen nuclear spin

Fig. 4 Simulated evolution of the electron spin magnetization of liquid solved nitroxides in CW-EPR experiments with varied MW frequencies and fixed
static magnetic fields B0 = 1.2 T in (A) and B0 = 14 T in (B). The parameters of the MW field were chosen as B1 = 2 � 10�5 T, F0 = p/2 and _n = 140 GHz s�1

for (A) and B1 = 2 � 10�5 T, F0 = p/2 and _n = 125 THz s�1 for (B). The relaxation superoperator ^̂
R was determined with K = 27 000, T = 150 ps, Dt = 0.1 ps,

sf = 2.31, I � 4:975�45 kg�m2, tZc = 30 fs and T = 300 K in both cases (A and B). Eqn (28) was solved with Dt = 1 ps and n = 8 in (A) and Dt = 0.02 ps and
n = 8 in (B).
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magnetic moment, that is Be = A0/(2gN). With the hyperfine
tensor values defined in Section II.A, we obtain Be E 6.5 T.
Interestingly, this value of the magnetic field is higher than the
static magnetic field of common EPR spectrometers but lower
than B0 of popular NMR spectrometers.

The orientation of Be is determined by the orientation of the
unpaired electron spin (Fig. 6). This means that nitrogen nuclei
in nitroxides with electron spin oriented along B0 are exposed
to a higher magnetic field B0 + Be and the nitrogen nuclei in
nitroxides with the anti-parallel electron spin orientation are in
the lower field B0 � Be. Since the numbers of electron spins up
and down are almost equal at high temperatures, we can split
the ensemble of nitroxides into two nearly equal sub-ensembles
that have effective magnetic fields at the positions of nitrogen
nuclei B0 + Be and B0 � Be, respectively. In the classical picture,
the nitrogen nuclear magnetic moments precess in these fields
with angular velocities of �gN(B0 + Be) and �gN(B0 � Be),
respectively. Hence, we expect two lines split by the frequency
gap 2gNBe/(2p) in the NMR spectrum of nitroxide radicals.

To verify the qualitative consideration presented above and
to describe nitrogen NMR lines quantitatively, we simulated
frequency scan experiments on liquid solved nitroxides. As in
the case of the EPR spectra demonstrated in the previous

section, we performed simulations with the static magnetic
fields of 1.2 T and 14 T (see Fig. 7A and B). For each B0 value,
two frequency ranges with a width of 4 MHz were scanned. The
central points of the first and the second regions were chosen to

be equal to
1

2
ðo3 � o1Þ=ð2pÞ and

1

2
ðo6 � o4Þ=ð2pÞ, respectively,

wherein oi with i = 1,2,. . .,6 are eigen values of the isotropic
Hamiltonian Ĥ0 given by formula (10). The magnitude, the initial
phase, and the frequency scan rate of the radio frequency
magnetic field B1(t) were kept equal in all simulations and are

specified in the figure caption. The relaxation operators ^̂
R at B0

values of 1.2 T and 14 T were taken the same as those which were
used for the simulation of the corresponding EPR spectra
(see Fig. 4A and B). With these settings, the computation of
nuclear spin magnetization as a function of time or radio
frequency, which is linearly linked to the time in the frequency
scan experiment, was performed in the laboratory frame. Further-
more, the laboratory frame signal was transferred to the rotating
frame via formula (30). As predicted qualitatively, we observe
resonance behaviors of the nuclear spin magnetization or NMR
lines at two frequencies, which roughly correspond to the nitrogen
nuclear spin precession angular velocities in the magnetic fields
B0� Be and B0 + Be. Also, as expected, we obtained a large by NMR

Fig. 5 (A) Computed (doted blue line) and experimental (red circle) longitudinal electron spin relaxation times as functions of the static magnetic field B0.
The shown experimental data are for TEMPONE in water at 20 1C.51,60,61 (B) Transverse relaxation times for the three nitroxide hyperfine lines. The
computations were performed with the relaxation superoperator ^̂

R determined by the dynamical parameters corresponding to the rotational diffusion
motion of TEMPOL in water which are specified in the caption of Fig. 4.

Fig. 6 Precession angular velocities of nitroxide nitrogen nuclear magnetic moments in an effective magnetic field consisting of the external field B0 and
the contribution from the unpaired electron which can be positive (+Be) or negative (�Be). In (A and B) the cases B0 o Be and B0 4 Be are illustrated,
respectively.
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standards line width caused mainly by the strong influence of the
unpaired electron on the nitrogen spin (half-width at half-height
is about 100 kHz).

However, a closer look at the spectral lines shown in Fig. 7A
and B poses questions, which do not have immediate answers.
The first striking thing which is seen in Fig. 7A, is the presence
of relatively small oscillations at high frequency superimposed
upon a relatively large slowly changing signal associated with
the NMR lines. Due to these oscillations, the curves shown in
the Fig. 7A appear bolder. To explain the origin of the high
frequency oscillations, we zoom-in and zoom-out Fig. 7A.
By zooming-in the curve my(t) (see Fig. 7C), we observe that
the frequency of the fast oscillations is precisely double the
frequency of B1(t), which is also plotted in arbitrary units in
Fig. 7C in blue color. By zooming-out the curve my(t)
(see Fig. 7D), we observe an increase in the magnitude of the
high frequency oscillations until �16.2948 MHz, which is the
negative value of the peak frequency n0 of the right side plot in
Fig. 7A. As discussed above the peak at �23.7051 MHz shown
on the left side of Fig. 7A is assigned to the nitroxide
subensemble with the nitrogen nuclear spin precession velocity
�gN(B0 + Be) and the peak at 16.2948 MHz shown on the right
side corresponds to the other subensemble with the precession
velocity �gN(B0 � Be), (note that B0 = 1.2 T and Be E 6.5 T in this
case). Also, we remind that our simulations were performed

with a linearly polarized field B1(t), which can be presented as
two circularly polarized fields rotating in opposite directions
with the angular velocities of 2pn(t) and �2pn(t), respectively.
Hence, the B1(t) field with a frequency n(t) close to �16.2948 MHz
can excite not only nitrogen nuclear spins with a precessing velocity
of �2p � 16.2948 Mrad s�1 but also nitrogen nuclear spins with
a precessing velocity of 2p � 16.2948 Mrad s�1. Since the signal
shown in Fig. 7A is the transverse nuclear spin magnetization
in the frame rotating with an angular velocity of 2pn(t), the
nuclear spin precession with an angular velocity of �2pn(t)
gives rise to the observed signal at the double frequency.
The effect described above is well pronounced when B0 { Be.
In this case, the two circular components of the B1(t) field,
which rotate with angular velocities of 2pn(t) and �2pn(t), can
simultaneously match with the precessing angular velocities
�gN(B0 + Be) and �gN(B0 � Be) of the first and the second
nitroxide subensemble, respectively. The curves, which are
shown in Fig. 7B obtained for B0 = 14 T which does not
satisfy the condition B0 { Be, do not exhibit high frequency
oscillations. In a possible experiment, however, the observation
of the double frequency oscillations can be eliminated by the
spectrometer’s low-pass filtering.

Another striking fact of the spectra shown in Fig. 7A and B is
the following. In the simulation of these spectra, we used B1(t)
with the initial phase F0 = 0, which corresponds to the B1 field

Fig. 7 Simulated nitrogen NMR spectra of liquid solved nitroxides. The plots (A and B) show the evolution of the transverse nuclear magnetization in
CW-NMR experiments with varied radio frequencies and fixed static magnetic fields B0 = 1.2 T in (A) and B0 = 14 T in (B). The radio frequency field is
defined with B1 = 1� 10�3 T, F0 = 0 for all simulations. The centers (parameter n0) and the width of the scanned frequency ranges as well as the scan time
are indicated in the plots individually. As in the previous two figures (see Fig. 4 and 5) the computations were performed with the relaxation superoperator
^̂
R, which is determined by the dynamical parameters corresponding to the rotational diffusion motion of TEMPOL in water, which are specified in the
caption of Fig. 4. Eqn (28) was solved with Dt = 5 ps and n = 128 in all simulations. The plots (C and D) are the zoom in and the zoom out, respectively, of
the left side plot of the plot (A).
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orientation along the x-axis of the rotating frame. For simple
isolated spin magnetic moments, such a field should produce a
Lorentzian shape symmetric y-component of nuclear spin
magnetization my(n) in the rotating frame. However, the curves
my(n) shown in green in Fig. 7A and B do not exhibit such form.
In Fig. 7A and B the curves mx(n) look rather as Lorentzian
functions. Here, we explain such a considerable distortion of
the nitroxide nitrogen NMR line shape by the interaction of the
unpaired electron spin with the radio frequency field B1(t),
which is described by the Hamiltonian (17). Although the radio
frequency is far off-resonant for electron spins, it causes small
oscillations of electron spin magnetization, which affect
nitrogen nuclear spin dynamics due to hyperfine coupling. To
verify this statement, we performed the simulations of the
spectra with the same parameters except for the Hamiltonian
term Ĥirr(t), which was simplified in comparison to (17) just to
account for the interaction of the nitrogen nuclear spin with the
radio frequency magnetic field, that is Ĥirr(t) = �gNB1(t)Î. With
this ‘switch off’ of the electron spin interaction with the radio
frequency irradiation, the shapes of mx(n) and my(n) curves get
their usual form (see ESI,† S5).

As further investigation of the nitrogen nuclear spin
magnetization, we computed population of the nitroxide spin
system energy levels subjected to irradiation with a microwave
frequency exciting an electron spin transition. We analyzed the
population P of all six nitroxide 14N spin states, 1=2; 1j i, 1=2; 0j i,
1=2;�1j i, �1=2; 1j i, �1=2; 0j i, and �1=2;�1j i, as a function of

time, when the central nitroxide EPR line was irradiated. These
populations were obtained as diagonal elements of the spin
density matrix computed by our numerical approach and
allowed us to determine the longitudinal nitrogen nuclear spin
and related to it electron spin magnetization straightforwardly.
According to eqn (29), the longitudinal nitrogen nuclear
magnetization is proportional to P 1=2; 1j ið Þ � P 1=2;�1j ið Þ þ
P 1=2; 1j ið Þ � P 1=2;�1j ið Þ and the longitudinal electron spin
magnetization is proportional to P 1=2; 1j ið Þ � P �1=2; 1j ið Þ þ
P 1=2; 0j ið Þ � P �1=2; 0j ið Þþ P 1=2;�1j ið Þ � P �1=2;�1j ið Þ.

For the computation of the nitroxide spin system response
to the irradiation of its central EPR line, the microwave field
parameters Dn, _n, and F0 were set to zero. The magnitude of the
laboratory frame linearly polarized field B1(t) was fixed at
0.0002 T. As before, we chose for these simulations a low static
magnetic field B0 = 1.2 T typical for EPR technique and a high
B0 = 14 T, which is often used in NMR spectrometers. With the
defined magnetic fields we computed the nitroxide spin density
matrix and the spin magnetization by solving the master eqn (18)
using the same relaxation operator as for the computation of the
corresponding EPR and NMR spectra shown above. The results
of the spin state population computation are presented in Fig. 8.
As we see in the figure, the population of the three states with
the electron spin projection 1=2 and �1=2 were almost equal
before the irradiation, i.e., P 1=2; 1j ið Þ � P 1=2; 0j ið Þ �
P 1=2;�1j ið Þ and P �1=2; 1j ið Þ � P �1=2; 0j ið Þ � P �1=2;�1j ið Þ.
After a long irradiation on a time scale of 1 to 10 ms,
the population of all spin states reaches new stationary
values. This rearrangement of the spin state population

increases the population differences P 1=2; 1j ið Þ � P 1=2;�1j ið Þ
and P 1=2; 1j ið Þ � P 1=2;�1j ið Þ, causing a large increase in the
absolute value of the nitrogen nuclear spin magnetization in
comparison to the equilibrium value (see Fig. 9A and B). This
simulation demonstrates a quantitative prediction of the nitro-
gen DNP effect caused by the microwave irradiation of nitroxide
unpaired electron spin. By defining the DNP enhancement factor
as the ratio e = (MN

z (N) � MN
z (0))/MN

z (0), wherein MN
z (0) and MN

z

(N) are the initial and stationary longitudinal nitrogen nuclear
spin magnetization, we detected eE�844 and eE�275 for B0 =
1.2 T and B0 = 14 T, respectively.

Using similar simulation as those shown in Fig. 9A and B, we
estimated the longitudinal nitrogen nuclear spin magnetization
relaxation times for our liquid solved nitroxide radicals. For B0 =
1.2 T and B0 = 14 T, we obtained T1 E 6.7 ms and T1 E 7.0 ms,
respectively. The details of this simulation are given in the ESI†
(see S6).

Additionally, we investigated the influence of radical rotational
diffusion intensification, which can correspond to a temperature
elevation or usage of solvents with lower viscosity, on the observed
DNP effect. For this purpose, the relaxation operator was
computed with faster changing random rotational trajectories in
comparison to the previous simulations. We set sf = 2.71, which
yields the rotational correlation times of about tc = 15 ns, and tZc =
25 fs. Such parameter variation corresponds roughly to a
temperature rise by 10 K. As shown in Fig. 9 an even larger
DNP effect was predicted for faster moving radicals.

According to the literature, liquid DNP enhancement e can
be expressed via the formula,

e ¼ ge
gN

sf x (32)

where f = (bR � b0)/bR is the leakage factor, which is determined
by the longitudinal nuclear spin relaxation rate in the presence
(bR) and the absence (b0) of radicals in the solution.63 Here, we
assumed f E 1, since the relaxation of nitrogen nuclear spin,
which is caused by the very close unpaired electron in nitroxide,
is much stronger than other nuclear spin relaxation mechanisms.
In formula (32), x is the coupling factor reflecting the nature of the
polarisation transfer between the electron and nuclear spins and s
is the saturation factor showing the change of the longitudinal
electron spin magnetization relatively to its initial value, Me

z(0),
that is s = (Me

z(0) � Me
z(N))/Me

z(0), where Mz(N) denotes the
stationary value of the electron spin magnetization under
microwave irradiation. Using the spin density matrices that were
used for the computation of the level population in Fig. 8 and for
the nitrogen nuclear magnetization in Fig. 9, we determined the
saturation factors for the nitroxide randomly rotating with tc = 20
ps and tc = 15 ps in magnetic fields B0 = 1.2 T and B0 = 14 T. The
results of this computation are presented in Table 1. A special
attention deserves the obtained saturation factors 0.405 and 0.39
for the magnetic field value B0 = 1.2 T. They are significantly larger
than 1/3, the value which would be expected in the case when only
one of the three nitroxide narrow lines is irradiated with our B1 much
smaller than the line splitting. This deviation can be explained by the
spin state level population dynamics shown in Fig. 8A. There we see
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that the population difference P 1=2; 0j ið Þ � P �1=2; 0j ið Þ, which is
one of the three equal contributions, P 1=2; 1j ið Þ � P �1=2; 1j ið Þ,
P 1=2; 0j ið Þ � P �1=2; 0j ið Þ, P 1=2;�1j ið Þ � P �1=2;�1j ið Þ, to the
total longitudinal electron spin magnetization, vanishes, i.e.
P 1=2; 0j ið Þ � P �1=2; 0j ið Þ ! 0. The other two contributions
P 1=2; 1j ið Þ � P �1=2; 1j ið Þ and P 1=2;�1j ið Þ � P �1=2;�1j ið Þ
decrease visibly due to the nitrogen DNP of nitroxides yielding a
saturation factor larger than 1/3. Hence, the effects of the nitrogen

nuclear spin dynamics cause about 20% larger electron spin
saturation factor in comparison to the saturation factor obtained
treating three nitroxide lines as independent.

Using simulated longitudinal nitrogen nuclear magnetization
shown in Fig. 9 and the electron spin magnetization shown in
the ESI† (S5), the enhancement and saturation factors were
obtained, respectively. Furthermore, using formula (32), the
coupling factors were determined from these simulation data.
The results of these estimations are summarized in Table 1.

IV. Conclusions and outlooks

Here we made a quantitative prediction and analysis of the
nitroxide nitrogen nuclear spin dynamics in EPR and NMR
experiments. Our computations were performed for liquid
solved nitroxides undergoing random rotational motion, which
leads to spin relaxation. We performed most of our simulations
employing rotational diffusion parameters corresponding to
TEMPOL radicals in water at 300 K. However, simulations of
other organic radicals and solvents can be easily accomplished

Fig. 8 Evolution of the spin state population upon microwave irradiation of the central nitroxide EPR line for B0 = 1.2 T in (A) and for B0 = 14 T in (B). The red,
green and blue solid (dashed) curves correspond to the spin states 1=2; 1j i, 1=2; 0j i and 1=2;�1j i ( �1=2; 1j i, �1=2; 0j i and �1=2;�1j i), respectively. The thin gray
dotted upper and lower lines indicate initial population P 1=2; 1j ið Þ � P 1=2; 0j ið Þ � P 1=2;�1j ið Þ and P �1=2; 1j ið Þ � P �1=2; 0j ið Þ � P �1=2;�1j ið Þ, respectively.

Fig. 9 Simulated nitroxide nitrogen DNP in liquid solution. The figures show the evolution of the normalized longitudinal nitrogen nuclear spin
magnetization under the constant irradiation of the central nitroxide EPR transition. Simulation was performed with B0 = 1.2 T in (A) and B0 = 14 T in (B).
The frequency n0 of the irradiating MW for each B0 value is indicated in the corresponding plots. B1 = 0.0002 T was used for all simulations. Simulations
shown by the blue curves in (A and B) were performed with the same relaxation operator as was used for the simulations of the corresponding EPR and
NMR spectra. The brown curves were obtained with another relaxation operator which was computed for a faster rotational diffusion process
characterized by sf = 2.71 and tZ = 25 fs.

Table 1 DNP enhancement (e), coupling (x), and saturation (s) factors
obtained from the simulated nitroxide nitrogen nuclear and electron spin
longitudinal magnetization for varied B0 and intensity of rotational
diffusion

B0 = 1.2 T B0 = 14 T

tc = 20 ps
(slow rotation)

tc = 15 ps
(fast rotation)

tc = 20 ps
(slow rotation)

tc = 15 ps
(fast rotation)

e �844 �1069 �275 �338
s 0.405 0.390 0.444 0.463
x 0.229 0.300 0.068 0.080
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by repeating the simulations with carefully chosen parameters
describing radical rotational motion and magnetic tensors.

Nitrogen nuclear and electron spin dynamics were determined
from the nitroxide spin system density matrix obtained by solving
the master equation accounting for electron and nuclear spin
relaxation and for irradiating magnetic field B1(t). We repeated the
computation for several B0 values to characterize nitrogen nuclear
magnetization in a broad range of static magnetic fields. For two
of them, 1.2 T, which is the field of a Q-band EPR spectrometer,
and 14 T, which is in a 600 MHz proton NMR spectrometer, the
results are presented and analyzed in the main text. Although the
central question of this investigation was related to the behavior
of the nitrogen nuclear spin, we also computed the electron spin
dynamics, which was used to verify the performance of our
computational approach. We performed all our simulations for
fast rotating nitroxide molecules. Here, it should be mentioned
that nitroxide spin labels and their EPR spectra are often used to
investigate complex dynamics of large macromolecules, which do
not often rotate fast enough to reach the fast motion regime.
Application of our simulation method in this case of slowly
rotating nitroxides would require solution of SLE with our
computational strategy which has not been implemented yet.
Generally, our work aims to gain additional insights into and
to optimize liquid state DNP performed using nitroxide radicals
which are often treated in fast rotation limit. Also, our
determination of nitrogen nuclear spin behavior via a direct
solution of the LvN equation shed additional light on the
nitroxide spin dynamics. Remarkably, the solution of the master
equation did not require a transition to the rotating frame or high
field approximation for the spin Hamiltonian, which are
frequently used in the magnetic resonance.

The MATLAB program, which we developed based on the
direct solution of the LvN equation described in the manuscript
and used for our computation, can be obtained for further
research by contacting the corresponding author individually.
The program computational time depends on the spin
system and experimental parameters and can extend over
several hours.

Besides the successful implementation of the computational
approach to determining nitrogen nuclear spin dynamics, we
would like to emphasize this research’s rather methodological
importance than the groundwork for experiments. Experimental
detection of nitroxide nitrogen NMR would probably be
complicated by weak signals. The weakness of the nitrogen
nuclear signal is caused first of all by the small nitrogen nuclear
gyromagnetic ratio, which is about 9100 smaller than ge.
For comparison, for protons, which are usually more abandon
in samples, ge/gp E 660. Additionally, observation of nitrogen
nuclear spin magnetization is hindered by a large NMR line
width and short relaxation times caused by the strong effect
of the unpaired electron spin. However, the theoretical
investigation carried out here answers an interesting question
of what nitrogen nuclear spin magnetization (although small in its
absolute value) does in several magnetic resonance experiments.
Special attention deserves the quantitative prediction of the
longitudinal nitrogen nuclear spin magnetization enhancement

upon microwave irradiation of the electron spin transition. It
demonstrates a large nitrogen DNP effect sensitive to the
magnitude of the microwave field (see ESI,† S8) and to the intensity
of nitroxide rotational diffusion in solutions.

Although our current work is devoted to the analysis of nitrogen
spin dynamics, the computational method, which we used, is open
for further modifications, which can enable quantitative description
of other nuclear spins such as 1H, 2H and 13C, which can be present
in nitroxide radicals. As a further development, the nitroxide spin
system can be extended with solvent nuclei in order to investigate
the role of nitroxide nuclei in transferring electron spin polarization
to solvent nuclei. Using our method, electron and nuclear spin
magnetization can be computed with an arbitrary form of the B1(t)
field. This allows us to study nuclear spin polarization using
frequency modulated microwaves and describe electron spin
dynamics in rapid frequency scan EPR experiments.46,64,65
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19 P. Schöps, J. Plackmeyer and A. Marko, J. Magn. Reson.,
2016, 269, 70–77.

20 F. Bloch, Phys. Rev., 1957, 105, 1206–1222.
21 R. K. Wangsness and F. Bloch, Phys. Rev., 1953, 89, 728–739.
22 A. Redfield, Advances in Magnetic and Optical Resonance,

Wiley-VCH, 1965, pp. 1–32.
23 D. Marsh, J. Magn. Reson., 2017, 277, 86–94.
24 A. Abragam, Principles of Nuclear Magnetism, Oxford Uni-

versity Press, Oxford, 2011.
25 D. E. Budil, Methods in Enzymology, Elsevier Inc., 2015, vol.

563, pp. 143–170.
26 R. Kubo and K. Tomita, J. Phys. Soc. Jpn., 1954, 9, 888–919.
27 D. Kivelson, J. Chem. Phys., 1960, 33, 1094–1106.
28 H. Sillescu and D. Kivelson, J. Chem. Phys., 1968, 48,

3493–3505.
29 J. H. Freed and G. K. Fraenkel, J. Chem. Phys., 1963, 39,

326–348.
30 J. H. Freed, Spin labeling: Theory and applications, Academic

Press Inc., 1976, vol. 1, pp. 53–132.
31 D. J. Schneider and J. H. Freed, Calculating Slow Motional

Magnetic Resonance Spectra, Springer US, Boston, MA, 1989,
pp. 1–76.

32 D. Schneider and J. Freed, Lasers, Mol. Methods, 1989, 73,
387–528.

33 S. Stoll and A. Schweiger, J. Magn. Reson., 2006, 178, 42–55.
34 H. Hogben, M. Krzystyniak, G. Charnock, P. Hore and

I. Kuprov, J. Magn. Reson., 2011, 208, 179–194.
35 B. H. Robinson, L. J. Slutsky and F. P. Auteri, J. Chem. Phys.,

1992, 96, 2609–2616.
36 N. Usova, P. O. Westlund and I. I. Fedchenia, J. Chem. Phys.,

1995, 103, 96–103.
37 H. J. Steinhoff and W. L. Hubbell, Biophys. J., 1996, 71,

2201–2212.
38 D. Sezer, J. H. Freed and B. Roux, J. Chem. Phys., 2008,

128, 165106.
39 V. S. Oganesyan, Liq. Cryst., 2018, 45, 2139–2157.

40 P. D. Martin, B. Svensson, D. D. Thomas and S. Stoll, J. Phys.
Chem. B, 2019, 123, 10131–10141.

41 I. Kuprov, N. Wagner-Rundell and P. Hore, J. Magn. Reson.,
2007, 184, 196–206.

42 C. Griesinger, M. Bennati, H. Vieth, C. Luchinat, G. Parigi,
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