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Conformational energies and equilibria of cyclic
dinucleotides in vacuo and in solution:
computational chemistry vs. NMR experiments†

Ondrej Gutten, *a Petr Jurečka, b Zahra Aliakbar Tehrani, ‡a

Miloš Buděšı́nský, a Jan Řezáč a and Lubomı́r Rulı́šek *a

Performance of computational methods in modelling cyclic dinucleotides – an important and challenging

class of compounds – has been evaluated by two different benchmarks: (1) gas-phase conformational

energies and (2) qualitative agreement with NMR observations of the orientation of the w-dihedral angle in

solvent. In gas-phase benchmarks, where CCSD(T) and DLPNO-CCSD(T) methods have been used as the

reference, most of the (dispersion corrected) density functional approximations are accurate enough to

justify prioritizing computational cost and compatibility with other modelling options as the criterion of

choice. NMR experiments of 3030-c-di-AMP, 3030-c-GAMP, and 3030-c-di-GMP show the overall

prevalence of the anti-conformation of purine bases, but some population of syn-conformations is

observed for guanines. Implicit solvation models combined with quantum-chemical methods struggle to

reproduce this behaviour, probably due to a lack of dynamics and explicitly modelled solvent, leading to

structures that are too compact. Molecular dynamics simulations overrepresent the syn-conformation of

guanine due to the overestimation of an intramolecular hydrogen bond. Our combination of experimental

and computational benchmarks provides ‘‘error bars’’ for modelling cyclic dinucleotides in solvent, where

such information is generally difficult to obtain, and should help gauge the interpretability of studies

dealing with binding of cyclic dinucleotides to important pharmaceutical targets. At the same time, the

presented analysis calls for improvement in both implicit solvation models and force-field parameters.

1. Introduction

Cyclic dinucleotides (CDNs) are an intriguing class of molecules
that act as second messengers in prokaryotes and vertebrates.1,2

In vertebrates they bind to the stimulator of interferon genes
(STING), a protein involved in the innate immune system.3 The
role of CDNs in defense against pathogens as well as sensing of
tumor cells render them important for understanding, and
potentially for treatment, of a number of autoimmune
diseases,4–6 cancers,7 and viral diseases, as well as having
potential as adjuvants in vaccines.8,9 For these reasons, CDNs
have attracted a lot of interest which resulted in the design of
various analogues that could improve the affinity, bioavailability,

and pharmacokinetic properties of the parent compounds.10–12

The importance of these efforts is highlighted by a number
of registered patents,13–15 and even some of the candidate
molecules entering clinical trials.16,17

Understanding the processes that involve this class of
compounds and development of new derivatives have been
greatly assisted by computational chemistry. These studies
include molecular dynamics simulations of protein:ligand
complexes,18–21 as well as modelling of the free ligand in
solvent.20,22–25 Studies on modelling the free ligand can provide
valuable information about the propensity of a ligand to adapt a
bound-like conformation, which has been shown to be a relevant
consideration for studying protein:ligand interactions.26,27 Some
form of molecular dynamics is typically used for generating
structures, followed either by directly comparing relative
populations with certain structural features22,23 or by identifying
the most relevant ones using e.g. density functional theory (DFT)
for calculation of conformational energies.23,24 Alternatively, the
obtained conformations can be used as a starting point for
ensemble docking.25 Recently, we have shown that the difference
in binding to STING between a series of ‘natural’ CDNs and their
difluorinated analogues is a subtle interplay between ligand
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conformational strain and the loss of conformational entropy.20

In addition, combination of QM/MM and ‘QM-in-solvent’
methodology has been used to rationalize effect of single-point
mutations in STING on binding of selected CDNs.21

The need for the accurate description of the conformational
flexibility of CDNs is further highlighted by the variety of
conformations found in various protein:CDN complexes.28 This
raises the question of how accurate are the underlying
quantum chemical (and/or solvation) methods. The choice of
an appropriate computational method is dependent not only
on the problem at hand,29,30 but may change dramatically from
one class of compounds to another. This is reflected by the high
number of data sets that aim to evaluate the accuracy of
conformational energies in different contexts.29,31–51 The data
set most relevant to CDNs is the UPU46 data set,47 which
examines non-cyclic dinucleotides as models for representative
RNA backbone families. Similarly to this data set, CDNs require
an accurate description of weak dispersion forces, due to the
presence of purine bases. The overall charge is increased by the
presence of an additional phosphate group, which increases
the need for treatment of polarization, especially in a solvent
environment. Perhaps most importantly, the macrocyclic
nature of CDNs renders them challenging to the accurate
description of torsions. Torsional angles and their role in
conformational equilibria of nucleic acids are a subject of
active research, e.g. A/B-DNA,52 BI/BII-DNA,53 ZI/ZII-DNA,54 or
a/g equilibria in RNA.55 However, the question of the transfer-
ability of force-field parameters remains relevant, due to
significant internal stresses and shifts of values of optimal
dihedral angles that commonly occur in the macrocyclic
compounds.

In summary, CDNs represent a complex and highly relevant
case, both for their potential application and their complexity.
Moreover, the availability of experimental data, reported both
previously23 and herein, describing the structural features of
molecules in solvent provides a benchmarking opportunity
beyond the usual gas-phase CCSD(T) testing.

The aim of this study is comprehensive analysis of CDN
conformational energies and equilibria, both in vacuo and in
solvent, by employing a range of computational chemistry
methods (including molecular mechanics, semiempirical
quantum-mechanical (SQM) methods, popular DFT functionals,
and wave-function methods up to gold standard CCSD(T)
benchmarks) and NMR experiments. First, we perform gas-
phase benchmarks to establish the level of accuracy of DFT,
SQM, and wave-function methods. These serve as a starting
point for examining modelling in a solvent environment, which
we explore by looking at NMR measurements of three selected
CDNs (3030-c-di-AMP, 3030-c-GAMP, and 3030-c-di-GMP) in
solvent. We specifically focus on distinguishing between the
anti- and syn-orientation of purine bases – a structural feature
that is in fine equilibrium, providing a very enticing, albeit
qualitative, experimental benchmark. Finally, we compare
these observations with predictions of molecular dynamics
simulations and with QM methods in combination with some
available solvation methods. It needs to be mentioned that

observation of multiple conformers implies free-energy separa-
tion of at most units of kcal mol�1. Such a small difference is an
immensely difficult test case for systems where modelling of
aspects across a wide range of strengths (‘‘weak’’ dispersion vs.
‘‘strong’’ polarization of charged groups) and scales (‘‘local’’
torsional angles vs. ‘‘global’’ solvent–solute interactions) is
required.

2. Computational details
2.1 Systems and structures

We use two separate sets of structures – one to address the
overall accuracy of computational methods for predicting
gas-phase conformational energies (CDN set), and the other is
employed to reproduce experimentally observed structural
features of CDNs (syn-/anti-set).

2.1.1 CDN set (180 conformers). The CDN set aims to
capture the structural variability of cyclic dinucleotides as well
as a range of conformational energies. It comprises of nine
cyclic dinucleotides, shown in Fig. 1. These were selected to
include a range of structural modifications encountered e.g. in
synthetically available STING agonists, such as combinations of
adenine and guanine nucleobases, substitution of phosphate
for thiophosphate, substitution of 20-hydroxyl for fluorine, and
different linkages between nucleotides.

For each of the nine compounds we selected 20 conformers
by the following procedure: (1) each compound was first sub-
jected to conformational sampling by the Prime algorithm56 as
implemented in Schrodinger 2017-1 suite.57 (2) From the
obtained set of several hundreds of initial conformers (ranked
by their force field energies), 20 conformers were selected for
each system. The only selection criterion was to cover the
energy spectrum of the sets (ca. 35 kcal mol�1), in order to
avoid bias towards low-energy conformers. (3) The selected
structures were then optimized using the BP86+D3(0)/def-
TZVP/COSMO(e = 80) method (vide infra) to obtain structures
relevant for water environments.

2.1.2 Syn-/anti-set (26 conformers). We are ultimately
interested in the behavior of CDNs in solvent (in our case
water), where accurate reference conformational energies are
not available. Instead, we focus on a specific structural feature
that can provide an experimental benchmark for computational
modelling of CDNs, the w-dihedral angle (i.e. O40–C10–N9–C4,
shown in Fig. 2). The w-dihedral angle determines the orientation
of the (purine) bases: syn- (�901 o w o 901) and anti- (|w| 4 901)
conformations. Anti-Conformers are more typical for RNA-like
molecules, but the syn-orientation does occur as well.58,59 Crystal
structures of CDNs bound to proteins are also typically found
in the anti-conformation.28 Orientation of the w-dihedral is
observable from multiple NMR experimental setups (see
Section 2.3) and provides a less quantitative, but challenging and
relevant benchmark for modelling of these systems in solution.

The two main orientations of the w-dihedral angle allow for
several combinations of the two bases, namely anti-/anti-, syn-/
anti-, anti-/syn- or syn-/syn- (further denoted as classes).
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Therefore, we conceived the syn-/anti-set comprising the
energetically most favorable conformers within each w-dihedral
class for the 3030-c-di-AMP, 3030-c-GAMP, and 3030-c-di-GMP
compounds. This set contains up to three energetically most
favorable candidates (obtained from conformational sampling
described above in Section 2.1.1, ranked by the BP86+D3(0)/
COSMO-RS energy values) for each class of each of the three
selected CDNs. At the same time, we request that the confor-
mational energy of any member (conformer) of the syn-/anti-set
is not higher than 10 kcal mol�1 above the global minimum of
the particular compound. This trimmed final selection to 8
conformers for 3030-c-di-AMP, 9 for 3030-c-GAMP, and 9 for 3030-
c-di-GMP (yielding 26 conformers in syn-/anti-set, in total).

2.2 Computational methods

2.2.1 Wave function methods. To obtain accurate gas-phase
energies we employ a composite scheme,50 which requires

contributions from the extrapolation to the complete basis set,
ECBS and higher-order correlation contributions, Ehoc:

Egp = ECBS + Ehoc (1)

Specifically, we use the following setup for obtaining reference
energies:50

ECBS ¼ EMP2-F12=cc-pVDZ-F12 þ EHF=cc-pVDZ-F12

Ehoc ¼ EDLPNO-CCSDðTÞ=aug-cc-pVDZ � EMP2=aug-cc-pVDZ
(2)

It can be mentioned that the MP2-F12 method60–62 is
computationally more demanding than canonical MP2 but
converges faster to the complete basis set limit. The
DLPNO-CCSD(T) method is used with the TightPNO thresholds.
The mean difference between MP2-F12 and a Helgaker extra-
polation formula63 to CBS limit based on triple-z/quadruple-z
(aug-cc-pVXZ basis set) for a subset of 20 studied conformers

Fig. 1 Selection of 9 cyclic dinucleotides studied herein. All CDNs are considered in their doubly-deprotonated state, i.e. with a total charge of �2.
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was 0.11 kcal mol�1, with a maximum absolute value of
0.26 kcal mol�1.

The choice of these methods is driven by computational
cost. Using full CCSD(T) for Ehoc, and triple-z to quadruple-z
basis set extrapolation using canonical MP263 is too demanding
for CDNs molecule (ca. 70 atoms). Still, we benchmarked
DLPNO approximation (vs. full CCSD(T)) on a set of fragments
taken from studied CDNs (described in detail in Section S1 of
the ESI†). This allowed us to estimate mean unsigned error for
CDNs between our reference (eqn (2) and the ‘‘gold standard’’
(CCSD(T)+MP2/CBS) to be ca. 0.2 kcal mol�1.

2.2.2 Density functional theory methods. Gas-phase con-
formational energies for the CDN data set were obtained using a
selection of DFT methods, including GGA functionals (B-LYP,64,65

B-P,64,66 PBE,67 OLYP,65,68 revPBE,69 B97-D70), meta-GGA
functionals (TPSS,71 rev-TPSS,72 SCAN,73 M06-L74), hybrid
functionals (B3-LYP,64,65,75 BH-LYP,64,65,76 M06-2X,77 PBE0,78

TPSSH,79 oB-97X,80 M06,77 PW6B9581), and two double-hybrid
functionals (B2PLYP,64,65,82 PWPB9583).

All of the functionals are tested employing a triple-z basis set
(def2-TZVPD84,85). Basis set dependence is further tested by
calculating conformational energies for a subset of functionals
with double-z (specifically DZVP-DFT basis set86) and quadruple-z
(def2-QZVP87) basis sets. In a few specifically discussed cases we
also test the triple-z basis set without the additional diffuse
functions, i.e. def2-TZVP.85

Effects of dispersion are tested by employing several correction
parametrizations: D3 with zero, D3(0),88 or Becke–Johnson
damping, D3(BJ),89 and D4.90 A reparametrized version of
D3(BJ) and D3(0) for use with a small DZVP-DFT basis set was
reported previously91 and, therefore, we further test its transfer-
ability to the CDN test set.

Default grid sizes were used for most of the DFT calculations,
with the exception of SCAN and double-hybrid functionals

B2PLYP and PWPB95. Detailed information about the grids used
is listed in Table S1 (ESI†). The effects of changing a grid size
were examined for several functionals and are shown in Table S2
(ESI†).

2.2.3 Semi-empirical methods. We tested multiple efficient
semiempirical or empirically corrected quantum-mechanical
methods. Out of classical SQM methods based on the neglect
of diatomic differential overlap (NDDO) approximation, we
tested PM692 and RM193 with D3H4 corrections for dispersion
and hydrogen bonding (PM6-D3H4, RM1-D3H4)94 and PM7.95

Another class of tested methods is based on the tight
binding approach. The third-order self-consistent-charges
density-functional tight binding with the 3OB parameter
set96,97 (abbreviated as DFTB3)98 is coupled with D3H499 and
D3H5100 corrections for non-covalent interactions. A second
group of self-consistent-charges tight binding schemes tested
included GFN-xTB101 and GFN-xTB2102 methods. Finally, the
‘‘3c’’ methods based on using small basis sets accompanied
with compensating corrections included HF-3c,103 PBEh-3c104

and B97-3c.105

2.2.4 Force fields. Molecular dynamics simulations were
performed under NPT conditions at 1 bar and 300 K with Monte
Carlo barostat and Langevin thermostat and hydrogen mass
repartitioning with a 4 fs time step.106 Direct-space non-bonded
cutoff was 9 Å and the SHAKE algorithm was applied to bonds
to hydrogen atoms with the default tolerance (1 � 10�5 Å). The
particle�mesh Ewald (PME) algorithm was used with default
grid settings (1 Å) and default tolerance (1 � 10�5).
The octahedral simulation box contained 767, 809 and 831
SPC/E107 water molecules for 3030-c-di-AMP, 3030-c-GAMP and 3030-
c-di-GMP, respectively, and the phosphate charge was compen-
sated by two potassium ions.108 Nucleic acid was described with
the ff99109 AMBER force field with bsc0110 and wOL3111 dihedral
corrections. After an initial equilibration (described elsewhere112)
we ran 50 ms of unrestrained MD simulations. A nucleotide was
considered to be syn-oriented if its glycosidic torsion angle was
less than 1251 and anti-orientated if it was greater. The syn-/anti-
equilibrium was well converged on the 50 ms time scale as we
observed between 650 and 9180 syn-/anti-transitions for each
nucleotide, see Table S25 (ESI†) for details.

2.2.5 Software used. CCSD(T), MP2 and MP2-F12 calculations
were done using the TurboMole 7.2 program. DLPNO-CCSD(T)
and calculations of ‘‘3c’’ methods were carried out using ORCA
4.0.1. DFT calculations were performed in both TurboMole and
ORCA, the detailed list is provided in Table S1 (ESI†).

Semiempirical PM6, RM1, PM7 calculations and their variants
with corrections for non-covalent interactions were carried out
using MOPAC2016.113 DFTB3 calculations were performed using
the DFTB+ program,114 which now also implements all the
corrections for non-covalent interactions used herein. For
GFN-xTB and GFN-XTB2 calculations, we used the software
provided by the authors of the method.115

MD simulations were carried out using PMEMD for
the CUDA program116 of the AMBER 16 software package117

and trajectory analysis was performed using CPPTRAJ
software.118

Fig. 2 Definition of the w-dihedral, given by O40–C10–N9–C4, shown
on the example of 3030-c-GAMP. Values of |w| 4 901 correspond to
anti-orientation, while values of �901 o w o 901 correspond to
syn-orientation.
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2.2.6 Statistical processing of the results. Conformational
energies are relative quantities, which we define in reference to
the average energy of the 20 conformers of a given CDN
molecule:

Econf
i ¼ Ei �

1

20

X20
j¼1

Ej (3)

In our previous study50 we found this definition more
convenient than setting Eglobal minimum = 0. We use this definition
for obtaining several statistics:

Mean Unsigned Error (MUE):

MUE methodð Þ ¼ 1

9

Xm9

s¼m1

1

20

X
i2s

Ei
conf;method � Econf;reference

i

��� ���;
(4)

where m1 to m9 signifies the 9 subsets, one for each molecule in
the CDN set, see Fig. 1. Thus, the average of mean unsigned
error over the 9 subsets of the CDN set is reported for each
method.

Maximum Absolute Deviation (MAD):

MAD methodð Þ ¼ max
i
ðjEconf ;method

i � Econf ;reference
i jÞ (5)

The maximum absolute deviation across all 180 conformers
is reported.

Root Mean Square Error (RMSE):

RMSEmax methodð Þ

¼ max
s¼fm1;:::;m9g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

20

X
i2s

Ei
conf;method � Econf;reference

i

� �
2

s
(6)

Thus, we calculate the root mean square error for each of the
9 subsets of 20 conformers and report the maximum of these
values.

Mean Signed Error (MSE):

MSE method; sð Þ ¼ 1

jsj
X
i2s

Ei
conf;method � Econf;reference

i

� �
; (7)

where s signifies a specific subset of conformers. Note that
because the definition of Econf

i centers the conformational
energies around the average energy of the 20 conformers, the
value of MSE for each of the 9 subsets of the CDN set is
necessarily zero. Instead, this statistic is used for exploring
systematic errors of ‘‘closed’’ and ‘‘open’’ conformers (see
Fig. 3) in Section 3.1.

2.3 Experimental methods
1H and 13C NMR spectra of CDNs were measured on a Bruker
AVANCE-600 spectrometer (1H at 600 MHz and 13C at
150.9 MHz frequency) and 31P NMR spectra on a Bruker
AVANCE-500 instrument (31P at 202.4 MHz) in D2O at 25 1C.
The homonuclear 2D-H,H-COSY, 2D-H,H-ROESY, and hetero-
nuclear 2D-H,C-HSQC, 2D-H,C-HMBC spectra were recorded and
used for the structural assignment of proton and carbon signals.
The 2D-H,H-ROESY spectra were measured with a spinlock

mixing time of 300 ms. Proton-coupled 13C NMR spectra of
CDNs were used for estimation of J(C,H) values of adenine and
guanine carbon atoms. Experimental proton and carbon-13
NMR parameters are summarized in Tables S4 and S5 (ESI†).
The 1H and 13C chemical shifts were referenced to dioxane as the
internal standard and recalculated to TMS using dH (dioxane) =
3.75 ppm and dC (dioxane) = 69.3 ppm; 31P chemical shifts are
referenced to H3PO4 as the external standard.

3. Results and discussion
3.1 Gas-phase conformational energies (CDN set)

We evaluate the accuracy of gas-phase conformational energies
by employing a range of DFT and semi-empirical methods on
9 � 20 conformers of the ‘‘CDN’’ set (see Section 2.1.1). These
will serve as a starting point for examining modelling of CDNs
in solvent in later sections of this work. The reference is
provided by the DLPNO-CCSD(T)/MP2-F12 composite scheme
(see eqn (2)). This represents an affordable compromise to a
‘‘gold standard’’ CCSD(T)+MP2-CBS composite scheme (see the
discussion in Section S1 of the ESI†), which is computationally
prohibitive for CDN systems of B70 atoms. The estimated MUE
between the two composite schemes (DLPNO-CCSD(T)/
MP2-F12 vs. full CCSD(T)/MP2-CBS) for CDN systems is
expected to be 0.2 kcal mol�1, based on a fragmentation
scheme that we explain in detail in the ESI.†

3.1.1 DFT approximations. We examine the overall perfor-
mance of various DFT functionals in combination with the
def2-TZVPD basis and with dispersion corrections. We then
elaborate on the effects of basis set size and some notable aspects
of some setups regarding dispersion corrections. We examined
several statistics, including MUE (defined in eqn (4), MAD
(defined in eqn (5)) and RMSEmax (defined in eqn (6)). We focus
the discussion around the values of MUE, while detailed values of
additional statistics may be found in Tables S6–S18 (ESI†).

A summary of comparison among different DFT functionals
is shown in Table 1. The best performing GGA functionals
include B-LYP+D3(0)/D4 and B-97D+D3(BJ) with MUE of
0.7 kcal mol�1. However, even the worst GGA result, the
OLYP+D3(0) functional, shows MUE of ca. 1.2 kcal mol�1. This
corresponds to only about 4% of the energy range. These values
are reasonably low and suggest that for modelling of gas-phase
conformational energies of CDNs the choice of the functional is
actually not critical. Still, while the MUE values are comparable,

Fig. 3 Examples of closed (left) and open (right) conformations of a cyclic
dinucleotide. The C10–C10 distance in Ångstroms is shown.
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the MAD and RMSEmax values suggest better performance of
e.g. B-LYP over PBE and OLYP functionals, see Tables S6 and S7
(ESI†). Among meta-GGA, SCAN+D3(BJ) deserves a special
mention as it marginally outperforms all the other functionals,
with MUE of 0.4 kcal mol�1, which is close to the error of
DLPNO-CCSD(T) NormalPNO/MP2-F12 (which is around
0.2 kcal mol�1). We can recommend this functional for
single-point evaluations. However, geometry optimizations
proved to be problematic even with finer integration grids.

Hybrid functionals provide satisfactory results, with MUE
values between 0.5 and 1.0 kcal mol�1. The best performer is
B3-LYP+D3(0) and BH-LYP+D3(0) with MUE of 0.5 kcal mol�1,
although only by a very small margin to other functionals.
However, the B3-LYP+D3(0) combination exhibits the overall
lowest MAD value of only 1.6 kcal mol�1, while the typical value
of this statistic was in between 2–3 kcal mol�1 (see Table S6,
ESI†). On the other hand, the long-range corrected oB-97X
shows good overall performance with MUE of 0.9 kcal mol�1,
but some of the highest MAD values among all tested calcula-
tions (5–6 kcal mol�1).

The importance of dispersion correction for our dataset is
exacerbated by relative orientation of bases (i.e. ‘‘open’’ and
‘‘closed’’, see Fig. 3), which interact primarily via dispersion.
However, the rather discrete distribution of base distances
renders our dataset unsuitable for in-depth testing of different
dispersion corrections. Indeed, combination of tested DFT
functionals with D3(0), D3(BJ), and D4 corrections exhibit
differences below our established error of 0.2 kcal mol�1.

However, there are a few exceptions. In our tests, the
(empirical dispersion)_non-corrected versions of Minnesota
functionals (M06, M06L, M06-2X) perform better compared to

the D3(0) corrected versions. For M06-2X the difference is mild,
but for M06 and M06L the decrease in performance is notable,
from MUE of circa 0.6 kcal mol�1 for both M06 and M06L, to
1.6 and 1.0 kcal mol�1 after addition of D3(0) correction,
respectively. This decrease in performance is even more notable
in MAD and RMSEmax statistics shown in Tables S6 and S7
(ESI†). The problematic relationship between Minnesota
functionals and their ability to capture non-covalent
interactions has been discussed before.29,119

Surprisingly, the most underwhelming performance is
exhibited by both tested double-hybrid functionals, PWPB95
and B2PLYP. In both cases, adding dispersion correction
actually degrades their MUE values to 1.6 and 1.2 kcal mol�1,
way behind even the worst GGA functionals. This result is
surprising, as double-hybrid functionals have been recom-
mended as superior for conformational energies.29

A more detailed inspection suggests that the culprit lies in
the evaluation of interaction of the bases. Closed conformers
(i.e. conformers with stacked purine bases, see Fig. 3), which
interact primarily via dispersion, are greatly overstabilized if
dispersion correction is included, leading to higher errors
compared to dispersion-uncorrected versions of these functionals.
We show this by examining mean signed errors (MSE, see eqn (7),
for a subset of closed |s| = 74 conformers). We present these
values for some of the methods in Table 2, while the full list can
be found in Table S8 (ESI†).

Table 2 and Table S8 (ESI†) show that the dispersion-
uncorrected functionals under-stabilize the closed conformers,
leading to positive MSE values. Adding the empirical dispersion
remedies the situation in most cases. The exceptions include
the Minnesotta functionals and the double-hybrids, where it
leads to significant overstabilization of these conformers, i.e.
negative MSE values. This behaviour is similar to regular MP2,
which is added for comparison.

Surprisingly, removing the diffuse basis functions, i.e. using
the def2-TZVP basis, remedies the situation, bringing the
MUE values of both double-hybrid functionals down to ca.
0.5 kcal mol�1. It is worth mentioning that for several other func-
tionals (B-P, B-LYP, SCAN) the removal of diffuse basis functions has
a very minor effect. These values are listed in Table S9–S12 (ESI†).

Concerning basis set effects, all of the previous discussion
on DFT was based on using triple-z basis set def2-TZVPD. For a

Table 1 Averaged MUE values (see eqn (4)) of several DFT functionals
obtained for the CDN set with triple-z (def2-TZVPD) basis set and several
dispersion corrections. Entries marked as ‘n.a.’ indicate combinations that
are not available. DLPNO-CCSD(T)/MP2-F12 is used as a reference, see
eqn (2). All values are in kcal mol�1

Functional
Jacob’s ladder
class

No dispersion
correction D3(0) D3(BJ) D4

B-LYP GGA 6.2 0.7 0.8 0.7
B-P GGA 5.3 1.0 1.0 0.9
B97-D GGA 6.9 0.9 0.7 n.a.
OLYP GGA 9.1 1.2 0.9 1.0
PBE GGA 4.4 0.9 1.0 0.9
revPBE GGA 6.9 0.9 0.7 0.9
M06-L Meta-GGA 0.6 1.0 n.a. n.a.
revTPSS Meta-GGA 3.8 n.a. n.a. 0.8
SCAN Meta-GGA 1.5 0.5 0.4 0.5
TPSS Meta-GGA 5.2 0.7 0.9 0.8
B3-LYP Hybrid 5.3 0.5 0.6 0.6
BH-LYP Hybrid 4.2 0.5 0.6 0.6
M06 Hybrid 0.6 1.6 n.a. n.a.
M06-2X Hybrid 0.6 0.7 n.a. n.a.
PBE0 Hybrid 4.0 0.6 0.7 0.7
PW6B95 Hybrid 2.7 0.6 0.6 0.7
TPSSH Hybrid 5.0 0.7 0.7 0.7
oB-97X Hybrid 1.4 0.9 1.0 n.a.
B2PLYP Double-hybrid 1.4 1.6 1.6 1.9
PWPB95 Double-hybrid 1.0 1.7 1.4 1.2
MP2/aug-cc-pVTZ 2.6

Table 2 MSE values (see eqn (7)) for a subset of 74 closed conformers of
the CDN set. Negative values indicate systematic overstabilization of these
conformers. DLPNO-CCSD(T)/MP2-F12 is used as a reference, see eqn (2).
All values are in kcal mol�1

Functional
Jacob’s ladder
class

No dispersion
correction D3(0) D3(BJ) D4

B-P GGA 6.0 �0.8 �0.5 �0.3
TPSS Meta-GGA 5.9 0.6 0.7 0.5
B3-LYP Hybrid 5.8 0.0 �0.1 0.0
M06 Hybrid 0.1 �1.8 n.a. n.a.
B2PLYP Double-hybrid 1.2 �1.7 �1.8 �2.1
PWPB95 Double-hybrid 0.6 �1.7 �1.5 �1.2
MP2/aug-cc-pVTZ �2.9
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few selected functionals we test the use of quadruple-z and
double-z basis sets. Using a quadruple-z basis set (def2-QZVP)
produces virtually identical results, changing MUE by less than
0.1 kcal mol�1 in all cases, see Table S13 (ESI†). Thus, triple-z
basis set results can be considered as essentially converged for
the purpose of obtaining accurate conformational energies.

A more interesting case is the use of the cheaper double-z
basis set, DZVP-DFT. In combination with standard D3 or D4
empirical corrections this does lead to a significant decrease in
performance (by ca. 0.5 to 1 kcal mol�1). However, the perfor-
mance can be recovered by use of reparametrized DZVP-D3
corrections91 instead. This leads to MUE values which are
comparable to the much more expensive triple-z basis set, see
Table S14 (ESI†). We also confirm the equalizing effect of this
dispersion correction reported previously.50 All of the 7 tested
functionals (B-LYP, B-P, B97-D, PBE, PBE0, B3-LYP, TPSS) show
MUE between 0.7 and 0.9 kcal mol�1, and RMSEmax values
between 1.1 and 1.4 kcal mol�1. It is also worth mentioning
that most of the bias regarding closed/open subset division is
eliminated using this reparametrization (compare to Tables S8
and S17, ESI†). Thus, the setup consisting of any of these
functionals in combination with the DZVP-DFT basis set and
DZVP-D3 reparametrization can be recommended as the most
cost-effective approach for calculation of conformational
energies. This extends the previous observations of good
transferability50 of these methods to CDN systems as well.

In conclusion, most of the tested DFT functionals, when
paired with proper dispersion correction, perform with MUE of
approximately 1 kcal mol�1, which correspond to ca. 3% of the
energy range of the conformers in the dataset. The SCAN
functional stands out as a cheap and very accurate option.
Possibility of using a small DZVP-DFT basis set with DZVP-D3
reparametrization offers a very fast and accurate computational
setup as well.

3.1.2 Semiempirical (SQM) methods. The results for
studied SQM methods are presented in Table 3. We include
the empirically corrected ‘‘3c’’ methods in this group.

Most of the semiempirical methods provide very unsatisfactory
results, with MUE values reaching up to 5 kcal mol�1. Only two of

them, DFTB3-D3H4 and GFN2-xTB, approach the accuracy of
2 kcal mol�1. The HF-3c method based on HF calculation in a
minimal basis set, the cheapest one among the ‘‘3c’’ methods, is
only slightly better with MUE of 1.9 kcal mol�1. The remaining
triple-correction (‘‘3c’’) methods, PBEh-3c and B97-3c yield MUE
around 1 kcal mol�1, which is comparable to DFT results
obtained for larger basis sets.

The errors of the semiempirical methods observed here are
comparable to previous tests on conformational energies of
non-cyclic dinucleotides47 and other compound classes that
include small peptides50 or sugars.35 The approximations
involved in these methods lead to an inaccurate description
of torsional profiles,120 and in the charged systems studied
here, further errors may result from limitations in the
description of electrostatic induction.

Evaluating conformational energies with force-field
methods is in principle possible, but not very informative.
Force-fields are very sensitive to minor structural changes,
rendering conformational energies on structures not optimized
with respect to a given energy function dominated by deviations
from optimal bond lengths and angles rather than by interplay
of structural features. Moreover, force-fields are developed
to reproduce dynamical behavior of the system and its free-
energy landscape, rather than conformational energies specifi-
cally. For these reasons, we examine a force-field approach in
Section 3.3.2 by correlating MD simulations to the measured
experimental data.

3.2 Experimental benchmarks

We are ultimately interested in the behaviour of CDNs in a
water environment, where accurate reference conformational
energies are not available. Instead, we focus specifically on the
w-dihedral angle (i.e. O40–C10–N9–C4), a structural feature that
distinguishes between significantly populated conformers.
The orientation of this angle is accessible to multiple NMR
experimental setups. These features promise a less quantitative,
but challenging and relevant benchmark for modelling of these
systems in solution.

We focused on three molecules, 3030-c-di-AMP, 3030-c-GAMP,
and 3030-c-di-GMP (see Fig. 1.1-3), selected for the syn-/anti-
dataset. Information about the orientation of w-dihedral can be
discerned from comparison of 3J(H10,C8) and 3J(H10,C4)
coupling constants Fig. S2 (ESI†). The relative magnitude of
coupling constants 3J(H10,C8) 4 3J(H10,C4) indicates anti-
orientation; 3J(H10,C8) o 3J(H10,C4) indicates syn-orientation.
Our observed values of 3J(H10,C8) = 2.1 to 3.0 Hz and 3J(H10,C4)
o 1 Hz therefore indicate anti-orientation. Alternatively,
correlation of measured and calculated 1H chemical shifts
also suggest prevalence of the anti-/anti-conformation, see
Table S19 (ESI†).

This conclusion is further supported by transient NOE
signals between a purine proton (e.g. H8) and a ribose proton
(e.g. H10), see Table S20 (ESI†). In line with conclusions
presented by Wang et al.,23 we observe that for all three
molecules, these measurements clearly suggest a dominant
population of anti-conformers.

Table 3 Averaged MUE values (see eqn (4)) of several SQM methods
obtained for the CDN set with triple-z (def2-TZVPD) basis set and several
dispersion corrections. DLPNO-CCSD(T)/MP2-F12 is used as a reference,
see eqn (2). All values are in kcal mol�1

Method MUE [kcal mol�1]

PM6 4.9
PM6-D3 3.9
PM6-D3H4 3.6
PM7 4.1
RM1-D3H4 4.0
DFTB3 4.2
DFTB3-D3H4 2.1
DFTB3-D3H5 3.2
GFN-xTB 2.7
GFN2-xTB 2.3
HF-3c 1.9
PBEh-3c 1.0
B97-3c 0.8
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Even more detailed information may be provided by relative
NOE signals from 2D-ROESY spectra. Here too, the relative
intensities of cross-peaks indicate a general preference for the
anti-conformation. However, the weak observed cross-peaks
H2/H20 and H2/H30 may indicate the presence of a certain
population of syn-conformations. Selected observed NOEs
together with calculated ‘‘inter-proton’’ distances are
summarized in Table S21 (ESI†).

Moreover, the 1/r6 decay of the signals and their relative
strength to proton pairs with known mutual distance (such as
H10–H20 ribose proton pair) may be used to asses compliance of
a candidate structure with the measured signals. We focus on
the relative strength of the H8/H10 signal. According to MD
simulations, this proton pair provides well separated peaks of
distance distributions (see Fig. S3, ESI†), which allows for
distinguishing between anti- and syn-conformations.

Experimental ROESY signals of H8/H10 as well as hypothetical
signal strengths of the lowest-energy conformers of the syn-/anti-
data set are shown in Table 4. In the case of 3030-c-GAMP and
3030-c-di-GMP, the observed values are not consistent with any of
the considered conformers. An intermediate w-conformer
(corresponding to w E 1401 or w E �201) would justify observed
signal strength, but such a conformer was not found in a
conformational search. Hence, we interpret this as an indication
of a mixed population of anti- and syn-conformers, which can be
estimated from a linear combination of signals of individual
conformers. Such an estimate is underdetermined, but
permissible solutions are in a narrow range (see Table 5).

Alternatively, we may use an ensemble of w-conformers from
MD trajectories (see below) for calculating hypothetical signal
strength and compare them to their experimental counterparts.
This leads to very similar conclusions regarding the population
of purely anti-conformations. This is because the H8/H10 signal
strength is primarily determined by the value of w-dihedral and

thus even if the QM structures and/or MD ensembles are not
entirely accurate, the result of the analysis is robust.

3.3 Accuracy of modelling structural features in solvent
(syn-/anti-set and MD simulations)

3.3.1 QM Calculations with implicit solvent. We have
performed extensive conformational sampling (see the methods
section) for these three systems (3030-c-di-AMP, 3030-c-GAMP, and
3030-c-di-GMP). As introduced in Section 2.1.2, we can categorize
the resulting CDN conformations (local minima) into several
classes – anti-/anti-, syn-/anti-, syn-/anti-, and syn-/syn-based on
the values of the two w dihedral angles. The syn-/anti-set of
structures collects candidates for global minimum from each
of these classes for each of the three ligands. Combining some of
the methods tested in Section 3.1 with common solvation
methods, we present the conformational energies of the
lowest-energy candidates for each class in Table 6.

In all cases, the gas-phase energy strongly prefers the syn-or-
ientation for the guanine base as this allows for formation of an
intramolecular hydrogen bond. This results in a very straightfor-
ward ranking of conformers for all electronic structure methods
(only the B-LYP functional is shown here), where adenines prefer
anti-orientation, while guanines prefer syn-orientation.

Including solvation treatment flattens the energy range of
conformer classes down to mere units of kcal mol�1. Indeed,
the solvation treatment largely counteracts the preference for
the intramolecular hydrogen bond.

The NMR experiments presented in the previous section
showed two qualitative trends – a higher propensity for the syn-
conformation of guanine and predominant anti-/anti-
orientation for all three studied molecules. Although the details
vary across the methods and both of these trends can be
recognized to some extent, none of the methods/solvation
models reproduce both of these trends at the same time.

Observed differences of 1–3 kcal mol�1 between anti-/anti-
and syn-/anti-conformers in Table 6 make it unlikely for the
electronic structure methods to be responsible for the disagreement,
as these are observed even for DLPNO-CCSD(T) TightPNO/
MP2-F12(+COSMO-RS) for which the estimated error is one
order of magnitude smaller.

A potential reason for the incorrect relative free energies are
inaccurate structures. In Section 3.1 we showed that some of the
methods show systematic bias by over- or under-stabilizing closed
structures. Table 6 shows the results for structures optimized with
B-P/COSMO, which showed a bias for over-stabilizing the closed
structures. For this reason, we reoptimized the structures in the syn-/
anti-dataset with TPSS (which showed an under-stabilizing bias for
closed structures) and B3-LYP (which was bias free), see Table 2. We
combined both methods with CPCM and SMD solvation models and
reevaluated the relative free conformational energies. The results are
shown in Table S22 (ESI†), which shows that the situation is not
remedied by optimization by other methods. Even with structures
obtained with different approaches, none of the methods consistently
reproduce both of the trends observed in the NMR experiments.

Another potential reason for underestimating anti-conformers
are the entropic contributions, which have been neglected so far.

Table 4 Signal intensity of H8/H10 relative to the H10/H20 signal as
obtained from 2D ROESY experiments and calculated using lowest-
energy structures from the syn-/anti-data set

CDN ROESY
Anti-/
anti-

Syn-/
anti-

Anti-/
syn-

Syn-/
syn-

3030-c-di-AMPa 0.19 0.17 1.48 1.48 3.04
Adenine of 3030-c-GAMP 0.30 0.14 0.15 2.79 2.81
Guanine of 3030-c-GAMP 0.43 0.17 2.21 0.17 2.99
3030-c-di-GMPa 0.52 0.17 1.44 1.44 2.68

a Syn-/anti- and anti-/syn-designations refer to the same conformers for
these molecules.

Table 5 Estimated populations of anti-w-conformers using H8/H10 signal
relative to H10/H20 signal as obtained from 2D ROESY experiment and
calculated using lowest-energy structures from a syn-/anti-data set and
ensemble of MD structures

CDN Syn-/anti-dataset MD ensembles

3030-c-di-AMP 98–99% 98%
Adenine of 3030-c-GAMP 94% 90%
Guanine of 3030-c-GAMP 87–91% 81%
3030-c-di-GMP 72–86% 74%
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We have performed normal-mode analysis on all 26 structures of
the syn-/anti-data set. Inclusion of the thermal contributions and
zero-point vibrational energies do not, however, reverse the
observed trends. A more detailed look into the magnitude of
these terms can be found in Table S23 (ESI†). Moreover, normal-
mode analysis only provides ‘‘local’’ entropic information, not
accounting for (co)existence of other conformers.

3.3.2 MD simulations. Molecular dynamics (MD) trajectories
may account for entropic effects by providing a statistical
ensemble of conformers. This is additional information that
would be difficult to obtain from QM calculations. Table 7 shows
populations of conformers obtained from our 50 ms MD simula-
tions. The dominant conformations present in MD are those that
have the lowest energy in the QM calculations, however, the
relative populations of the syn-/anti-conformers differ significantly
from what we would expect from the relative QM energies.

The most prominent feature in Table 7 is the different
preference for syn-/anti-conformations of guanine and adenine.
Similarly to the result provided by gas-phase conformational
energies (Table 6), guanine does show higher preference for
syn-, the syn- to anti-ratio being approximately 3 : 1. On the
other hand, adenine prefers the anti-conformation by about the
same margin, i.e. 1 : 3. This points to strong overestimation of
the syn-conformations for guanine (e.g., syn-conformation for
3030-c-di-GMP is 77% in MD compared to less than 25%
estimate from ROESY spectra), but not so much for adenine.

We traced this to an overly stable hydrogen bond, which occurs
between the amino group of guanine and phosphate oxygen
that is present only when guanine is in the syn-orientation. It
has recently been pointed out that this type of base-phosphate
hydrogen bond appears to be too stable in current amber force
fields,121,122 and therefore we consider this inaccuracy to be a
consequence of a known force field artifact. It is worth noting
that the orientation of bases in the MD simulations are mostly
independent of each other. Assuming the probability of the
anti-conformation to be 76% for adenine and 22% for guanine
describes the overall conformer population reasonably well, see
Table S24 (ESI†).

Thus, while higher propensity of guanine for syn-compared
to adenine is reproduced by both the QM single-point approach
and by force-field MD simulations, this trait usually oversha-
dows the overall observed preference for the anti-conformation
in all three molecules. The rare case where the anti-/anti-
conformation is correctly reproduced to be prevalent is in MD
simulations of 3030-c-di-AMP, but even here the prevalence is
marginal over the syn-/anti-conformation, while the experi-
ments indicate the strongest presence of anti-conformations.
Although the BLYP/SMD solvation model prefers anti-/anti- for
3030-c-di-AMP as well, it is at the expense of the other qualitative
trend, i.e. higher propensity for the syn-conformation of the
guanine base. Thus, both QM and MD underestimate the anti-/
anti-conformation in all three cases, albeit to a varying extent.

Table 6 Conformational energies of lowest free-energy w-conformers of the syn-/anti-set of 3030-c-di-AMP, 3030-c-GAMP, and 3030-c-di-GMP.
The lowest free-energy conformer for each of the molecules is highlighted in bold. All values are in kcal mol�1

CDN
w-Conformer
class

Reference
Egp

a/COSMO-RS
B-LYP/
COSMO-RS B-LYP/COSMO B-LYP/SMD

B-LYP
(gas-phase)

3030-c-di-AMP Anti-/anti- 0.9 0.4 0.0 0.0 0.0
Syn-/anti- 0.0 0.0 2.3 2.9 10.9
Syn-/syn- 2.9 2.4 5.9 5.8 22.6

3030-c-GAMP Anti-/anti- 2.3 2.9 2.1 1.6 17.1
Anti-/syn- 0.0 0.0 4.7 4.8 27.6
Syn-/anti- 0.3 0.6 0.0 0.0 0.0
Syn-/syn- 2.5 2.9 2.0 2.5 13.3

3030-c-di-GMP Anti-/anti- 2.1 2.7 2.0 0.0 18.3
Syn-/anti- 0.0 0.0 0.8 0.0 10.3
Syn-/syn- 3.9 3.9 0.0 0.6 0.0

a DLPNO-CCSD(T) TightPNO/MP2-F12 used as reference gas-phase energies, see eqn (2).

Table 7 Populations from MD simulations (50 ms) using an wOL3 force-field of w-conformers of 3030-c-di-AMP, 3030-c-GAMP, and 3030-c-di-GMP with
explicit SPC/E solvent

CDN w-Conformer
MD
population %

MD population
syn-/anti-ratio %

Estimates for
ROESY %

3030-c-di-AMP Anti-/anti- 57 23 : 77 2 : 98
Syn-/anti- 40
Syn-/syn- 3

3030-c-GAMP Anti-/anti- 18 G: 73 : 27 G: 19 : 81
Gsyn-/Aanti- 61 A: 21 : 79 A: 10 : 90
Ganti-/Asyn- 9
Syn-/syn- 12

3030-c-di-GMP Anti-/anti- 8 77 : 23 26 : 74
Syn-/anti- 31
Syn-/syn- 61
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One of the apparent differences between structures provided
by DFT/COSMO optimization (the syn-/anti-dataset) and structures
from MD trajectories is the openness of the macrocycle, see Fig. 3.
Even a small deformation of several backbone angles is enough to
open the structure and expose both sides of the bases to the
solution. For the force-field, the distributions of the backbone
angles in the closed form are shifted slightly outside their usual
energy minima, which leads to its lower thermodynamic stability.
This is reflected by the C10–C10 distances obtained for 3030-c-di-
AMP in Fig. 4. It remains unclear whether predominance of the
open form is natural or whether it is a force field artifact.
However, both of the distribution peaks in Fig. 4 are significantly
higher than corresponding distances obtained in the syn-/anti-
dataset (ca. 6 Å for anti-/anti-conformers of 3030-c-di-AMP,
compared to peaks of ca. 7 Å and 8 Å in MD populations).

We can obtain some insight about the openness of the
structure (discussed above in terms of C10–C10 distances) by
looking at the torsion angles of the macrocycle. We refrain from
exhaustive comparison of structural parameters and focus instead
on two torsion angles, namely b and e (see Fig. S4, ESI†), which
highlight the issue. For both angles, MD populations show better
agreement with values obtained from NMR than the QM struc-
tures of the syn-/anti-dataset (see Tables S26 and S27, ESI†).
Moreover, a restrained optimization of the QM structures that
pushes C10–C10 further apart does force b and e torsions towards
the experimental values (data not shown). This indicates that QM
structures obtained by optimization in implicit solvent are inac-
curate, leading to slight deformations of the macrocycle and
geometries that are too closed, which contributes to inaccurate
prediction of relative conformational energies.

4. Conclusions

In this work, we evaluated the performance of modelling
approaches by two different benchmarks: (1) gas-phase

conformational energies referenced to a DLPNO-CCSD(T)/
MP2-F12 composite scheme and (2) qualitative prediction of a
structural feature (orientation of the purine base) in solvent vs.
NMR experiment.

First, we have shown that most of the density functional
approximations provide conformational energies with good
accuracy, provided that a dispersion correction is used.
A typical mean unsigned error is below 1 kcal mol�1, which
represents around 3% of the conformational energy range in
the dataset. Hybrid functionals outperform GGA and meta-GGA
functionals by only a very small margin (ca. 0.1 kcal mol�1

in mean unsigned error). Thus, computational cost and
compatibility with other modelling options are recommended
as the criteria of choice. In particular, use of the economical
DZVP-DFT basis set even in combination with a GGA functional
gives results comparable to the best DFT setups that come at
significantly higher computational cost. However, use of
DZVP-DFT is only efficient in combination with reparametrized
dispersion correction.91 On the other hand, semi-empirical
methods do not provide a satisfactory approximation for
conformational energies. A typical error of tested MNDO
methods and tight-binding schemes is on the order of several
units of kcal mol�1.

Second, we addressed the conformational behavior of cyclic
dinucleotides in solvent (water), which represents a more
realistic setup. NMR experiments, carried out for 3030-c-di-
AMP, 3030-c-GAMP, and 3030-c-di-GMP, unequivocally identified
the dominant anti-orientation of the purine bases. Presence of
a certain population of the syn-conformer is, however, apparent
for the two systems containing guanine.

While higher occurrence of the syn-conformation for gua-
nine is recognized by most approaches, the overall dominance
of the anti-conformation for all molecules is not. Nevertheless,
the differences still provide valuable insights.

Guanine’s propensity for the syn-conformation is most likely
due to the intramolecular hydrogen bond with a phosphate.
This interaction is, unsurprisingly, very strong in a gas-phase
context and is weakened to a limited extent by introduction
of solvent. In MD simulations the interaction remains
over-stabilized, leading to incorrectly predicting the syn-
conformation to be dominant for guanine. Population of the
w-conformation in MD simulations is largely determined by the
base, suggesting that improving the description of this specific
interaction might improve the results significantly. For
quantum-mechanical methods the reasons behind the discre-
pancy are not straightforward. Lack of explicit solvent and
dynamical interactions with solvent likely lead to geometries
that are too compact, which leads to inaccuracies in relative
free-energies.

It should be reiterated that the chosen structural feature –
the syn-/anti-equilibrium of the purine bases – remains an
extremely challenging case for modelling. Despite the observed
shortcomings, computational methods do provide useful
insights into identifying relative trends (adenine vs. guanine
preferences), less sensitive structural features (such as
ribose phase angles), or interpretation of experimental data

Fig. 4 Distribution of C10–C10 distances of 3030-c-di-AMP in MD simula-
tions. This structural parameter indicates openness of the macrocycle. The
bimodal distribution of the anti-/anti-conformers clearly demonstrates the
presence of the open (the more prevalent population at ca. 8 Å) and closed
conformers (ca. 7 Å).
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(e.g. H8/H10 distances obtained from MD for the interpretation
of ROESY spectra). By pointing to some of the inaccuracies
provided by a range of available approaches we attempted to
gauge the interpretability of the results in context where
estimating computational ‘‘error bars’’ is often difficult.
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M. Otyepka and P. Banáš, Computer Folding of RNA
Tetraloops: Identification of Key Force Field Deficiencies,
J. Chem. Theory Comput., 2016, 12, 4534–4548.

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
M

ar
ch

 2
02

1.
 D

ow
nl

oa
de

d 
on

 1
0/

19
/2

02
4 

10
:0

0:
25

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0cp05993e



