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A convenient way to analyse solvent structure around a solute is to use solvation shells, whereby solvent

position around the solute is discretised by the size of a solvent molecule, leading to multiple shells

around the solute. The two main ways to define multiple shells around a solute are either directly with

respect to the solute, called solute-centric, or locally for both solute and solvent molecules alike. It

might be assumed that both methods lead to solvation shells with similar properties. However, our

analysis suggests otherwise. Solvation shells are analysed in a series of simulations of five pure liquids of

differing polarity. Shells are defined locally working outwards from each molecule treated as a reference

molecule using two methods: the cutoff at the first minimum in the radial distribution function and the

parameter-free Relative Angular Distance method (RAD). The molecular properties studied are potential

energy, coordination number and coordination radius. Rather than converging to bulk values, as might

be expected for pure solvents, properties are found to deviate as a function of shell index. This

behaviour occurs because molecules with larger coordination numbers and radius have more

neighbours, which make them more likely to be connected to the reference molecule via fewer shells.

The effect is amplified for RAD because of its more variable coordination radii and for water with its

more open structure and stronger interactions. These findings indicate that locally defined shells should

not be thought of as directly comparable to solute-centric shells or to distance. As well as showing how

box size and cutoff affect the non-convergence, to restore convergence we propose a hybrid method

by defining a new set of shells with boundaries at the uppermost distance of each locally derived shell.

1 Introduction

Quantifying the molecular structure and interactions of liquids,
solutions and mixtures is important in understanding
their thermodynamic properties such as solubility, miscibility,
colloidal stability and activity1–4 as well as answering such
questions as the range of solvent–solute interactions5–10 The
molecular structure of solvated systems is complicated because
of the high-dimensional and highly variable distribution of
configurations of all the participating molecules, ranging from
crystalline order all the way to random disorder. Various
methods are needed to simplify and reduce the dimensionality
of the data and make it more comprehensible or tractable to
further processing. The most widely used structural quantities

for liquids are the particle coordinate distribution functions.
The first-order one is molecular density but gives no molecular
detail. The second-order one is the pairwise radial distribution
function, g(r), which expresses the measured density of one
species at a distance r from another species relative to the
average density.11 As well as being a highly intuitive quantity, it
provides many points of comparison between simulation and
experiment, whether it be g(r) itself, the entropy of liquids and
dilute solutions,12–15 or numerous other thermodynamic
properties, such as isothermal compressibility or chemical
potential via Kirkwood–Buff integrals of g(r).16–21 For small,
rigid, near-radially symmetric molecules, g(r) captures much
structural information of interest along the single radial
coordinate r. However, given its spherical nature, the validity
and usefulness of g(r) diminishes for non-spherical solutes, and
for spherical molecules it is unable to capture aspherical
inhomogeneities. Partial solutions are using energy-derivative
information to improve convergence,22–25 multiple g(r)s relative
to each solute atom,26 angular information,14,15 a three-
dimensional grid centred on the solute,27,28 or multiple grids
localized on different solute atoms.29 However, this makes
them more complex, slower to converge, and still insensitive
to inhomogeneities beyond the coordinates used.
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An alternative way to analyse solution structure, motivated by
the discrete size of molecules and the oscillatory structure typically
seen in g(r), is to coarse-grain the distribution of the solvent around
the solute into discrete shells.30–32 Being based on molecular
topology rather than distance, shells have the advantages of being
statistically better defined, simpler to manipulate and interpret,
more adaptable to fluctuations and lower symmetry, and better
able to capture multibody effects based on molecular connectivity.
The topological network of molecules in shells can be conveniently
analysed using the tools of graph theory.33 All this makes shells
more amenable to complex, multi-component, flexible systems
such as electrolytes, ionic liquids, liquid crystals, polymers, and
biomolecules. The most commonly used shell is the one
adjacent to the solute. Called the first shell or coordination
shell, it represents the immediate environment of the solute and
contains the solvent that is most perturbed by the solute, having
the strongest interactions with it. Beyond this lie the second
shell, the third shell and so on out to the edge of the system.

There is no unique way to define solvation shells, but two
general classes of method exist. Shells may be defined with
boundaries at every maximum in the g(r) relative to the solute,
with multiple maxima leading to multiple shells. This is
essentially a coarse-graining of g(r) which becomes less
well-defined at longer range due to the smoother g(r). Alternatively,
shells may be built locally with the first around the solute, the
second shell around those molecules in the solute’s first shell,
the third shell around those molecules in the solute’s second
shell, and so on. Because local methods require knowing the
environment of each individual solvent molecule, they are only
accessible by simulation.34–37 Each shell may be constructed
from the g(r)-derived first shell of each molecule, using
fixed cutoff parameters, or a fixed number of nearest
neighbours.38–43 Cutoffs assume mean-field, radially symmetric
structure and require either well-defined g(r)s averaged over
multiple configurations or multiple, arbitrary cutoff parameters,
features that make them less suitable for systems of greater
complexity. Alternatively, shells may be defined using
topological methods which are parameter-free and directly
applicable to individual configurations.43–45 The most widely
used method, Voronoi tesselation, identifies neighboring
molecules as those that share polyhedra faces.46,47 The number
of Voronoi neighbors in the first shell of a molecule is typically
overestimated47,48 with respect to g(r), even for crystals because
spurious second-shell molecules are included. However, these
may be removed by adopting additional geometric criteria.49–51

More recent methods based on blocking include the SANN
algorithm52 (Solid-Angle Nearest Neighbor) which allows nearest
neighbors up to a solid-angle threshold 4p and the RAD
algorithm (Relative Angular Distance)53,54 which defines blocking
based on collinearity and inverse-square distance. RAD produces
shells in close agreement with those using cutoffs at the first g(r)
minimum53 and is better able to handle the complexities of
mixtures.54 The advantages of topological methods are that
they can resolve local density fluctuations and non-spherical
symmetry and a particular property of them is that shells are
always built locally rather than solute-centrically.

Despite the practical, intuitive nature and widespread use of
solvation shells to analyse solvent structure, we encountered a
number of properties of locally defined shells relating to their
long-range convergence that are not well recognised and may
not be immediately obvious. These properties concerned the
inhomogeneity between different shells and inhomogeneity
within each shell. To make clear this behaviour, we focus on
shells in pure liquids rather than for solutes in a liquid so as to
remove the perturbing effect of solutes,5–10 which would otherwise
obscure perturbations arising from other causes. Two local shell
methods are used: the fixed cutoff at the first minimum in g(r)
and RAD. Five liquids are chosen differing in their degree of
polarity, namely water, ammonia, hydrogen sulfide, methane
and argon. The properties examined are potential energy,
coordination number and coordination radius, and they are
analysed as a function of both distance and shell index from
the reference molecule. Our main finding is that average bulk
behaviour is not reached with increasing shell index, contrary
to what is seen using solute-centric shells or g(r). The cause of
this is that molecules with larger coordination number and
radii have a higher probability to lie in lower-index shells. Our
second finding is that within each shell, molecules with a
smaller coordination number tend to lie closer to the reference
molecule because of their smaller coordination radii. Both
deviations are stronger for RAD than for the fixed-cutoff
method but nonetheless are inherent to both methods. A third
finding is that the direction of trends for potential energy are
found to depend on the hydrogen-bond propensity of the liquid
because stable energy correlates with low coordination for
hydrogen-bonded liquids but high coordination for non-polar
liquids. This non-convergence of locally defined shells shows
that they should be used with care when analysing solvent
structure in any system. To remedy this, we present a hybrid
solute-centric and local way to define solvation shells that
brings about long-range convergence. This is done by reassigning
molecules to closer local shells at a certain distance from the
solute. Going beyond the pure liquids studied here, this method
can be readily generalised to solvent structure around any solute.

2 Methods
2.1 Shell definitions

The first shell of a designated reference molecule is assigned
using two methods: Relative Angular Distance (RAD)53 and the
g(r) cutoff (GC) method with the cutoff at the first minimum in
g(r). The RAD shell of molecule i is defined as containing those
molecules j for which no other molecule k blocks that interaction
and no other closer molecule is blocked. Blocking by k occurs if

1

rik2
cos yjik 4

1

rij2
(1)

where rij and rik are the distances from i to j and i to k, and yjik is
the angle subtended at i by j and k. Roughly speaking, molecule k
blocks if rik is smaller than rij and yjik is near zero. RAD is
implemented in the symmetric version whereby each molecule
must have the other molecule as a neighbor. The GC distance
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cutoffs are in line with g(r)s derived elsewhere, making allowan-
ces for the different temperatures, and are 3.5 Å for water,55,56

4.0 Å for ammonia,57–60 4.7 Å for hydrogen sulfide,61 5.8 Å for
methane,62 and 5.1 Å for argon.63 Molecules in the second shell
of the reference molecule are defined as all the molecules in the
first shell of those molecules in the first shell of the reference
molecule, excluding the reference molecule and any molecules
that are already in its first shell. This is repeated iteratively to
assign further shells until all molecules are assigned to a shell,
ignoring periodic molecules.37,41,43,45,64 An example assignment
of molecules to shells using RAD and GC for one configuration
of liquid argon is depicted in Fig. 1a and b.

2.2 Molecular properties

The following properties are used to assess the shells:
(1) Shell index f ranks the shells. It ranges from 0 for the

reference molecule up to the maximum shell index in the
simulation box, avoiding periodicity.

(2) Molecular distance r is between a molecule and the
reference molecule, with the heavy atom of each molecule
defining its position.

(3) Molecular potential energy U is the sum of the potential
energies of all the atoms in the molecule (see Simulation
Protocol for more details).

(4) Coordination number N1 is the number of molecules in
the first shell of the molecule.

(5) Coordination radius r1 is the average distance between a
molecule and all its first-shell molecules using the heavy atom
as the position of each molecule.

2.3 Simulation protocol

Molecular dynamics simulations of each of the five liquids are
conducted with 600 molecules per box. The force-field

parameters are those of Michels et al. for argon,66 SPC/E for
water55 and GAFF for hydrogen sulfide, methane and
ammonia.67 Initial molecular geometries are created using
Avogadro68 and initial box geometries are created using
Packmol,69 where molecules are randomly assigned with a
distance tolerance of 2 Å in cubic simulation boxes with length
26 to 32 Å. Three additional larger simulations are created for
water containing 2134, 7200 and 24 300 water molecules to
assess the affect of box size. System topology files are generated
using the leap module of AMBER 18 (Assisted Model-Building
and Energy Refinement)70 and minimised for 500 steps of
steepest-descent using sander.

The simulations thereafter are conducted using LAMMPS
(Large-Scale Atomic/Molecular Massive Parallel Simulator)71

which prints out atomic potential-energy trajectories. AMBER
topology and minimised coordinate files are converted into
LAMMPS input files using InterMol.72 The system is equilibrated
for 0.2 ns at NVT conditions (number, volume, temperature) and
for 1 ns at NPT conditions (number, pressure, temperature),
followed by 10 ns of NPT data collection. The temperatures used
are 298 K for water, 240 K for ammonia, 213 K for hydrogen
sulfide, 112 K for methane, and 87 K for argon. The pressure is 1
bar for all systems. Temperature and pressure are controlled
using a Nosé–Hoover thermostat and barostat, respectively.
Non-bonded interactions are truncated at 9 Å and long-range
electrostatic interactions are calculated using particle–particle–
particle–mesh (PPPM).73 Atomic potential energies are calculated
using the pe/atom command in LAMMPS. For the potential
energy, the two-body and three-body energy terms are partitioned
evenly over all contributing atoms and the long-range PPPM
contribution is calculated using the method of Heyes.74 The
SHAKE algorithm constrains all bonds and angles to hydrogen
atoms.75 Trajectories of coordinates and potential energy for each
atom are saved at 100 ps intervals, giving 100 frames for analysis,
which are sufficient when averaged over 600 identical molecules,
each in turn treated as the reference ‘solute’, totaling 60 000 data
points for each system. Output files are read using the MDAnalysis
Python library76 and analysed using an in-house Python program.
Plots are made with the matplotlib Python library.77

3 Results
3.1 Average potential energy of shells

The average potential energy U of molecules in each shell
defined with RAD and GC is plotted in Fig. 2. U is seen to
deviate from the average value across shells for both methods at
short and long ranges. The deviation is larger for RAD than GC,
and largest in water compared to the less-polar liquids. Fig. S1
(ESI†) makes clear that the trends are converged with respect to
the number of frames used, and Fig. S2 (ESI†) indicates that the
total system energy has leveled off at the start of data collection.

This trend contrasts with the dependence of U on r, shown
in Fig. 3. As expected, U shows some short-range fluctuation,
reflecting local solvent structure, but then converges to a
constant bulk value at long range for all liquids. If we look at

Fig. 1 Snapshot of liquid argon (5 Å thick cross-section) with atoms
colored by their shell index defined using (a) RAD, (b) GC, (c) RAD-hybrid
or (d) GC-hybrid methods (made in VMD65).
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how U varies within each shell as a function of distance r from
the reference molecule, U shows a strong dependence on r in all
liquids, with larger differences in U apparent in shells of more
polar liquids. For RAD shells, U increases from the closer part
of the shell to the outer part of the shell for water and
ammonia, the trend is reversed for argon, while hydrogen
sulfide and methane are more symmetric with both edges of
the shell having a higher U and with a weaker dependence
on distance. GC shells have more symmetric distributions of
U for water and ammonia but more monotonic and
decreasing for the other liquids. Of note is that the GC cutoff
strongly influences the U distribution within a shell, as seen in
Fig. S3 (ESI†), which shows that the trend for water goes from

having a negative slope with cutoff 3 Å to a positive slope with
cutoff 4 Å.

3.2 Effect of coordination number and radius

To better understand the non-convergence of U, the influence
of a molecule’s coordination number and radius on potential
energy is analysed. We focus on water and methane in Fig. 4 as
representative polar and non-polar liquids, with results for all
liquids being presented in Fig. S4–S7 (ESI†). First, as expected,
the potential energy is sensitive to coordination radius, r1

(Fig. 4a). There is a stable minimum at r1 = 2.7 Å for water
and 4.1 Å for methane with higher, less favorable energy at
smaller and larger radii. The width of the minimum depends

Fig. 2 Potential energy U versus shell index f (circles and dashed) and averaged over the whole system (dotted) for each liquid with shells defined by (a)
RAD and (b) GC. The circle size indicates the number of molecules in the shell and the most common shell for each system is filled in.

Fig. 3 Potential energy U of a molecule in a particular shell f and distance r from the reference molecule for shells defined by (a) RAD or (b) GC.
Averaged energy by distance is shown with a black dashed-line. Each marker represents an r bin value of 0.5 Å that is colored and shaped according to
the shell index and sized according to its population.
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on the strength of interactions, with water having the sharpest
minimum due to its hydrogen bonds compared to the broader
minimum for methane with its weaker interactions. This
sensitive dependence of U on r1 for water makes clear why U
deviates more for its solvation shells. Another observation is that
at larger r1 for RAD in the sparser region beyond the GC cutoff of
3.5 Å, U varies little for water but continues to increase for
methane beyond its GC cutoff of 5.8 Å, indicating that water’s
hydrogen bonds are less affected by the lower density than are
non-polar interactions. These trends are similar for all shells, as
made clear by plots of U versus N1 and r for each individual shell
in Fig. S8 (ESI†) and its averaged version Fig. S9 (ESI†).

Potential energy is also sensitive to coordination number
(Fig. 4b). The trend is positive for water but negative for

methane. Evidently, the lower N1 of 4–7 for water is a
consequence of its 3–5 hydrogen bonds and small number of
interstitial molecules. Fewer neighbors means stronger
hydrogen bonds tending to the stable tetrahedral arrangement
and lower U. On the other hand, indicative of normal close-
packed liquids, the negative trend for methane occurs because
the greater number of 7–11 neighbors brings about more van
der Waals interactions and thus a lower U. The trends are
similar for the other three liquids according to their polarity
(Fig. S5, ESI†). Hydrogen sulfide and argon are like methane,
while ammonia with its weak hydrogen bonds lies in between,
with U being lowest when there are nine neighbors. The trends
are similar for RAD and GC, although RAD better picks out the
anomalous reverse behavior for water and ammonia than GC.

Turning to Fig. 4c, molecules with closer neighbours are
seen to be more common in more distant shells. This can also
be understood as molecules with fewer neighbours being more
common in more distant shells because we see in Fig. 4d that r1

and N1 are closely correlated for all but the highest values of r1.
This trend is important to explain the non-converging U in local
shell assignment because N1 relates to connectivity and thus f
while r1 to U, thereby relating U to f.

The final trend of interest is r1 versus r, shown in Fig. S10
(ESI†). This shows a clear increase in r1 versus r for all shells,
liquids and methods, demonstrating that this appears to be a
universal property of locally defined shells. Smaller shells lie at
closer distances and larger shells at further distances.

3.3 Model to explain non-convergence with shell index

We next construct a model to explain the non-convergence of
properties with shell index. Fig. 5 illustrates the shells around a
solute, showing regions of molecules separated by larger and
smaller distances. When assigning shells locally, what matters
is not the separating distance to the solute, as in a solute-
centric approach, but the number of intervening molecules.
Molecules that have more neighbours have further neighbours
and vice versa for fewer neighbours. Molecules with further
neighbours themselves lie further distances away from other

Fig. 4 Effect of (a) coordination radius and (b) number N1 on potential
energy U, (c) r1 versus f, and (d) N1 versus r1 for water (column 1) and
methane (column 2) RAD shells. Marker size represents the population of
molecules at each value.

Fig. 5 Schematic to illustrate the non-convergence of properties as a
function of shell index. Molecules are coloured by shell index and black
lines link molecules in each other’s coordination shells. Closer proximity
on the right brings out the two effects: it causes molecules at a given
distance to be assigned to more distant shells, and it causes molecules in a
given shell to lie at a shorter distance within the shell.
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molecules, including the reference molecule. In addition,
molecules with more neighbours are more likely to be more
closely connected by fewer shells. Thus a region containing
molecules that are more closely spaced has more intervening
shells than a region containing fewer molecules, while molecules
with more neighbours have fewer intervening shells. Given the
dependence of coordination size and number on shell index,
this makes other properties such as energy depend on shell
index, particularly for polar solvents because they have a larger
energetic dependence on the number of neighbours and
distance between neighbours.

3.4 Methods to reduce the non-convergence

We finally look at how locally derived shells can be converted
into another set of shells that do have convergence in their
properties. The boundaries of the new shells are placed at the
uppermost distance of each locally derived shell. The dependence
of U with shell index using the new shells is plotted in Fig. 6 for
all liquids and both methods, now labelled as RAD-hybrid and
GC-hybrid. It can be seen that rapid convergence of U to the
average value occurs for all liquids and methods, similar to what
is seen for U as a function of r. Evidently, this reassignment
redistributes the molecules between and within locally derived
shells to even out their properties. This thus provides a way to
define solvation shells that have convergence of properties but
without the need for defining shell thickness. Another possible
way to bring about property convergence is to vary the size of the
simulation box. However, boxes with larger side lengths of 40, 60
and 90 Å for water using RAD are seen to still show a similar
non-convergent trend (Fig. S11, ESI†), but the size of the deviation
is smaller in larger boxes. Yet another possible approach to bring
about property convergence applicable to the GC method is to vary
the GC cutoff. The effect of this on convergence may be seen in
Fig. S12 (ESI†) which shows the dependence of r1 on f and r
for three different cutoffs of 3, 3.5 and 4 Å. When the cutoff is

3 Å, which is near the g(r) maximum, the non-convergence is
substantially reduced, suggesting that having smaller
shells that are more homogeneous in size makes them less
susceptible to this behaviour. However, even with this cutoff,
Fig. S10 (ESI†) shows that U is still not converged versus f.

The resulting set of shells are illustrated in Fig. 7 for both
methods and all liquids. This shows the U distribution of each
locally derived shell as in Fig. 3 but coloured according to the
new shell definition. It creates solvation shells that are slightly
thicker closer to the reference molecule.

4 Discussion

Solvation shells provide an intuitive model to simplify and
represent the structure of a liquid around a central solute
molecule. They are especially useful for larger, intricate, flexible
molecules, for which Cartesian coordinate-based methods
become too complex or intractable. Shells better adapt to the
flexible structure of both solute and solvent molecules than
coordinate-based methods. While the general idea is to
discretise shells based on the size of the solvent molecule,
there is no unique way to define them. Here we show that for
shells defined locally in a pure liquid, their properties do not
converge to bulk values at long range either in terms of distance
or shell index. In particular, molecules in more distant shells
are found to have lower coordination number and radius than
those in closer shells. Moreover, molecules in the inner edge of
a shell have lower coordination number and radius than those
in the outer edge. The explanations for these two trends are
geometrical, as illustrated in Fig. 5. The first trend reflects a
greater probability for molecules with larger coordination
number and radius to end up in shells closer to the reference
molecule because their greater number of neighbours gives
them more connections with neighbouring molecules and
because their larger size means there are fewer separating

Fig. 6 As for Fig. 2 but using the hybrid RAD and GC methods whereby boundaries are defined by the largest distances of the locally derived shells.

This journal is the Owner Societies 2021 Phys. Chem. Chem. Phys., 2021, 23, 4892�4900 | 4897

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
Fe

br
ua

ry
 2

02
1.

 D
ow

nl
oa

de
d 

on
 1

/1
9/

20
26

 3
:0

5:
30

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0cp05903j


neighbours between them and the reference molecule. Conversely,
molecules with smaller coordination number and radius are more
likely to end up in more distant shells. The second trend arises
because molecules with smaller coordination number and radius
are more likely to lie closer to their neighbours, while those with
larger values lie further away. RAD is more sensitive to this effect
because its coordination radii are more variable than those of GC
which has a fixed cutoff, especially for water with its open
structure, but even GC is not immune. However, RAD still
has the advantages that it resolves instantaneous structure, it
reveals structure beyond the GC cutoff, and it better resolves the
anomalous structure in the hydrogen-bonded liquids.

It is interesting that the shell effect analysed here affects
potential energy differently, depending on the liquid. Higher
coordination brings about less stable energy for the hydrogen-
bonding liquids of water and ammonia but more stable energy
for the close-packed liquids of methane and argon. This reflects
the well-known behaviour of hydrogen-bonded liquids such as
water78 and to a lesser extent ammonia57–60 to have a low
coordination because the directionality of hydrogen bonds
limits the number of neighbors. On the other hand, molecules
in close-packed liquids are dominated by van der Waals inter-
actions, whose non-directional nature permits multiple inter-
actions, so enabling higher coordination to bring about more
stable energy. Within each shell, potential energy may increase
or decrease with increasing distance, depending on the method
and liquid.

Considering possible ways to reduce the non-convergence,
using a larger box helps somewhat (Fig. S11, ESI†). Going
further away from the reference molecule and including molecules
in periodic images would bring about further softening but only as
an artifact of periodicity. Using a smaller GC cutoff also reduces
the effect (Fig. S12, ESI†). Other solutions not attempted here
could be to allocate a molecule to a new shell if more than one
neighbor belongs to the preceding shell, or to allow shells to get
thicker further away from the reference molecule, a limit of which

would be having only the first shell with the rest of the solvent as
bulk, as is commonly done. Recourse could always be made to the
solute-centric option of defining shells from multiple peaks in g(r)
using the solute as a common reference point, effectively a
molecular-level coarse-graining of g(r). This avoids the non-
convergence behaviour by angular averaging but struggles to
resolve shells at larger distances in the flatter g(r) arising from
the diminishing correlation with the solute, reflecting the reduced
structuring further from the solute. In contrast, there is no such
reduction of long-range structure in the graph of connections
generated locally for every molecule, but instead there is
long-range non-convergence. As one way to combine the features
of both methods, we present an approach that suppresses
non-convergence by defining shell boundaries at the maximum
distance of each locally derived shell but at the cost of radial
averaging. This results in shells having converged potential
energies as a function of shell index in the same manner as
solute-centric shells or g(r) itself.

5 Conclusions

An analysis of the properties of solvation shells defined locally
in pure liquids has revealed that properties do not converge to
the bulk values, either averaged over each shell or within each
shell. Coordination number and radius are found to decrease
in more distant shells and to increase from the inner to the
outer part of each shell. The reason for these trends is that the
properties of larger coordination number and radius make
such molecules more likely to lie in closer shells and at the
outer part of each shell. The shell dependence is greater
for RAD than GC because of the greater variability of RAD
coordination, but RAD reveals instantaneous structure,
structure beyond the GC cutoff and the anomalous structure
in the hydrogen-bonded liquids. The effect on potential energy
differs for each liquid. Hydrogen-bonded water and ammonia

Fig. 7 As in Fig. 3, but using the hybrid RAD and GC methods whereby boundaries are defined by the largest distances of the locally derived shells.
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have smaller coordination and lower potential energy whereas
non-polar hydrogen sulfide, methane and argon have larger
coordination and higher potential energy. We examine
approaches to reduce the non-convergence and show how a
hybrid method with cutoffs at the maximum distance of locally
derived shells restores long-range convergence. These effects
for pure liquids will inevitably carry over to solutions and
complex mixtures of larger and more flexible molecules. Our
analysis reinforces the complexity of analysing liquid structure,
which is part-discrete, suitable to shell approaches and part-
continuous, suitable to g(r) approaches. Which approach one
uses largely depends on the complexity of the system, whether
molecular distance or molecular topology is more important,
and whether one wishes to detect aspherical inhomogeneities
or ensure long-range convergence.
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J. Chem. Theory Comput., 2019, 15, 3066–3074.
5 K. D. Collins, G. W. Neilson and J. E. Enderby, Biophys.

Chem., 2007, 128, 95–104.
6 R. Mancinelli, A. Botti, F. Bruni, M. A. Ricci and A. K. Soper,

Phys. Chem. Chem. Phys., 2007, 9, 2959–2967.
7 D. Paschek and R. Ludwig, Angew. Chem., Int. Ed., 2011, 50,

352–353.
8 S. J. Irudayam and R. H. Henchman, J. Chem. Phys., 2012,

137, 034508.
9 Y. X. Chen, H. I. Okur, N. Gomopoulos, C. Macias-Romero,

P. S. Cremer, P. B. Petersen, G. Tocci, D. M. Wilkins,
C. W. Liang, M. Ceriotti and S. Roke, Sci. Adv., 2016,
2, e1501891.

10 P. Jungwirth and D. Laage, J. Phys. Chem. Lett., 2018, 9,
2056–2057.

11 J. D. Bernal and R. H. Fowler, J. Chem. Phys., 1933, 1,
515–548.

12 D. C. Wallace, J. Chem. Phys., 1987, 87, 2282–2284.
13 A. Baranyai and D. J. Evans, Phys. Rev. A, 1989, 40,

3817–3822.

14 T. Lazaridis and M. Karplus, J. Chem. Phys., 1996, 105,
4294–4316.

15 T. Lazaridis and M. E. Paulaitis, J. Phys. Chem., 1992, 96,
3847–3855.

16 J. G. Kirkwood and F. P. Buff, J. Chem. Phys., 1951, 19,
774–777.

17 M. B. Gee and P. E. Smith, J. Chem. Phys., 2009, 131, 165101.
18 E. A. Ploetz, N. Bentenitis and P. E. Smith, J. Chem. Phys.,

2010, 132, 164501.
19 P. Ganguly and D. E. R. van, J. Chem. Theory Comput., 2013,

9, 1347–1355.
20 A. A. Galata, S. D. Anogiannakis and D. N. Theodorou, Fluid

Phase Equil., 2018, 470, 25–37.
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