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Predicting second virial coefficients of organic
and inorganic compounds using Gaussian
process regression

Miruna T. Cretu ab and Jesús Pérez-Rı́os *b

We show that by using intuitive and accessible molecular features it is possible to predict the

temperature-dependent second virial coefficient of organic and inorganic compounds with Gaussian

process regression. In particular, we built a low dimensional representation of features based on intrinsic

molecular properties, topology and physical properties relevant for the characterization of molecule-

molecule interactions. The featurization was used to predict second virial coefficients in the interpolative

regime with a relative error t1% and to extrapolate the prediction to temperatures outside of the

training range for each compound in the dataset with a relative error of 2.1%. Additionally, the model’s

predictive abilities were extended to organic molecules unseen in the training process, yielding a

prediction with a relative error of 2.7%. Test molecules must be well-represented in the training set by

instances of their families, which are high in variety. The method shows a generally better performance

when compared to several semi-empirical procedures employed in the prediction of the quantity.

Therefore, apart from being robust, the present Gaussian process regression model is extensible to a

variety of organic and inorganic compounds.

1 Introduction

The long-standing goal to establish a relationship between the
behaviour of a gas and its microscopic properties has admirably
been achieved by the virial equation of state.1,2 Besides offering a
rigorous depiction of pressure, p(T,r) as a function of
temperature,3 T, and density, r, the virial equation is founded
on a solid statistical mechanics framework.4 The virial equation,

p

RTr
¼ 1þ

XN
i¼2

BiðTÞri�1; (1)

encapsulates the departure from ideality of a gas in an infinite
series of temperature-dependent coefficients, Bi(T), which corre-
spond to the molecular interaction in isolated clusters of size i.
Bi(T) is the i-th virial coefficient and is related to the role of i-body
interactions in a system. In eqn (1) R denotes the ideal gas constant
and the series is truncated up to a certain cluster size N.

Two-body interactions are the most relevant interactions to
the macroscopic properties of a gas,5 hence B2 values have been
tabulated for many compounds.6 Since B2 can be derived from
intermolecular potentials, the latter can be obtained from
experimental B2 through a proper parametrisation of the

potential function.7,8 This is conducive to the calculation of
fluid properties such as enthalpy of vaporisation9 and transport
coefficients.9–11 The knowledge of B2 also helps to estimate critical
points12 and optimum conditions for crystal growth, which would
otherwise require extensive screening experiments.13

When it comes to the determination of the second virial
coefficient, computational cost and experimental obstacles
often come into play. The theoretical approach to estimate B2

from the interaction potential was developed ever since the
1930s14,15 and is adapted nowadays to more complex potential
functions. However, the process is computationally expensive
for all but simple molecules. Furthermore, experimental pro-
cedures give accurate results for certain ranges of temperature,
however they are faced with the challenge to acquire reliable
compressibility data.16 In the case of empirical approaches, the
law of corresponding states17 leads, in some cases, to very
accurate results, whereas in other situations, the accuracy
is low.

To provide an alternative to the traditional methods of
calculating B2, we propose tackling the problem within the
new paradigm of data-intensive science.19 The existence of a
large and high quality database of temperature-dependent
second virial coefficients6 fulfills the most vital prerequisite for
the application of machine learning. The choice of input features
for learning is then a matter of physical and computational
intuition. Among notable previous works on B2 estimation is the

a Department of Chemistry, Imperial College London, London SW7 2AZ, UK
b Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin,

Germany. E-mail: jperezri@fhi-berlin.mpg.de

Received 21st October 2020,
Accepted 11th January 2021

DOI: 10.1039/d0cp05509c

rsc.li/pccp

PCCP

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
Ja

nu
ar

y 
20

21
. D

ow
nl

oa
de

d 
on

 1
/1

8/
20

26
 1

2:
13

:2
8 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue

http://orcid.org/0000-0002-2192-5091
http://orcid.org/0000-0001-9491-9859
http://crossmark.crossref.org/dialog/?doi=10.1039/d0cp05509c&domain=pdf&date_stamp=2021-01-20
http://rsc.li/pccp
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0cp05509c
https://pubs.rsc.org/en/journals/journal/CP
https://pubs.rsc.org/en/journals/journal/CP?issueid=CP023004


2892 | Phys. Chem. Chem. Phys., 2021, 23, 2891--2898 This journal is©the Owner Societies 2021

one of Di Nicola et al.,20 which uses thermodynamic input
features and artificial neural networks (ANN) to predict B2 with
high accuracy. This method, however, requires the construction
of a complex ANN, together with the knowledge of five thermo-
dynamic properties, which are difficult to obtain, as discussed
above. As the authors also suggest, this method should only be
used when ‘‘high accuracy is required’’,20 due to its complexity.
Furthermore, the prediction of second virial coefficients has
been addressed before by Mokshyna et al.,21 by assuming a
functional form of the dependency of B2 on temperature. The
methodology involved modelling molecular structures using the
Simplex Representation of Molecular Structure (SiRMS),22 based
on which a Random Forest model was trained to predict second
virial coefficients.

In this paper, we propose the prediction of second virial
coefficients of organic and inorganic compounds in a simple,
universal manner. Our approach is based on Gaussian Process
Regression (GPR) fed with a low dimensional input featuriza-
tion scheme (see Fig. 1). To offer perspective to the reader, it is
of importance to introduce the potential contexts in which the
prediction of second virial coefficients is desired. That is, one
might want to predict the quantity outside of an already studied
temperature range, as well as predict second virial coefficients
for new molecules. Our work addresses both aspects, but we
conclude that for accurate results, the new molecule should
belong to classes of compounds already studied in the
training set.

We show that the chosen features succeed to incorporate the
most relevant characteristics of the second virial coefficient, in
that the model succeeds to predict B2 of an unseen molecule
with a relative error of 2.7%, over whole ranges of temperatures.
Moreover, the power of our model is reinforced by the successful
extrapolation (relative error 2.1%) to temperatures outside of the
training range for any molecule in the dataset. Our method’s
universality stems from its applicability to compounds belonging
to a wide range of families and from the availability and
accessibility of input features for any compound. The simplicity
stems from the facile practice to generate input features and
from the ease of applying computationally inexpensive GPR (for
the number of data points considered in this work). Different
featurization combinations were tested to yield the best, lowest
dimensional scheme finally. All the input data were generated
using RDKit,18 an open-source toolkit for cheminformatics

implemented in Python. While most of the features we used
are basic molecular properties of compounds, the Morgan
fingerprint is a representation of the connectivity of atoms in a
molecule.23 This mostly caters for molecular characterisation and
for identifying common fragments within different molecules.

2 The dataset

A comprehensive database of second virial coefficients for pure
organic and inorganic substances is made available through
the compilations of Dymond et al. and Gmehling et al.,24

totalling over 9300 values for a temperature range from 0.63
to 1473.15 K. As the experimental errors in the determination of
second virial coefficients have not been reported in the data-
base, a handful of data points for different molecules and
temperatures were inspected. This showed that experimental
errors generally vary between 0.5 and 12%. It is worth empha-
sizing that each compound has data for the second virial
coefficient in a particular range of temperatures compatible
to the inherent thermo-physico-chemical properties of the
compound under consideration. Subsequent to filtering, our
dataset comprises 1720 data points for inorganic and 5213 data
points for organic compounds, which are divided in diverse
types of classes (see Fig. 2). While for some compounds,
experimental values of B2(T) were reported for more than 200
temperatures, for other substances there existed only one data
point in the set. When different B2 values were registered for
the same compound at the same temperature, an average of the
B2 values was taken. Further filtering of the data was performed
by leaving out compounds with less than 3 data points and by
eliminating the values which were off the temperature-
dependent trend.

The diversity of data is notable with regard to the physical
and chemical properties of molecules. For instance, the inorganic
compounds cover a broad spectrum of molecules and atoms
starting from noble gas atoms to polyatomic molecules such as
boranes. Whereas within the organic compounds, one finds
ketones, which have important industrial applications,25 carbonyl
compounds that appear as a natural product of pollution26 or
siloxanes: an incredibly versatile class of molecules that has been
proposed as a candidate for Bethe–Zeldovich–Thompson fluids,27

or that shows exciting properties as a surfactant.28

3 Machine learning model
3.1 Gaussian process regression

In the context of solving non-linear regression problems,
Gaussian process regression (GPR) can be viewed as a non-
parametric approach. In other words, GPR does not assume any
functional form to find the fitting to a given data set. Rather,
GPR employs a Gaussian distribution of functions to match the
observed variables. Next, Bayesian inference, i.e., the estima-
tion of the probability of an event given the occurrence of a
previous one, allows a prior distribution of data to develop into
a posterior one. In the case of GPR, the prior distribution over

Fig. 1 Schematic representation of the method designed for the prediction
of B2(T) using Gaussian process regression. A chosen molecule is character-
ized by a set of input features obtained using RDKit.18 From the input data,
the trained GPR model is used to predict B2(T) for the desired molecule.
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the space of functions, p(f|x) shows a joint multivariate Gaussian
distribution, usually with a zero mean function m(x) and with
a covariance matrix defined by a kernel designated by the
user, K(x,x0), which stores information about the correlation
between the input points.29 The Gaussian Process is therefore
defined as:

f(x) B GP(m(x),K(x,x0)). (2)

The posterior distribution, p(f|x,y), which is also normal multi-
variate, is obtained by conditioning the joint Gaussian prior
distribution on the observations (y). This allows to make
predictions (y*) for new, unobserved data.

The models were developed and analysed using MATLAB’s
already implemented tools.

3.2 Featurization methods

The choice of input features for our model was primarily
guided by chemical and physical intuition, as well as by domain
knowledge. Recent efforts have shown that universal descriptors for
machine learning, which capture targeted information about
systems (e.g. features related to the fitting of potential energy
surfaces, such as Coulomb matrices) give high accuracy in many
tasks of predicting molecular properties. This has tremendously
helped obtain valuable information about systems without a priori
information, in an ‘‘automated’’ manner. In this work, we show that
good accuracy can also be obtained with the use of physico-
chemical properties and molecular fingerprints solely selected using
domain intuition and judgment, rather than canonical feature
selection algorithms. This was proven previously in the work of
Liu et al. in predicting dipole moments of diatomic molecules,
explaining the good performance of intuitively chosen predictors

over abstract, general purpose ones, when using small datasets.30

To subsequently validate the chosen featurization scheme, an
embedded type feature selection mechanism was implemented
(see Section 4), which learned feature importance as part of the
model learning process. A comparison of the performances of
various combinations of predictors is also provided.

That being said, we devised what properties would be most
relevant to describing the second virial coefficient, from a
physical perspective. The features used in this work belong to
three categories: physical properties that can describe molecular
interactions (partial atomic charges and valence electrons),
topology features that characterize similarity and complexity of
compounds, deduced from cheminformatics (Morgan and
E-state fingerprints) and intrinsic properties of molecules (molecular
weight), to account for their different sizes. All of the input
features are available and easy to compute, and in our case, they
were generated using RDKit.18 A further explanation for the
choice of physical and topological features is outlined below.
� The minimum and maximum partial charges of a molecule

are correlated with the molecule’s dipole moment. This is
supported by the recent work of Veit et al., which implements
a partial-charge model to predict dipole moments of
molecules.31 The presence of a dipole moment in a molecule
leads to a dipole–dipole interaction apart from the van der
Waals interaction of non-polar molecules. The dipole moment
of a molecule is proven to increase the attractive forces between
molecules and therefore to lower B2 for a given temperature.32

This shows a direct relationship between B2 and the magnitudes
of the minimum and maximum partial charges. The partial
charges used in this work were computed using RDKit, which
employs the procedure described by Gasteiger.33 This computes

Fig. 2 Experimental values of second virial coefficients from the filtered database as a function of temperature. The two bar charts in the inset show
classifications of inorganic and organic compounds in the dataset, as well as the number of data points for each class of compounds. The associated box
plots for temperature and second virial coefficients values are also shown, with a 1.5 maximum whisker length.
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charge distribution in molecules based on the identities of
individual atoms and their connectivities.
� Morgan fingerprints represent a well-known method for

molecular characterization in terms of topology and connectivity
within a molecule. In particular, a molecule is characterized by a
fingerprint that contains 1024 bits, and each of these bits
represents a fragment, i.e., a possible scenario of individual
atoms and their environment (meaning all neighbouring atoms
within a diameter of four chemical bonds) within the molecule.
The ‘‘extended connectivity’’ of atoms is computed using Morgans
extended connectivity algorithm.23 Therefore, the complexity of a
molecule can be assessed by counting how many bits out of 1024
are needed to describe connectivities in a molecule, as well as
element types, charges and atomic masses.23 Furthermore,
Morgan fingerprints can be used to generate a similarity score
to a reference molecule. This can be obtained through commands
implemented in RDKit.18 In our study, the reference molecule was
chosen to be the one with the highest number of nonzero bits in
the Morgan fingerprint, i.e., the most complex molecule from this
point of view: 2-ethylthiophene. In this way, a similarity score to
the fingerprint of the reference molecule was attributed to each
molecule in the database, as an input feature. Intuitively, this is a
measure of comparison between environments, connectivities and
chemical features within different molecules, which can further be
relevant to comparing 2-body interactions for different molecules.
� The E-state fingerprint has also been used to characterize

the molecules in the data set. This fingerprint is based on the
electrotopological state indices of atoms within a molecule.23

These encode information related to the valence state, electro-
negativity of atoms and the molecule’s topology. In particular,
we translate the information for each molecule into a numerical
descriptor through the ratio between the total summation of
E-state indices for all atoms and the summation of the number
of times each possible atom type appears in the molecule.

3.3 Model performance evaluation

GPR, as a general fitting approach, needs a method to characterize
its performance. In other words, an error estimation is needed for
the proper evaluation of GPR models and the posterior identifi-
cation of outliers of the model.

One of the most common error estimators is the mean
absolute error (MAE), defined as

MAE ¼ 1

N

XN
i¼1
jyi � yi

�j; (3)

where N is the total number of values in the data set, yi are the true
values of second virial coefficients, and yi* are the predictions.

In GPR, the predictions are being made after examining
correlations between input features and observations in the
training set. This is done without prior knowledge of the test set
and, implicitly, no weighting on it, making the root mean
squared error (RMSE), which is defined as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1
ðyi � yi�Þ2

vuut ; (4)

a practical evaluation tool. The RMSE of predictions on the test
data will be used along this work. However, when predicting
physical or chemical quantities, it may be better to have a
dimensionless error estimator. The normalized error (rE), given as

rE ¼
RMSE

ymax � ymin
; (5)

does not have units since it is defined as the ratio between the
RMSE and the extension of the data. Therefore, the normalised
error is an important error estimator regarding GPR, and it will be
used throughout this work.

4 Results

Second virial coefficients are learned at a given temperature
through a GPR model from molecular and cheminformatics-
based properties of compounds. A filtered dataset of 6933
second virial coefficients for different ranges of temperatures
was used to train and test the GPR model. All data was
randomly divided into train and test sets to find the best
featurization scheme for our predictions and to investigate
the performance of the chosen model, together with its covariance
function and parameters. For model selection and to avoid over-
fitting, 5-fold cross validation was implemented. The model’s
extrapolation capabilities were evaluated by testing on tempera-
tures outside of the training range for each compound. Finally,
applicability and transferability were analysed by testing the
model on 42 different organic molecules, left out of the training
process.

4.1 Featurization performance analysis

To assess the performances of the proposed features and to
decide on the best featurization scheme, a GPR model based on
a rational quadratic kernel function was implemented:

Kðx; x0Þ ¼ s2 1þ ðx� x0Þ2
2al2

� ��a
; (6)

where s2 is the signal variance, l is the characteristic length
scale of the function and a determines the weighting between
different length scales. l, a 4 0.

The results of using temperature, molecular weight, minimum
and maximum partial atomic charges, and similarity of the
Morgan fingerprint to that of a reference molecule, as input
features, are shown in Fig. 3. The training was done on 5547
randomly selected data points, using 5-fold cross-validation, and
1386 predictions were made on the remaining ‘‘out-of-sample’’
points. It is easily noticed from the figure that most of the
predicted values for the second virial coefficient agree with the
true experimental values, translating into an excellent perfor-
mance and predictive capability of the model at hand. This
performance is characterized by an RMSE of 58 mL mol�1 and
a normalized error of 0.8%, as it is shown in Table 1. For
reference, a multiple linear regression (MLR) model with the
same descriptors was implemented and registered an RMSE of
B525 mL mol�1. This indicated the impact of non-linearity on
the relationship between second virial coefficients and the
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proposed descriptors, and implicitly the requirement of a non-
linear method such as GPR in this matter.

To further analyze the performance of our GPR model we
have calculated its learning curve, i.e., the model performance
as a function of the number of points in the training set while
keeping the number of data points in the test set constant,
which is shown in the inset of Fig. 3. As a result, it is observed
that the model’s learning capabilities are converged around
4000 data points of the training set. Therefore, the interpola-
tion performance of our model cannot benefit from having a
larger number of training points for the families of compounds
already present in the training set.

The combination and the number of input features for our
model were selected after the implementation of different
featurization schemes and the comparison of their perfor-
mances. The results of this procedure are shown in Table 1.
Here, it is noticed that when the number of valence electrons is
used as a predictor instead of the partial atomic charges, a
much poorer performance is obtained, at the same dimension-
ality (5D). This is suggestive of the importance of minimum and
maximum partial atomic charges as predictors in our model,
presumably succeeding to account for the strength of interac-
tions between molecules, more than just for their internal
electronic structure. In addition, we notice that although the
E-state fingerprint contains additional information concerning
the valence state of atoms, it does not show an improved perfor-
mance to that of the Morgan fingerprint in a 5-dimensional
representation. Indeed, this correlates with our previous statement
about the major role of partial charges in comparison with the
number of valence electrons regarding molecular interactions.

To get a measure of the importance of individual predictors
relative to each other, the automatic relevance determination
(ARD)34 rational quadratic kernel function was used in GPR:

Kðx; x0jyÞ ¼ s2 1þ 1

2a

Xd
m¼1

ðxm � x0mÞ2
sm2

" #�a
; (7)

where ym = log(sm) for m = 1,2,. . .d with yd+1 = log(s), and d is
the total number of predictors. ARD allows the assignment of
separate length scales for each predictor, instead of the same
one for all of them. If an input’s length scale is large, the
distance one needs to move in the input space so that
the function values become uncorrelated is also large, so that
the covariance will become almost independent of that input.

Fig. 3 (a) GPR 5-fold cross-validated predictions of temperature-dependent
second virial coefficients, B2(T), on ‘‘out-of-sample’’ randomly chosen test data,
representing 20% of the entire dataset. Error bars represent the uncertainty in the
GPR prediction. A 5 dimensional representation of input features is used
(temperature, molecular weight, minimum and maximum partial atomic charges
and similarity of Morgan fingerprint to that of a reference molecule). The inset
shows the corresponding learning curve for this model, in which 1386 ‘‘out-of-
sample’’ randomly selected test points were used. The shaded area stands for the
error bars after 5 different iterations. (b) A zoom into the plot from panel (a).

Table 1 Predictors ranking by the test RMSE score of the 5-fold cross-validated GPR model. The symbols used in the table are assigned as follows: T is
the temperature, MW stands for the molecular weight, dmin, dmax are minimum and maximum partial atomic charges, respectively, MFnonzeros is the
number of nonzero bits in the Morgan fingerprint, MFsimilarity is the similarity of the compound’s fingerprint to that of the reference compound, E-state
encodes information on the E-state fingerprint and VE is the number of valence electrons. The results are obtained using GPR trained on 5547 randomly
selected training points with 5-fold CV, being tested on 1386 ‘‘out-of-sample’’ points. Errors were reported after doing 10 different iterations

Dimension Features Test RMSE (mL mol�1) Test MAE (mL mol�1) Test rE (%)

4D (T,MW,dmin,dmax) 80 � 6 27 � 0.6 1.1 � 0.1
5D (T,MW,dmindmax, MFsimilarity) 58 � 2 22 � 0.6 0.8 � 0.03
5D (T,MW,dmin,dmax, MFnonzeros) 68 � 7 23 � 0.5 0.9 � 0.1
5D (T,MW,dmin,dmax, E-state) 67 � 4 24 � 0.4 0.9 � 0.1
5D (T,MW,VE, MFnonzeros, MFsimilarity) 155 � 10 56 � 3 2.1 � 0.1
6D (T,MW,VE,dmin,dmax, MFnonzeros) 60 � 2 22 � 0.4 0.8 � 0.03
6D (T,MW,VE,dmin,dmax, MFsimilarity) 57 � 3 22 � 0.4 0.8 � 0.04
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This is known as an embedded method for feature selection, as
the selection is done during model training. The predictor data
was standardized to allow for consistency. In this way, a weight
was assigned to each input feature and was normalized, as
shown in Fig. 4. The ranking is consistent with our previous
evaluation of the featurization schemes’ performances (see
Table 1): temperature is the most important, followed by partial
atomic charges and/or molecular weight. Morgan fingerprint
similarity is expected to perform better than the number of
nonzero bits in the fingerprint. It is worth noticing that partial
charges are better ranked than the number of valence electrons.
This confirms our intuition on the relevance of partial charges
over number of valence electrons, which is also supported by
the results shown in Table 1.

4.2 Extrapolation to marginal temperatures

To evaluate our model’s extrapolation capability, the data was
divided as follows: for each molecule, data points corres-
ponding to marginal temperatures (meaning the lowest 10%
and the highest 10% temperatures) were used for testing,
whereas the rest were used for training. This selection naturally
yielded a training set comprising 80% of the total data, on
which 5-fold cross-validation was applied. A GPR model based
on a rational quadratic kernel was implemented, using the best
featurization scheme obtained in the previous subsection (tem-
perature, molecular weight, minimum and maximum partial
atomic charges and similarity of Morgan fingerprint to that of
a reference molecule). This allowed a prediction of second virial
coefficients characterized by an RMSE of 157 mL mol�1 and by a
relative error of 2.1%, which is portrayed in Fig. 5. By this means,
it can be noticed that the model achieves successful extrapola-
tion for low, as well as for high temperatures corresponding to
compounds in our dataset, with a few exceptions. Among these,
the most distinguishable outliers are generated by ethanenitrile,
toluene, methyl ethanoate and ethanol. In some cases, these
molecules are poorly represented in the training set, either by the

absence of other molecules of their class, or by large spacing
between the temperatures at which B2 values are measured. In
other cases, the descriptors fail to describe the molecule.

While Gaussian process regression serves well as an
approach to smooth interpolation,29 it usually performs worse
in extrapolation tasks. Our model illustrates well the former
statement, exhibiting excellent interpolation in the previous
subsection. In addition to this, the representation of input
features, as well as the chosen kernel function prove to lead to
reasonable extrapolation capability, with only a few molecules
experiencing the limitations of the model. The rational quadratic
kernel differs from the squared exponential one (a popular
choice of kernel function for GPR) in that it contains an addi-
tional parameter (a) which determines the relative weighting
between large and small-scale variations.29 This eventually leads
to a better generalization of the long term trend, compared to a
squared exponential kernel, and therefore better extrapolation.
The fact that the same model achieves both interpolation and
extrapolation translates into considerate choice of both input
features and kernel function.

4.3 Applicability and transferability

Finally, to estimate the applicability of our model, 42 different
organic molecules were left out of the training process and were
tested on. This generated a training set comprising 6258 data
points (B90%) and a test set which registered 675 data points
(B10%) for organic molecules only. The molecules in the test
set were selected so that they cover the widest range of organic
families possible (see Fig. 2), having, at the same time, corres-
ponding examples of their families in the training set. The
choice to only include organic molecules in the test set is rooted
in the general poorer performance of inorganic compounds
when compared to organic ones. While the model succeeds in
predicting B2 values for inorganics in interpolative regimes and

Fig. 4 Ranking of predictors based on the characteristic length scale of
each predictor, obtained with an ARD rational quadratic kernel. The
symbols used in the figure were defined in the caption of Table 1. The
errors associated with each weight are the result of performing 5
iterations.

Fig. 5 GPR 5-fold cross-validated predictions of B2(T) for marginal tem-
peratures of each compound (representing 20% of the entire data set). A 5
dimensional representation of input features is used (temperature, mole-
cular weight, minimum and maximum partial atomic charges and similarity
of Morgan fingerprint to that of a reference molecule).
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when extrapolating to marginal temperatures, it is not ideally
applicable to inorganic molecules which are unseen in the
training set.

Nonetheless, the model succeeds to predict second virial
coefficients for organic molecules with an RMSE of 195 mL mol�1

(see Fig. 6), which is indicative of the greater capability of the input
features to describe organic compounds, rather than inorganic
ones. This is naturally expected, as Morgan fingerprints incor-
porate valuable information for organic molecules concerning

topology, element types and atomic charges. Fig. 7 reveals some
examples of predicted, as well as true values for B2 plotted
against temperature. Instances from three different organic
families are presented, for which the predicted curve is smooth.
At the same time, it can be seen that the inorganic molecule
phosphine performs poorly compared to the other instances.

The model was trained using 5-fold cross-validation, having a
training RMSE of 62 mL mol�1 and a test RMSE of 195 mL mol�1

(relative error 2.7%). Generally, the model predicts with great
accuracy second virial coefficients for molecules well-represented
in the training set, such as hydrocarbons (see Fig. 7a). However,
the model is not transferable to molecules which have no
resemblance to the training set, being limited, in this case, to
‘‘out-of-sample’’ compounds that interpolate. Nonetheless, the
wide range of families present in our database offer an optimistic
view towards the applicability of our model, as various commonly
encountered classes of organic compounds are encompassed.

Finally, the performance of our model was analysed in
contrast to the performances of established methods for the
calculation of B2 for polar substances through empirical equa-
tions and through the corresponding states principle.37 Table 2
contains deviations from experimental values of second virial
coefficients calculated through four different methods. The
data reinforces the points made previously about our model.
That is, the model is characterised by a poor performance in
predicting second virial coefficients for inorganic compounds,
but proves a generally better performance relative to other
methods in the prediction for organic compounds.

5 Conclusions

We have developed a method for estimating second virial
coefficients using Gaussian process regression with a relative
error t1% in the interpolative regime. The same model was
used to predict second virial coefficients for marginal tempera-
tures of all compounds (relative error 2.1%), as well as for ‘‘out-of-
sample’’ organic molecules resembling the training set (relative
error 2.7%). This has been possible through the use of a low-
dimensional representation of predictors based on accessible,

Fig. 6 GPR 5-fold cross-validated predictions of B2(T) for organic mole-
cules absent from the training set. A 5 dimensional representation of input
features is used (temperature, molecular weight, minimum and maximum
partial atomic charges and similarity of Morgan fingerprint to that of a reference
molecule).

Fig. 7 Examples of plots showing predicted and true values for second
virial coefficients as a function of temperature. Training was done on all
but the presented molecules, using a GPR model with 5-fold cross
validation and a 5 dimensional representation of input features.

Table 2 Percentage deviations of second virial coefficient predictions from
experimental values by various methods. The deviations are normalised and

expressed as RMS ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

PN
i¼1

jyi � y�i j
yi

� �
2

s
, where yi and yi* are experi-

mental and calculated values of B2, respectively. Abbreviations for B2

calculation methods are as follows: PC: Pitzer and Curl (1957),35 TD: Tarakad
and Danner (1977),36 ECS: Xiang (2002),37 GPR: Gaussian process regression
method described in this work

Compound PC RMS TD RMS ECS RMS GPR RMS

1,3-Dimethylbenzene 8 8 6 4
Phenol 10 6 6 2
1,2-Dichloroethane 10 9 9 11
1-Propanol 13 13 16 12
Bromoethane 9 17 9 13
Water 10 34 20 26
1-Butanol 11 10 23 4
2-Pentanone 21 7 6 7
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intuitive, and reproducible molecular features, conveniently
obtained through RDKit. The applicability of our model is char-
acterized by great performance for molecules well-represented in
the training set by instances of their families, which are high in
variety. When compared to traditional techniques used to
calculate second virial coefficients, our method stands out in
particular through its simplicity and through its efficiency,
avoiding the difficulties posed by computational cost or by
experimental obstacles. The input features are readily obtained
through RDKit and the time required to train our best model is
approximately 74 seconds on a 2 GHz Intel Quad-Core i5
machine. Besides, our method shows a generally better perfor-
mance than that of several established semi-empirical procedures
employed for the prediction of the quantity. Finally, it is worth
emphasising the important role the existence of a comprehensive
and high quality database has played in this work.
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