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Non-adiabatic quantum interference in the
ultracold Li + LiNa - Li2 + Na reaction

Brian K. Kendrick, *a Hui Li, b Ming Li,b Svetlana Kotochigova, b

James F. E. Croft cd and Naduvalath Balakrishnan e

Electronically non-adiabatic effects play an important role in many chemical reactions. However, how

these effects manifest in cold and ultracold chemistry remains largely unexplored. Here for the first time

we present from first principles the non-adiabatic quantum dynamics of the reactive scattering between

ultracold alkali-metal LiNa molecules and Li atoms. We show that non-adiabatic dynamics induces

quantum interference effects that dramatically alter the ultracold rotationally resolved reaction rate

coefficients. The interference effect arises from the conical intersection between the ground and an

excited electronic state that is energetically accessible even for ultracold collisions. These unique

interference effects might be exploited for quantum control applications such as a quantum molecular

switch. The non-adiabatic dynamics are based on full-dimensional ab initio potential energy surfaces for

the two electronic states that includes the non-adiabatic couplings and an accurate treatment of the

long-range interactions. A statistical analysis of rotational populations of the Li2 product reveals a

Poisson distribution implying the underlying classical dynamics are chaotic. The Poisson distribution is

robust and amenable to experimental verification and appears to be a universal property of ultracold

reactions involving alkali metal dimers.

1 Introduction

Ultracold molecules and in particular ultracold polar molecules
are at the forefront of precision spectroscopy, sensing, controlled
studies of chemical reactions, quantum many-body physics, and
quantum computing.1–10 Polar molecules comprised of hetero-
nuclear alkali metal dimers such as KRb, NaK, NaRb and LiNa
have attracted considerable attention in recent years in
controlled studies of chemical reactions.2,5,6,9,10 Electronically
non-adiabatic effects are expected to play an important role in
atom-dimer reactions involving these molecules. The reactions
proceed along a barrierless reaction pathway into a deep
attractive potential well. A conical intersection (CI) occurs
between the ground electronic state and the first excited doublet
electronic state within the attractive well region and this CI is
energetically accessible even for collision energies in the ultra-
cold limit for ground state reactants. Thus, a non-adiabatic
quantum mechanical treatment is required that includes both

electronic states. Explicit quantum calculations for these reac-
tions remain a formidable challenge even for dynamics on a
single Born–Oppenheimer adiabatic electronic potential energy
surface (PES).11–13 However, calculations on a single adiabatic
PES are not accurate for these systems even if a generalized
vector potential based approach14,15 is used to include the
geometric phase (GP)14,16 associated with the CI. Fortunately,
we have recently developed a new non-adiabatic quantum
reactive scattering methodology that has made it possible to
rigorously treat ultracold reactions occurring on two coupled
electronic states for the first time.17 This work presents the first
rigorous treatment of non-adiabatic chemistry in the ultracold
regime for systems of current experimental interest, advancing
the state-of-the-art in the theoretical treatment of ultracold
chemistry to new frontiers.

Non-adiabatic dynamics is most often associated with colli-
sions at high (thermal) energies where excited electronic states
are typically more accessible. At these high energies quantum
effects are much less pronounced and the dynamics of heavy
nuclei is often treated classically. In contrast, at ultracold
collision energies a fully quantum mechanical treatment is
required even for heavy nuclei and fundamentally new reaction
mechanisms can also come into play. The unique properties of
ultracold collisions therefore provide a novel testing ground for
exploring and understanding non-adiabatic quantum dynamics.
Quantum phenomena (interference, Fermi–Bose statistics, phase
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shift quantization, etc.) are dramatically enhanced at ultracold
temperatures and the delicate interplay between them can lead to
unprecedented sensitivity and control of the collision outcome.
Alkali metal systems in particular provide an ideal test bed for
ultracold experimental and theoretical studies of non-adiabatic
effects and their possible technological applications.

In this work, we present a first principles full-dimensional
quantum dynamics study of non-adiabatic effects in the Li +
LiNa(v = 0, j = 0) - Li2(v0, j0) + Na reaction. The methodology
also includes a rigorous treatment of the identical particle
exchange symmetry between the two 6Li nuclei. The rotationally
resolved rate coefficients are computed as a function of colli-
sion energy from 1 nK to 10 K using a coupled two-state
diabatic electronic representation.17–19 The non-adiabatic
results are compared to a conventional Born–Oppenheimer
calculation based on a single adiabatic electronic PES. Both
of these calculations are also compared to a universal model
which is based on a simple one-dimensional reaction path
consisting of a long-range van der Waals (C6) potential.20

Quantum interference between the two reaction pathways
which encircle the CI is shown to significantly enhance or
suppress the rate coefficients at ultracold collision energies
(Ec o 1 mK). The GP which is included in the non-adiabatic
calculations reverses the nature of the quantum interference
from constructive to destructive and vice versa.21–23 Thus, the
non-adiabatic ultracold rate coefficients are significantly
enhanced or suppressed relative to the conventional Born–
Oppenheimer rate coefficients when quantum interference
effects are significant. The quantum interference effects lead
to strong fluctuations in the rotationally resolved rate coefficient
distributions. A statistical analysis of these fluctuations reveals
that they are Poissonian which is consistent with an underlying
classically chaotic dynamics.12,13 The Poisson distributions are
shown to be robust with respect to variations in the PES and
chemical system and therefore appear to be a universal property
of these types of reactions that proceed through a potential
well. The quantum dynamics calculations are based on full-
dimensional accurate ab initio electronic PESs which are
computed for both the ground and first excited states for the
first time. A state-of-the-art electronic structure code (MOLPRO)
is used to compute the electronic PESs and the non-adiabatic
coupling elements.24 Also included in the PESs is an accurate
experimentally based treatment of the long range (van der
Waals) interactions and diatomic potentials.

The paper is organized as follows: in Section 2 the non-
adiabatic quantum dynamics methodology is reviewed. Section 3.1
presents the Born–Oppenheimer electronic PESs for the ground
and first excited electronic states that include the prominent
energetically accessible CI. The energetics and reaction path
are discussed for the reaction as it proceeds from reactants
Li + LiNa to products Li2 + Na, and notable features of the PESs
are also emphasized. The rotationally resolved rate coefficients
are then presented in Section 3.2 and the underlying quantum
interference mechanisms are discussed in detail. Finally, in
Section 3.3 a statistical analysis of the rotational distributions
is discussed and the resulting Poisson distributions are

presented. The conclusions are presented in Section 4 and
additional analysis, figures, and the PES scaling sensitivity
studies are included in the Appendix.

2 First principles non-adiabatic
quantum dynamics

First principles non-adiabatic quantum dynamics calculations
require solving a generalized Born–Oppenheimer equation for
the nuclear motion which includes both the ground and first
excited electronic states. That is, the total molecular wavefunc-

tion |Ci is expanded as jCi ¼
P2
i¼1

~ciðxÞjjd
i i; where |jd

i i denotes

the diabatic electronic basis functions and the expansion

coefficients ~ci are the nuclear motion wave functions. The
nuclear coordinates relative to the center-of-mass of the mole-
cule are collectively denoted by the six-dimensional vector x
which includes the three interatomic degrees of freedom and
three rotational (Euler) angles. Different choices for the nuclear
coordinates can be used as will be discussed in detail below.
For numerical reasons it is advantageous to use a diabatic
electronic representation for which the PESs are well-behaved
smooth functions of the nuclear coordinates. In addition, the
coupling between the two electronic states appears simply as an
off-diagonal element in the potential energy matrix (PEM)
(i.e., there are no derivative coupling terms in the kinetic energy
operator).17 The relevant diabatic Schrödinger equation for the
nuclear motion is given by

T̂ 0

0 T̂

0
@

1
Aþ Vd

11 Vd
12

Vd
21 Vd

22

 !2
4

3
5 ~c1ðxÞ

~c2ðxÞ

0
@

1
A ¼ E

~c1ðxÞ

~c2ðxÞ

0
@

1
A; (1)

where the first term in brackets is the diagonal kinetic energy
operator for the nuclear motion with matrix elements T̂ =

�h�2r2/(2m), ~r denotes derivatives with respect to x and m is
three-body reduced mass. The second term is the PEM which
couples the two diabatic electronic states and is a function of
only the three interatomic degrees of freedom (x). That is, each
matrix element (i.e., the V d

11, V d
22 and V d

12 = V d
21) of the PEM is a

three-dimensional PES. We note that in contrast to the 2 � 2
diabatic Schrödinger equation given in eqn (1), a conventional
Born–Oppenheimer quantum dynamics calculation solves the
adiabatic single surface Schrödinger equation

[T̂ + Va
1(x)]c1(x) = Ec1(x). (2)

where Va
1 denotes the adiabatic ground electronic state PES

(which can be expressed in terms of the diabatic PEM elements,
see Section 2.1).

A first-principles solution of eqn (1) requires two primary
steps: (1) a quantum mechanical ab initio calculation of the
diabatic PEM, and (2) a numerically exact quantum mechanical
solution of the six-dimensional diabatic Schrödinger equation
for the nuclear motion. Each of these steps are highly non-
trivial and require extensive calculations as discussed in the
following Sections 2.1 and 2.2, respectively.
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2.1 Ab initio potential energy surface calculations

The PESs of the LiNaLi collisional complex were not available
from the literature and their computation required substantial
effort due to the complexity of the multi-electron open-shell
systems. We have computed the two energetically-lowest non-
relativistic doublet adiabatic potentials, 2A0 and 2B0, with the
MOLPRO electronic structure package.24 The core electron
shells of Li and Na are described by the Stuttgart/Cologne
energy-consistent, single-valence electron, relativistic pseudo-
potentials ECP2SDF and ECP10SDF25 leaving only three valence
electrons in the active space for explicit treatment. The polar-
ization of the effective cores and residual core–valence correla-
tions are modeled via the l-independent core polarization
potential (CPP) with Müller–Meyer damping functions.26 The
CPP parameters, i.e. static dipole polarizabilities of the atomic
cores are taken from ref. 27. Cutoff functions with exponents
0.95 a.u. and 0.82 a.u. are employed for Li and Na, respectively
(here a.u. stands for atomic unit). Basis sets from ref. 28
describe the three valence electrons, specifically, uncontracted
sp basis sets augmented by additional s, p, d and f polarization
functions are used for both Li and Na. The multi-configurational
self-consistent field (MCSCF) method29,30 is first used to obtain
configuration state functions (CSFs). A multi-reference configu-
ration interaction (MRCI) calculation31,32 is then performed
using a large active space constructed from the CSFs, giving
the three-dimensional adiabatic surfaces of the two lowest
energy states for LiNaLi, Va

1 and Va
2. The adiabatic PESs are

computed as functions of the separation between Na and first
Li atom, R1, the separation between Na and second Li atom, R2,
as well as the angle y between R1 and R2. We have computed the
potentials on the ten angular grid points y = 101, 201, 401, 601,
801, 1001, 1201, 1401, 1601, 1781, and radial R1 and R2 grids from
Rmin = 3.2a0 to 10a0 in steps of 0.2a0 and from 10a0 to Rmax = 19a0

in steps of 0.3a0 with the constraint that the separation between

the two Li atoms R3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1

2 þ R2
2 � 2R1R2 cos y

p
4Rmin (a0 =

0.0529177 nm is the Bohr radius). In total, more than 40 000
points were calculated.

The accuracy of the LiNaLi trimer potentials has been
determined from a comparison of the singlet X1S+ and triplet
a3S+ potentials of LiNa and Li2 determined with MOLPRO
using the same basis sets as for the trimer calculations and
the spectroscopically-accurate potentials from ref. 33–35. For
example, our computed well depths were smaller by no more
than hc � 25 cm�1 for both the singlet and triplet dimer
potentials corresponding to 0.3% and 9% of their well depths,
respectively. Here, h is the Planck constant and c is the speed of
light in vacuum.

In order to study the reaction dynamics we need to diabatize
the two adiabatic potentials Va

1,2(R1,R2,y) of LiNaLi, as they have
a conical intersection for a single geometry with C2v symmetry.
In the adiabatic representation, the electronic eigenstates |ja

1,2i
are coupled by non-adiabatic first-derivative couplings

hja
1j~rjja

2i with respect to the nuclear coordinates. The non-
adiabatic coupling matrix element was computed for all of the
grid points using MRCI theory and a finite difference method

for the derivatives (the DDR procedure). These non-adiabatic
derivative couplings are problematic at the CI where they
become singular. Fortunately, the singular part of these couplings
are removable. That is, the non-adiabatic coupling matrix
elements are vector quantities and can be decomposed into
longitudinal (removable) and transverse (non-removable or
residual coupling) components.36,37 By an appropriate unitary
transformation from the adiabatic to diabatic electronic repre-
sentation, the problematic singular (longitudinal) part of the
derivative coupling at the CI can be removed. For two electronic
states this can be achieved with the transformation

jjd
1i

jjd
2i

 !
¼

cos b sin b

� sin b cos b

 ! jja
1i

jja
2i

 !
; (3)

where the real-valued mixing angle b is a function of R1, R2, and
y and the two diabatic electronic wavefunctions |jd

1,2i are
independent of these three coordinates. Hence, the non-adiabatic
coupling between the two adiabatic states can be expressed as

ja
1j~rjja

2

D E
¼
X2
i¼1
hja

1jjd
i ihjd

i jr
X2
j¼1
jjd

j ihjd
j jja

2i
" #

¼ ~rb (4)

by inserting the identity
P2
j¼1
jjd

j ihjd
j j ¼ 1 twice. The mixing angle b

is then found assuming that b = 0 for all geometries with C2v

symmetry, i.e. R1 = R2, and spatial integration of eqn (4).38 The

signs of hja
1j~rjja

2i as computed within MOLPRO are arbitrary
from geometry to geometry. We chose the convention that leads to
a smooth b. The electronic potential matrix in the diabatic basis is
the 2 � 2 matrix

Vd ¼
Vd

11 Vd
12

Vd
21 Vd

22

 !
(5)

with

Vd
11 = Va

1 cos2 b + Va
2 sin2 b, (6)

Vd
22 = Va

2 cos2 b + Va
1 sin2 b, (7)

Vd
12 = Vd

21 = (Va
2 � Va

1)cos b sin b, (8)

where we have suppressed all R1, R2, and y dependences for
clarity.

Finally, we fit and interpolate the diabatic PESs Vd
ij(R1,R2,y)

for i, j = 1, 2 with a two step procedure. Using the dimer-in-
molecule theory,39 we separate the diabatic PESs into a pairwise
and a three-body component with

Vd
ij(R1,R2,y) = Vpw

ij (R1,R2,y) + s(R1,R2,y)V3B
ij (R1,R2,y). (9)

The pairwise components Vpw
ij (R1,R2,y) are weighted sums of

the spectroscopically-accurate X1S+ and a3S+ potentials of NaLi
and Li2.33–35 The weights follow from the realization that the
electron angular momenta of the individual Li and Na atoms in
their electronic ground state are h�/2 (or spin-1/2) and that the
two diabatic trimer electron basis functions have a total electron
angular momentum equal to h�/2 for doublet states, after
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coupling the three spin-1/2 atomic electron angular momenta
(h� is the reduced Planck constant).

The three-body component V3B
ij (R1,R2,y) is fit using the

reproducing kernel Hilbert space (RKHS) technique40–42 and
relies on an expansion in terms of Legendre polynomials
Pl(cos y) as functions of cos y. That is,

V3B
ij ðR1;R2; yÞ ¼

X8
l¼0

Al;ijðR1;R2ÞPlðcos yÞ; (10)

where we expand up to l = 8 and the coefficients Al,ij(R1,R2)
have analytical representations with as many linear parameters
as the combined number of R1 and R2 grid points.

In order to extrapolate the three-body component V3B
ij

(R1,R2,y) for geometries where one or both separations R1 or
R2 are larger than Rmax, we combine two strategies. First, we use
the fact that the three-body component of the adiabatic poten-
tials Va

i fall off as43

V3B;a
i ðR1;R2; yÞ !

C9

R1
3R2

3R3
3

(11)

when all three pair separations are large. Here, R3 is the
separation between the two Li atoms and the three-body dis-
persion coefficient C9 still depends on the shape of triangle
with sides R1, R2, and R3. Therefore, we extended the (R1,R2,y)
grid of the diabatic potentials V3B

ij (R1,R2,y) to all geometries with
the following procedure: for R1 4 Rmax and fixed grid points R2

and y the C9 coefficients are determined from V3B
ij (Rmax,R2,y);

for R2 4 Rmax the C9 coefficients are determined from V3B
ij

(R1,Rmax,y); and when both R1 and R2 are larger than Rmax the
C9 coefficients are determined from V3B

ij (Rmax,Rmax,y). We used a
step size of 0.3a0 from Rmax up to 50a0 for both R1 and R2. In
fact, the RKHS procedure described in the previous paragraph
has been applied to this extended data set. Finally, the second
part of our strategy to extrapolate to large separations is to
multiply the three-body component with a switching function

sðR1;R2; yÞ ¼
Y3
i¼1

1

2
þ 1

2
tanh �ðRi � RcÞ=2½ �

� �
(12)

with Rc = 30a0. This function is unity when the three atoms are
close to each other but switches smoothly to zero when the
separation between any two atoms is large.

2.2 Non-adiabatic quantum dynamics

The numerically exact quantum mechanical solution of the
2 � 2 diabatic Schrödinger eqn (1) is based on a time-
independent coupled-channel (CC) approach.17,44,45 Adiabatically
adjusting Principal axis Hyperspherical (APH) coordinates are
used in the interaction region and Delves hyperspherical coordi-
nates are used in the long-range asymptotic region.17,44–46 The
hyperradius r is common to both coordinate systems which
facilitates the coordinate transformation from the APH to Delves
at an intermediate value of r = rm (determined by numerical
convergence studies, see below). Furthermore, hyperspherical
coordinates have the advantage of treating all reactant and
product channels simultaneously and allow for a natural

numerical separation of the problem into radial and angular
parts. We choose the body frame (BF) z-axis perpendicular to
the plane of the triatomic molecule and the BF x and y axis are
chosen to lie along the instantaneous principal axes of inertia
(i.e., the Q and q vectors of Pack and Parker, respectively).44

The collective set of six nuclear coordinates are denoted by x = (x,x̂)
where the three internal coordinates are x = (r,y,f) and x̂ = (a,b,g)
(the three Euler angles which specify the orientation of the BF
relative to the space fixed frame). The hyperradial coordinate r and
hyperangles y and f correspond to a symmetric stretch, bending,
and pseudorotational motion, respectively.47 These three coordi-
nates can be expressed explicitly in terms of the three internuclear
distances (see ref. 44 for details).

The kinetic energy operator in hyperspherical coordinates
can be expressed as

T̂ ¼ � �h2

2mr5
@

@r
r5
@

@r
þ L̂2

2mr2
; (13)

where the first term is the radial part and the second term is the
angular part. The operator L̂ is the grand angular momentum
operator, and the angular part of eqn (13) is given by

L̂2

2mr2
¼ �8�h2

mr2
@2

@~y2
þ cot ~y

@

@~y
þ 1

2ð1þ cos ~yÞ
@2

@f2

" #

þ 1

mr2
J2
x

ð1� cos ~y=2Þ
þ

J2
y

ð1þ cos ~y=2Þ
þ J2

z

ð1þ cos ~yÞ

" #

þ 4 sin ~y=2

mr2ð1þ cos ~yÞ
Jz

�h

i

@

@f
;

(14)

where the polar angle ~y = p � 2y, and Jx, Jy, Jz denote the BF
components of the total angular momentum operator J. For
ultracold collision energies we only need to consider the single
orbital angular momentum l = 0 (i.e., s-wave scattering). Since
the reactant LiNa is in its ground rotational state j = 0, this
corresponds to total angular momentum J = l + j = 0.

The potential matrix strongly couples the radial (r) and

angular (L̂, f) coordinates so that eqn (1) and (2) are nonsepar-
able. However, we can perform a numerical separation by
dividing the hyperradius r into many ‘‘sectors’’ and solving
the angular part of the problem with r fixed at the center of
each sector. The angular solutions within each sector provide
an optimal localized fixed basis for solving the CC radial
equations within that sector. The global radial solution is
obtained by propagating a set of CC equations from small to
large r across each sector. At the boundaries of each sector, the
radial solutions are transformed from one sector basis to the
next using the overlap matrix between the angular functions
computed at the two sectors. Specifically, we expand the total

diabatic nuclear motion wave function C ¼
~c1
~c2

� �
in eqn (1) in

terms of the angular functions (F) for a given sector r = rx as

CJMpq
i ðxÞ ¼ 4

ffiffiffi
2
p X

t

r�5=2zJpqit ðrÞF
JMpq
t ðw; rxÞ; (15)
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where i and t denote the CC indices, p denotes inversion parity,
q denotes the particle exchange symmetry which is relevant for

triatomic molecules with identical nuclei, and w � (~y,f,a,b,g)
denotes the angular coordinates of the 5D hypersphere. The
radial coefficients zJpq

it are computed numerically from the
propagation of the CC radial equations

@2

@r2
þ 2m

�h2
E

� �
zJpqit ðrÞ ¼

2m
�h

X
t 0
hFJMpq

t jHcjFJMpq
t 0 izJpqit 0 ðrÞ (16)

where the potential coupling matrix is given by

hFJMpq
t jHcjFJMpq

t 0 i ¼ hFJMpq
t j

r2x
r2
eJpqt ðrxÞ þ Vdðr; ~y;fÞ

�
r2x
r2
Vdðrx; ~y;fÞjF

JMpq
t 0 i:

(17)

The FJMpq
t are the 5D hyperspherical functions which are

solutions to the angular equation at sector r = rx

L̂2

2mrx2
þ 15�h2

8mrx2
þVdðrx;~y;fÞ

" #
FJMpq

t ðw;rxÞ¼ eJpqt ðrxÞF
JMpq
t ðw;rxÞ:

(18)

The Vd in eqn (17) and (18) is the 2� 2 diabatic PEM given in
eqn (5)–(8). Once the angular solutions to eqn (18) are com-
puted, they can be used to compute the overlap matrices Ott0 =
hFJMpq

t (w;rx)|F
JMpq
t (w;rx+1)i and potential coupling matrices

defined in eqn (17) at each sector. These are then used to solve
the CC radial eqn (16) using Johnson’s log-derivative
propagator.48,49 At the matching radius r = rm, the radial
solution is transformed into the Delves basis using the overlap
matrix between the APH and Delves functions computed at
r = rm. The radial propagation in r is then continued to the
final asymptotic value of r = rf using an equivalent set of Delves
CC radial equations (see ref. 46 for the Delves equations).
The Delves basis functions at each sector are computed sepa-
rately for each diatomic arrangement channel (i.e., for r 4 rm

the channels are decoupled). They consist of ro-vibrational wave
functions computed numerically using a one-dimensional
Numerov propagator for the vibrational motion and a set of
analytic spherical harmonics for the rotational part. The Delves
basis functions are used to compute the potential coupling
matrices and overlap matrices between each sector analogous
to the APH propagation. Finally, at the last asymptotic value of
r = rf (determined from convergence studies, see below), the
Delves radial solution is projected onto the analytic asymptotic
radial solution in Jacobi coordinates. From this projection, the
full state-to-state scattering (S) matrix is computed for all open
reactant and product channels for total energy E. Once the S
matrix is computed, cross sections sfi and rate coefficients Kfi =
vsfi (where v is the relative collision velocity) can be computed
using standard expressions.44 We note that the f,i denote the
collective final and initial quantum numbers of the diatomic
products and reactants (i.e., f = (t0,v0, j0) and i = (t,v, j) where t0

and t denote the diatomic arrangement channel Li2 or LiNa),
respectively.

In the interaction region (r o rm), the (5D) surface function
Hamiltonian matrix in eqn (18) is diagonalized on a discrete
grid in r at 144 logarithmically spaced points between (ri =
6.0a0 and rm = 33.03a0). The 5D basis functions consist of a
hybrid FBR (Finite Basis Representation) in f, a DVR (Discrete
Variable Representation) in y, and symmetrized Wigner D
functions in a,b,g.17,45,50 The size of the DVR and FBR basis is
specified by the values of the integers łmax and mmax,
respectively.17,45 The basis size increases with r and is deter-
mined from numerical convergence studies. In this study, four
regions in r were used: 6.0 r r r 11.02a0, 11.02 o r r
19.54a0, 19.54 o r r 23.37a0, and 23.37 o r r 33.03a0. The
corresponding sets of lmax and mmax are: lmax = 99, 119, 127, and
127; and mmax = 220, 240, 260 and 280, respectively. For total
J = 0 considered in this study, the size of the angular Hamilto-
nian matrix in each region is given by (lmax + 1) � (2mmax + 1) =
44 100, 57 720, 66 688 and 71 808, respectively. Fortunately, the
size of these matrices can be dramatically reduced by using the
SDT (Sequential Diagonalization Truncation) technique.50 After
applying SDT the dimension of the largest angular Hamiltonian
matrix in each of the four regions is 13 008, 9412, 8401, and
6995. An efficient parallel numerical eigensolver (PARPACK) is
then used to numerically diagonalize the sparse Hamiltonian
matrices constructed at each sector.51 As mentioned above, the
set of angular eigensolutions of eqn (18) form a basis for the
one-dimensional CC propagation in r (see eqn (16) and (17)).
The number of CCs propagated in this work was 820 in the APH
region and 500 in the Delves region. In the Delves region, 338
uniformly spaced r values were used between rm = 33.03a0 and
the final asymptotic rf = 144.6a0. Each sector in the APH and
Delves regions was further sub-divided into 100 and 200
propagation steps, respectively. At r = rm the Delves ro-
vibrational basis functions include Li2(v = 0–8) and for each
vibrational state the corresponding maximum rotational quan-
tum numbers for Li2 are 62, 58, 54, 50, 44, 40, 34, 26 and 16,
respectively. For the LiNa channel, the v = 0–6 vibrational states
are included with corresponding maximum rotational quan-
tum numbers 61, 56, 51, 44, 37, 28 and 15, respectively.
Asymptotically at r = rf the open ro-vibrational Jacobi basis
functions at 1 nK collision energy include the single LiNa(v = 0,
j = 0) reactant channel and the product Li2(v = 0–3) with
maximum rotational quantum numbers 41, 35, 28, 18, respectively.
We note that all of the above quantum dynamics calculations
rigorously treat the identical particle exchange symmetry between
the two identical 6Li nuclei.17 Thus, the calculations are repeated
separately for each exchange symmetry, even and odd.

3 Results
3.1 Potential energy surfaces for Li2Na

The Born–Oppenheimer electronic PESs are plotted in Fig. 1 for
both the ground and first excited electronic states of the Li2Na
molecule. The PESs in Fig. 1 are two-dimensional slices plotted
for a fixed Li2 bond length of 6.25a0 (close to its equilibrium
bond length) and show the topology of the effective interaction
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potential experienced by the Na nuclei in the vicinity of Li2.
Notable features include the two deep attractive wells (blue
colored regions) on the ground state surface (black contours)
and the inverted cone of the excited electronic state (red
contours). All energies are reported relative to the bottom of
the asymptotic potential well for the Li2 + Na product channel.
The minimum energy of the symmetric potential wells is
�5814 K (see the thick solid black curve in Fig. 2). The ground
and excited state PESs exhibit a conical intersection for T-
shaped (i.e., C2v) geometries (see Fig. 1 inset). The minimum
energy of the conical intersection is�3140 K (see the thick solid
red curve in Fig. 2). The asymptotic energy of the Li + LiNa(v = 0,
j = 0) reactant channel is shown by the thick black contour line
at 2228 K (see also the thick horizontal dashed line in Fig. 2).
From Fig. 1 we see that for ultracold collisions of Li with LiNa
in its ground vibrational and rotational state, both the ground
and excited electronic states are energetically accessible in the
interaction region. Thus, both electronic states and the cou-
plings between them must be included in the quantum
dynamics calculations (see Section 2.2 for details).17 These
non-adiabatic couplings include the GP associated with the
conical intersection. As discussed in detail in the following

section, the GP can lead to a dramatic enhancement or suppres-
sion of the ultracold rotationally resolved rate coefficients.21–23

We note that a traditional GP calculation21–23 based on only the
ground adiabatic electronic state is not applicable for this system
since the CI is located below the energy of the incident channel.
Thus, a non-adiabatic fully coupled two electronic state calcula-
tion is required.17

Fig. 2 plots the APH surface function energies (i.e., the
eigenvalues eJpq

t (rx) of eqn (18)) for the ground (blue) and
excited (red) electronic states as a function of r. For visualiza-
tion purposes, the surface function energies were computed for
each electronic state separately (i.e., on an uncoupled single
adiabatic electronic state). The black and red thick solid curves
plot, respectively, the minimum energies of the ground (Va

1) and
excited (Va

2) adiabatic electronic state PESs as a function of r.
Asymptotically for large r, the ground state adiabatic surface
function energies (blue) approach the diatomic Li2(v0, j0) and
LiNa(v, j) rovibrational energies. The dashed horizontal black
line denotes the energy of the Li + LiNa(v = 0, j = 0) reactant
channel (2228 K) (see also the thick black contour line in Fig. 1).
The excited electronic state is energetically open in the inter-
action region (small r) where the red curves drop below the

Fig. 1 Ab initio Born–Oppenheimer potential energy surfaces (PESs) for Li2Na are plotted for a fixed Li2 bond length of 6.25a0. The xy coordinates
denote the location of the sodium nuclei (red sphere) relative to the center of the bond between the two Li nuclei (blue spheres). The ground (Va

1) and
excited (Va

2) electronic state surfaces are contoured with black and red contours, respectively. Two attractive potential well regions (blue) are clearly
visible on the ground state surface. The excited state surface exhibits a conical intersection with the ground state surface for T-shaped (C2v) geometries
(see inset). The thick black contour line denotes the total energy 2228 K of the reactant Li + LiNa(v = 0, j = 0). The other 20 black contours lie between
�5000 K and 5500 K inclusive. The 10 red contour lines lie between �2470 K and 5500 K inclusive. Both surfaces are not plotted above 5500 K. All
energies are relative to the minimum energy of the asymptotic adiabatic ground electronic state of Li2 + Na.
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black dashed horizontal line. The vertical series of short
horizontal lines on the left edge of the plot denote the bound
state energies of the cone states which are localized inside the
cone (Va

2) of the excited adiabatic electronic state (see Fig. 1).
The E and O label the bound states of even and odd exchange
symmetry, respectively. These bound states were computed
numerically in full-dimensionality using the adiabatic excited
electronic state PES (Va

2) and could lead to Feshbach type
scattering resonances.52 The large solid black and red dots

denote particular points of interest and are discussed in the
Appendix.

3.2 Rotationally resolved rate coefficients as a function of
collision energy

Fig. 3 and 4 plot the rotationally resolved rate coefficients for
the Li + LiNa(v = 0, j = 0) - Li2(v0 = 0, j0) + Na reaction as a
function of collision energy from 1 nK to 10 K for even and odd
exchange symmetry, respectively. Unless otherwise stated, all
rate coefficients include the appropriate nuclear spin statistical
factors of 2/3 and 1/3 for even and odd exchange symmetry
(associated with the two identical 6Li nuclei), respectively. At
ultracold collision energies (o1 mK), only a single partial wave
(i.e., l = 0 where l is the orbital angular momentum of Li about
LiNa) contributes to the collision and the rate coefficient
becomes finite (often referred to as the Wigner threshold
regime).53,54 The specific values of the ultracold rate coeffi-
cients are sensitive to the PES but values reported here are
numerically exact for the PESs computed in this study. The
curves in Fig. 3(a) and 4(a) are from the coupled two-diabatic
electronic states calculation (2 � 2) and the curves in Fig. 3(b)
and 4(b) are from the calculation on a single adiabatic ground
electronic state which does not include the GP (denoted as NGP
for No GP). We see that many of the 2 � 2 ultracold rate
coefficients are significantly enhanced or suppressed relative to
the NGP ones. The rotationally resolved rate coefficients for the
other product vibrational levels v0 = 1–3 show similar trends.
A representative example is plotted in Fig. 5 for v0 = 3 and j0 = 5.
The red curve in Fig. 5 is from the coupled two-diabatic
electronic states calculation (2 � 2) and the black curve is from
the NGP calculation on a single adiabatic ground electronic
state. We see that in the ultracold limit the 2� 2 rate coefficient
(red) is significantly enhanced (by around 50 times) relative to
the NGP one (black). As discussed in more detail below, the
enhancement (suppression) is due to constructive (destructive)
quantum interference between the direct and looping contribu-
tions to the total scattering amplitude.21 The GP associated

Fig. 2 The APH surface function energies are plotted as a function of the
hyperradius r. The blue and red adiabats are computed on the electronic
adiabatic ground (Va

1) and excited (Va
2) states, respectively. The thick black

and red curves plot the minimum energy of the ground and excited
adiabatic electronic states at each r, respectively. The horizontal black
dashed line denotes the total energy of the Li + LiNa(v = 0, j = 0) reactant
(2228 K). The blue adiabats on the right edge of the plot (i.e., large r)
which lie below the black horizontal line correlate to the asymptotic
ro-vibrational energies of the product Li2(v0, j0) + Na. The series of energy
levels labeled by the ‘‘E’’ (even exchange symmetry) and ‘‘O’’ (odd
exchange symmetry) are the three-dimensional vibrational energies com-
puted on the excited electronic state (i.e., ‘‘cone states’’). All energies are
relative to the minimum energy of the asymptotic adiabatic ground
electronic state of Li2 + Na. The three large black and red dots highlight
points for discussion.

Fig. 3 Rotationally resolved rate coefficients for the Li + LiNa(v = 0, j = 0) - Li2(v0 = 0, j0) + Na reaction are plotted as a function of collision energy for
even exchange symmetry. In panels (a) and (b) the rate coefficients are computed using the coupled two-state diabatic (2 � 2) and single surface
adiabatic (NGP) methods, respectively. The GP which is included in the diabatic 2 � 2 calculations reverses the quantum interference which leads to a
significantly enhanced or suppressed ultracold rate coefficient relative to the NGP calculation which ignores the GP.
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with the conical intersection shown in Fig. 1 changes the sign
of the interference term and hence the nature of the quantum
interference from destructive to constructive and vice versa.14–

16,21,22,55–62 Furthermore, due to the unique properties of ultra-
cold collisions, according to Levinson’s theorem63 the scatter-
ing phase shifts preferentially approach an integral multiple
of p. Thus, the quantum interference often approaches its
maximal values effectively turning the reaction on or off (i.e.,
a quantum switch!).21,22

To understand this intriguing quantum interference mecha-
nism in more detail, Fig. 6 plots a stereographic projection17,44

of the hypersphere for the adiabatic ground state PES (Va
1) for

Li2Na at a fixed hyperradius of r = 8a0. The north pole (y = 0) is
at the origin and the equator (y = p/2) corresponds to the outer
black circle. The azimuthal hyperspherical angle (f) is indi-
cated by the dashed blue radial lines. The smaller and larger
dashed blue circles indicate the values of y = 101 and y = 531,

respectively. The conical intersection is indicated by the red dot
and the two symmetric potential wells are clearly visible. These
are the same features shown in Fig. 1 plotted in product Jacobi
coordinates. The hyperspherical coordinates have the advantage

Fig. 4 Same as in Fig. 3 except for odd exchange symmetry.

Fig. 5 Rotationally resolved rate coefficients for the Li + LiNa(v = 0, j = 0)
- Li2(v0 = 3, j0 = 5) + Na reaction are plotted as a function of collision
energy. The red and black curves are the rates computed using the
coupled two-state diabatic (2 � 2) and single surface adiabatic (NGP)
methods, respectively. The GP which is included in the diabatic 2 � 2
calculations gives rise to constructive quantum interference and a significantly
enhanced ultracold rate coefficient relative to the NGP calculation which
ignores the GP. Fig. 6 The relevant reaction pathways (thick black and red curves) are

indicated on top of a contour plot of the Li2Na PES (Va
1) for a fixed

hyperradius r = 8a0. A stereographic projection of the hypersphere is
plotted with the north pole centered at the origin. The value of the
hyperspherical azimuthal angle is indicated by the dashed radial blue lines.
The location of the energetically accessible conical intersection is indi-
cated by the red dot and the two symmetric attractive potential wells are
clearly visible above and below the horizontal axis to the right of the
conical intersection. The contours lie between 15 � 103 and �5 � 103 K
inclusive and the dashed contour at 2.23 � 103 K indicates the energy of
the Li + LiNa ultracold collision. Quantum interference occurs between
the thick black (direct) and red (looping) pathways which can dramatically
alter the outcome of the ultracold reaction. The solid (dashed) black and
red curves indicate the no-exchange (exchange) contributions. The arrows
indicate the direction of the reaction as it proceeds from the reactant Li +
LiNa to product Li2 + Na channels. For clarity the reaction pathways from
only one LiNa + Li reactant channel are shown.
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of showing all channels (reactant and product) simultaneously.
The dashed contour at 2228 K indicates the energy of the
ultracold reactant Li + LiNa(v = 0, j = 0). It is clear that the CI
is energetically accessible even at ultracold collision energies
and will be encircled by the quantum mechanical wave function.
The reaction pathways are indicated by the thick black and red
curves and significant quantum interference can occur between
the scattering amplitudes associated with these pathways. For
clarity only the pathways from one of the symmetric Li + LiNa
reactant channels is shown but both are included in the quan-
tum mechanical calculations which rigorously treat the identical
particle exchange symmetry (i.e., the two identical 6Li nuclei). We
note that f - �f across the horizontal axis corresponds to an
exchange of the two Li nuclei. Thus, the pathways from the other
LiNa channel can be visualized by reflecting all of the red and
black curves in Fig. 6 across the horizontal axis (f = 0). The
dashed (solid) black and red curves in Fig. 6 indicate a reactive
process with (without) exchange of the identical 6Li nuclei. There
are two primary quantum interference mechanisms occurring
simultaneously during the reaction. First, both the exchange
(dashed curves) and non-exchange (solid curves) pathways can
undergo quantum interference with the contribution from the
other LiNa channel. Second, each direct pathway (black) under-
goes quantum interference with a looping pathway (red). In the
following discussion we will focus on the second mechanism.
The first mechanism is always present and is included in the
rigorous quantum mechanical treatment of the identical particle
exchange symmetry which leads to symmetric and antisym-
metric functions with respect to f - �f.17 These symmetrized
functions correlate asymptotically at large r to the even and odd
rotational states of Li2 (see ref. 22 and 64 for a detailed discussion
of the exchange symmetry quantum interference mechanism).

The quantum interference between two complex scattering
amplitudes (e.g., f̃direct and f̃loop) is given by57

j ~ftotalj2 ¼
1

2
fdirect

2 þ floop
2 þ 2fdirect floop cosD

	 

; (19)

where ~ftotal ¼
1ffiffiffi
2
p ~fdirect þ ~floop

� �
; D denotes the relative phase

between the two complex scattering amplitudes, and fdirect and
floop denote their magnitudes. If the direct and looping scatter-
ing amplitudes are of comparable magnitude fdirect E floop = f,
then eqn (19) reduces to

| f̃total|
2 E f 2(1 + cosD). (20)

If D is near an integral multiple of p, D E np where n is an
integer, then from eqn (20) we see that for even and odd n,
| f̃total|

2 E 2f 2 and 0, respectively. That is, for even n the reaction
is ‘‘on’’ and for odd n the reaction is ‘‘off’’. As noted above, due
to the unique properties of ultracold collisions,63 the relative
phase shifts often approach an integral multiple of p and
become effectively quantized.21–23 Also, the direct and looping
scattering amplitudes often have similar magnitudes.21–23

Thus, the quantum interference between the black and red
pathways shown in Fig. 6 often approaches its maximal values
which effectively controls the reaction outcome.21 It is

important to emphasize that this unique quantum interference
mechanism (eqn (20)) occurs in ultracold scattering calcula-
tions based on a single adiabatic ground electronic state PES, as
well as those based on a non-adiabatic coupled diabatic (2 � 2)
electronic state representation. The critical difference is that
the GP associated with the CI is included in the 2 � 2 diabatic
calculations17 but not in the NGP single surface adiabatic
calculations. The GP gives rise to an additional p phase shift
along the looping (red) pathways so that D - D + p which
changes the sign of the cosD term in eqn (20). Thus, when the
GP is included the opposite interference occurs (i.e., construc-
tive 2 destructive) and the theoretically predicted reactivity is
reversed. That is, for even n the reaction is ‘‘off’’ and for odd n
the reaction is ‘‘on’’ (for additional details see the Appendix).
The value of the integer n for a particular scattering process
depends upon the details of the PES as discussed below. In
practice, it is not computed directly but its parity can be
inferred from an analysis of the calculated scattering
amplitudes.

The total rate coefficient summed over all final vibrational
and rotational states of Li2 are plotted in Fig. 7. The red and
black curves correspond to the 2 � 2 and adiabatic (NGP)
calculations, respectively. The horizontal black dashed line is
the ultracold rate coefficient computed using a simple one-
dimensional universal model based on just a long-range C6

potential ignoring all reflections.20 The quantum interference
effects tend to wash out in the sum over final states so that the
2 � 2 and adiabatic total ultracold rate coefficients are similar in
magnitude (i.e., K2�2/Kadiab E 1.05 at Ec = 1.0 nK). Interestingly,
both the 2 � 2 and adiabatic ultracold rate coefficients lie below
the universal value (i.e., K2�2/Kuniv E 0.89 and Kadiab/Kuniv E 0.85
at Ec = 1.0 nK). Thus, the smaller 2 � 2 and adiabatic rates are
most likely due to non-reactive (elastic) reflections that are
included in the exact quantum mechanical calculations. The
sensitivity of the rate coefficients to the accuracy of the PES was
also investigated and is discussed in detail in the Appendix.

Fig. 7 The total rate coefficient is plotted as function of collision energy
for the Li + LiNa(v = 0, j = 0) - Li2 + Na reaction. The red and black curves
correspond to the coupled two-state diabatic (2 � 2) and single surface
adiabatic (NGP) calculations, respectively. The horizontal black dashed line
denotes the ultracold rate coefficient computed using a universal model.
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3.3 Ultracold rate coefficient distributions

All of the rotationally resolved rate coefficients are plotted in
Fig. 8 at the ultracold collision energy of 1 nK for each final
vibrational product state of Li2 from v0 = 0 to 3. The red and
black rate coefficients (vertical bars) correspond to the 2 � 2
and NGP calculations, respectively. Many of the 2 � 2 rate
coefficients are significantly enhanced or suppressed relative to
the NGP rate coefficients. As discussed above, this effect is due
to the GP which is included in the 2 � 2 calculations but not in
the NGP calculations. The sign change associated with the GP
alters the nature of the quantum interference and hence the
magnitude of the rate coefficients. For v0 = 0 (panel a) particu-
larly large GP effects are seen in the product rotational states
j0 = 4, 7, 15, 23, 30, 35–37 and 41 for which the 2 � 2
rate coefficients are suppressed relative to the NGP ones. In
contrast, the product rotational states for j0 = 24, 34, and 38
show significantly enhanced 2 � 2 rates coefficients. For v0 = 1
(panel b) notably suppressed 2 � 2 rate coefficients are
observed for the product rotational states j0 = 12, 20, 27, and
35 whereas notably enhanced 2 � 2 rate coefficients occur for
j0 = 14, 21, 24, 26, 30, 32, and 33. For v0 = 2 (panel c) notably
suppressed 2 � 2 rate coefficients are observed for the product
rotational state j0 = 17 whereas notably enhanced 2 � 2 rate
coefficients occur for j0 = 1, 11, 24, 27, and 28. Finally, for v0 = 3
(panel d) notably suppressed 2 � 2 rate coefficients are
observed for the product rotational states j0 = 4, 8, 9, 13, and
17 whereas notably enhanced 2 � 2 rate coefficients occur for
j0 = 3, 5, and 15. In summary, the magnitude of the GP effect on
the ultracold rotationally resolved rate coefficients varies
significantly across all values of the product ro-vibrational
states of Li2(v0, j0).

Fig. 9 plots the normalized distributions s = K/hKi where hKi
denotes the average value of the rate coefficients K for a given
data set. The probability distributions are computed by binning
the Kv0j0 into eight equally spaced intervals up to five times the
average value. Four normalized data sets are plotted. The red
and black data points denote the 2 � 2 and NGP rate

Fig. 8 All of the rotationally resolved rate coefficients for the Li + LiNa(v = 0, j = 0) - Li2(v0, j0) + Na reaction are plotted at the ultracold collision energy
of 1.0 nK. The red and black vertical bars are computed using the coupled two-state diabatic (2 � 2) and single surface adiabatic (NGP) methods,
respectively. Panels (a)–(d) plot the distributions for v0 = 0, 1, 2 and 3. Many of the diabatic (2 � 2) rate coefficients are significantly enhanced (suppressed)
relative to the NGP rates due to constructive (destructive) quantum interference associated with the GP.

Fig. 9 The probability distributions for all of the rotationally resolved rate
coefficients for the Li + LiNa(v = 0, j = 0) - Li2(v0, j0) + Na reaction are
plotted at the ultracold collision energy of 1.0 nK. The distributions for the
coupled two-state diabatic (2 � 2) and single surface adiabatic (NGP)
methods are plotted in red and black, respectively. The results for even and
odd exchange symmetry are plotted with circles and squares. The solid
black curve is the Poisson distribution. All of the rate coefficient distribu-
tions are consistent with the Poisson distribution and are computed by
binning the normalized rate coefficients s = K/hKi where hKi is the average
rate coefficient.
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coefficients, respectively. The circles and squares correspond to
the results of even and odd exchange symmetry. The four data
sets span all of the vibrational and rotational states shown in
Fig. 8. For reference, the Poisson distribution (e�s) is also
plotted (solid black curve). We see that on average all four data
sets are consistent with the Poisson distribution. Thus, a
statistical analysis of the seemingly random rotational rate
coefficient distributions of Fig. 8 provides a unified description
of all the results. We note that the Poisson nature of the
rotational distributions was also reported previously for the
ultracold K + KRb reaction from an NGP calculation on a single
adiabatic electronic PES.12,13 This property appears to be very
robust and is independent of the details of the PES and occurs
for both the 2 � 2 and NGP results. For example, in the
Appendix Fig. 16 and 17 the Poisson distributions are plotted
for 25 different values of the PES scaling parameter l for each
exchange symmetry even and odd, respectively. The collective
set of 100 distributions are consistent with the Poisson dis-
tribution. Though these distributions are presented at 1 nK,
their validity extends to 10 mK due to the Wigner threshold
behavior of the rate coefficients in this regime. The K + KRb
results12,13 together with the present work confirms what
appears to be a universal property of ultracold chemical reac-
tions with a potential well supporting long-lived complex
formation: the rotationally resolved rate coefficient probability
distributions are Poissonian.

4 Conclusions

Many ultracold chemical reactions under active experimental
investigation, such as Li + LiNa - Li2 + Na, K + NaK - K2 + Na,
KRb + KRb - K2 + Rb2, and NaRb + NaRb - Na2 + Rb2

5,6,9,10

have a barrierless reaction pathway and a deep attractive
potential well. In addition, the three atom systems are known
to exhibit a C2v CI between the ground and first excited
electronic states in the interaction region. This CI is energeti-
cally accessible even for ultracold collisions involving reactant
diatomic molecules in their ground ro-vibrational state (e.g.,
LiNa(v = 0, j = 0)). The four atom systems are also expected to
have CIs (possibly multiple CIs) that are energetically accessi-
ble. Thus, a standard Born–Oppenheimer calculation based on
a single adiabatic electronic PES or even a generalized calculation
which includes the GP either by the vector potential approach14,15

or a double-valued basis approach56 is not accurate for these
systems. A non-adiabatic quantum mechanical dynamics
calculation17 is required that includes both coupled electronic
states using full-dimensional accurate ab initio PESs with
experimentally based long-range and asymptotic diatomic
potentials. In addition, a rigorous quantum mechanical treat-
ment of the exchange symmetry due to the identical nuclei is
also required.17 To the authors’ knowledge, the first non-
adiabatic calculations of this kind are reported in this work
for the ultracold Li + LiNa(v = 0, j = 0) - Li2(v0, j0) + Na reaction.
Indeed, we believe this work significantly advances the state-of-
the-art in the theoretical treatment of experimentally relevant

ultracold chemical reactions beyond the Born–Oppenheimer
approximation.

During the course of the reaction, two quantum interference
mechanisms occur which ultimately govern the reaction out-
come. One mechanism is the quantum interference between
the two contributions from identical particle exchange sym-
metry. The second mechanism is the quantum interference
between the two reaction pathways (direct and looping) which
encircle the CI. Both of these mechanisms are included in all of
the quantum mechanical calculations presented in this work
(2 � 2 and NGP). Due to the unique properties of ultracold
collisions, the quantum interference often approaches its maximal
constructive or destructive values which leads to a significantly
enhanced or suppressed rotationally resolved rate coefficient
(i.e., the reaction is effectively turned on or off). Furthermore,
the GP associated with the CI changes the sign on the inter-
ference term between the direct and looping pathways which
reverses the nature of the quantum interference. Thus, a non-
adiabatic calculation which includes the excited electronic state
and its associated GP is crucial for obtaining the correct
theoretical prediction of the rate coefficients. A conventional
Born–Oppenheimer calculation based on a single adiabatic
ground electronic state PES will give the opposite (incorrect)
prediction whenever significant quantum interference occurs.
Furthermore, a rigorous quantum mechanical treatment of the
identical particle exchange symmetry (i.e., the exchange of the
two identical 6Li nuclei) is also required in order to capture
the quantum interference associated with exchange symmetry.
Several PES scaling studies were undertaken which show that
the large quantum interference effects are indeed due to inter-
ference between the direct and looping pathways. Furthermore,
these PES scaling studies also confirm unambiguously that
the GP is responsible for reversing the nature of the interference
(i.e., constructive 2 destructive) which leads to the dramatic
enhancement or suppression of the 2 � 2 ultracold rate coeffi-
cients relative to the NGP ones. The novel quantum interference
mechanism associated with ultracold collisions represents a
realization of a molecular quantum switch. The large dynamic
range of this quantum switch might be exploited by experimen-
talists to control the reaction outcome via the application of
external fields and/or the selection of a particular initial quantum
state.21–23 Interestingly, the interference effects mostly cancel out
in the total rate coefficients (both 2 � 2 and NGP) when summed
over all product rotational states. The total rate coefficients also
exhibit non-universal behavior.

The rotationally resolved rate coefficient distributions are
shown to exhibit Poisson behavior. The S matrix for open
chaotic quantum systems obeys the statistics of unitary sym-
metric random matrices, one of which is the Poisson law
behavior of the squares of off-diagonal matrix elements.65,66

Since state-to-state rates are directly proportional to the square
of the corresponding S matrix element, this Poisson law beha-
vior follows directly from the underlying classically chaotic
motion of the reaction.67 Chaotic classical trajectories are
extremely complicated and tangled for reactions with long-
lived intermediate complexes, as such these results show that

5106 | Phys. Chem. Chem. Phys., 2021, 23, 5096�5112 This journal is the Owner Societies 2021

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
Fe

br
ua

ry
 2

02
1.

 D
ow

nl
oa

de
d 

on
 1

/1
8/

20
26

 1
2:

59
:1

5 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0cp05499b


the ultracold LiNa + Li reaction proceeds via complex for-
mation. Such intermediate complexes can be observed experi-
mentally using a combination of mass spectrometry and
velocity map imaging, as was recently demonstrated for the
ultracold KRb + KRb - K2 + Rb2 reaction.10 As shown explicitly
in this work for the first time, the Poisson nature of these
rotational distributions is robust to variations in the PES,
occurs for different chemical systems (i.e., both light Li2Na
and heavy K2Rb12) and theoretical methods (i.e., both non-
adiabatic (2 � 2) and adiabatic (NGP)). The robust and universal
nature of the Poisson ultracold rotational rate coefficient dis-
tributions makes this property an ideal experimental observable.
Considering the sensitivity of individual rotationally resolved
rate coefficients to fine details of the PES a direct quantitative
comparison of these with experimental measurements will be
challenging and will likely require improvements to the PES.

In contrast to standard statistical theories which predict
uniform product distributions for many complex-forming
reactions,68 we find that at ultracold collision temperatures
the product rotational distributions are significantly non-
uniform (i.e., non-statistical). This is due in part to the unique
properties of ultracold collisions which involve only a single-
partial wave. At higher (thermal) energies many partial waves
contribute which tend to wash-out the variations in the product
distributions resulting in a uniform distribution. Statistical
theories also ignore the detailed dynamics of the interaction
region and therefore do not explicitly include the short-range
quantum dynamics, non-adiabatic, and interference effects
which are significantly amplified at ultracold temperatures
and give rise to the large variations in the rotational distribu-
tions. Nevertheless, statistical theories can often provide a
reasonable estimate of the total ultracold rate coefficients due
to the large density of states associated with complex forming
reactions with a deep attractive potential well and heavy nuclei.69

In an exact quantum mechanical calculation, the fluctuations in
the rotational distributions average out in the sum over the large
number of product states so that the total ultracold rate coeffi-
cient is often similar to the statistical one. However, we expect
that the underlying distributions are all Poissonian and also
occur in ultracold diatom–diatom reactions such as KRb + KRb
and NaRb + NaRb. For additional analysis comparing statistical
theories to exact quantum mechanical calculations, we refer the
reader to recent work on the ultracold Li + LiYb reaction.11

The unique properties of ultracold collisions are still largely
unexplored. We hope that the detailed theoretical results pre-
sented in this work will help stimulate new experimental and
theoretical studies into the intriguing ultracold energy regime.
For example, the extreme non-linear sensitivity of the quantum
interference effects on the depth of the PES might be used for
very accurate experimental probing and benchmarking of the
molecular interactions, beyond anything used in the field at the
present time. One could also imagine exploiting this ultra
sensitivity in the search of new physics such as tightening the
experimental bounds on possible variations in the physical
constants (e.g., the proton to electron mass ratio). Clearly,
ultracold molecules continue to show exceptional promise for

future technological applications in quantum control, sensing
and precision measurements.

Conflicts of interest
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A.1 Electronic ground and first excited
state adiabatic potential energy
surfaces

Fig. 10 plots the adiabatic ground electronic state potential
energy surface for Li2Na (Va

1) in hyperspherical coordinates. The
north pole (y = 0) of the hypersphere is projected onto the
origin in the xy-plane. The equator (y = p/2) is projected onto
the outer circle. The values of the azimuthal angle (f) are
indicated by the dashed blue radial lines. The small (large)
dashed blue circle about the origin indicates y = 101 (531). The
barrierless reaction pathway is shown by the thick black curves
with arrows indicating the reaction direction. The reaction
proceeds along a collinear approach NaLi–Li (panel a) and
then enters the attractive potential wells in the interaction
region (panel b). The identical particle exchange symmetry
(i.e., f - �f) associated with the two identical Li nuclei is
rigorously accounted for in the quantum mechanical calculations.
The black dots denote the location of the minimum energy of
the PES for the specified fixed value of hyperradius: r = 14.5a0

(panel a) and r = 8.0a0 (panel b). The red dot in panel (b)
denotes the location of the C2v conical intersection. The dashed
contour line at �2.23 � 103 K corresponds to the energy of the
reactant Li + LiNa(v = 0, j = 0) channel. The conical intersection
lies at �3.14 � 103 K and is therefore energetically accessible
even at ultracold collision energies. All energies are relative to
the asymptotic Li2 + Na adiabatic ground electronic state energy
minimum. We note that the sharp feature in the thick black
curve (minimum energy curve) near r = 9.5a0 in Fig. 2 is due
to a submerged barrier along the reaction path shown in
Fig. 10(b).

Fig. 11 is the same as Fig. 10 except that the adiabatic
excited electronic state PES (Va

2) is plotted at r = 8.0a0. The
contours exhibit the typical inverted cone shape associated with
a conical intersection. The excited state becomes degenerate
with ground electronic state at the conical intersection (i.e., the
red dots in Fig. 10 and 11). As also shown in Fig. 10, the dashed
contour at �2.23 � 103 K lies above the energy of the conical
intersection. Thus, the Born–Oppenheimer approximation
breaks down necessitating a non-adiabatic coupled two electro-
nic state quantum mechanical treatment.

A.2 Reaction rate coefficients and
potential scaling studies

Fig. 12 plots the ultracold total rate coefficient for the Li +
LiNa(v = 0, j = 0) - Li2 + Na reaction as a function of the
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three-body potential scaling factor (l). The ab initio computed
three-body contribution to the potential energy surface (PES)

was scaled by l but the long-range and pairwise two-body
potentials were left unchanged. This ensures that the asympto-
tic energies and long-range interactions are unchanged and
that only the effective depth of the Li2Na PES is altered.
Specifically, the 3-body components in the diabatic potentials

Fig. 11 Same as in Fig. 10 except that the contour plot of the adiabatic
excited electronic state of Li2Na (Va

2) is plotted in hyperspherical coordi-
nates for a fixed hyperradius r = 8a0. The contours lie between 15 � 103

and �2 � 103 K inclusive and the dashed contour at 2.23 � 103 K indicates
the energy of the Li + LiNa ultracold collision. As in Fig. 10, the red dot
indicates the location of the energetically accessible conical intersection.

Fig. 10 The reaction pathway (thick black curves) is indicated on top of a contour plot of the adiabatic ground electronic state PES (Va
1) of Li2Na for a

fixed hyperradius r = 14.5 (panel a) and r = 8.0a0 (panel b). A stereographic projection of the hypersphere is plotted with the north pole centered at the
origin. The value of the hyperspherical azimuthal angle is indicated by the dashed radial blue lines. The contours lie between 15 � 103 and �5 � 103 K
inclusive and the dashed contour at 2.23 � 103 K indicates the energy of the Li + LiNa ultracold collision. The barrierless reaction proceeds along a
collinear geometry Li–LiNa (i.e., the equator of the hypersphere) at large r (panel a) into the attractive potential well at smaller r (panel b). The black dots
in each panel indicate the location of the minimum energy of the PES. The red dot indicates the location of the energetically accessible conical
intersection which occurs for T-shaped Li2–Na (i.e., C2v) geometries at �3.14 � 103 K. All energies are relative to the minimum energy of the asymptotic
adiabatic ground electronic state of Li2 + Na.

Fig. 12 The total rate coefficients for the Li + LiNa(v = 0, j = 0) - Li2 + Na
reaction are plotted as a function of the 3-body potential scaling para-
meter at the ultracold collision energy of 1 nK. The red and black data
correspond to the coupled two-state diabatic (2 � 2) and single surface
adiabatic (NGP) calculations, respectively. The large circular data points are
the total rate coefficients computed by adding the statistically weighted
rate coefficients for even exchange symmetry (squares) and odd exchange
symmetry (triangles). To guide the eye, the data points for the total, even,
and odd rate coefficients are connected by thick lines, thin lines and
dashed lines, respectively.
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V11, V22, and V12 (see eqn (9)) were scaled according to the
following equation

Vij = V pw
ij (R1,R2,y) + ls(R1,R2,y)V 3B

ij (R1,R2,y), (A.1)

where the scale factor is given by l = 1 + l0 fswitch with a
standard switching function fswitch = 1/2[1 � tanh(a(r � r0))].
The parameters a = 0.75 and r0 = 16a0 were chosen to minimize
the effects of the scaling on the long-range component of the
PES. The parameter l0 was chosen to reflect the estimated
uncertainty (�3%) in the ab initio computed 3-body interaction
PES. Thus, the scaling studies were chosen to span a range of 25
equally spaced scaling factors between l0 =�3% (i.e., l = 0.97 to
l = 1.03). A total of 100 = 4 � 25 separate l calculations (which
include l = 1 no scaling) were performed for the 2 � 2 and NGP
methods and each exchange symmetry even and odd. The 2 � 2
and NGP results are presented in red and black, respectively.
The total, even, and odd rate coefficients are plotted with solid
circles, squares, and triangles, respectively. The NGP total
rate coefficient oscillates between 2.16 � 10�10 and 3.74 �
10�10 cm3 s�1 (i.e., by �20% and +38% relative to the unscaled
NGP rate coefficient). The 2 � 2 total rate coefficient oscillates
between 2.46 � 10�10 and 4.49 � 10�10 cm3 s�1 (i.e., by �13%
and +58% relative to the unscaled 2 � 2 rate coefficient).
While computationally demanding, the scaling studies show
that the 2 � 2 and NGP total rate coefficients are robust to
variations in the PES. The total rate coefficients of even exchange
symmetry are on average two times larger than the odd ones due
to the statistical weights of 2/3 (even) versus 1/3 (odd).

The computational time for each of the 100 l calculations is
primarily dominated by the surface function solutions (i.e., the
diagonalization of eqn (18) at each rx) and the radial log-
derivative propagation (i.e., the solution of the radial eqn (16)
from ri to rf). All steps of the calculations are parallelized and
can be efficiently distributed across a large number of CPUs
simultaneously. For comparison, each set of 2 � 2 surface
function calculations was performed using 288 CPUs and
required tsf

2�2 = 6.2 h whereas the NGP surface function calcula-
tions on the same number of CPUs required tsf

NGP = 0.6 h. Each
CPU is an Intel Haswell (Xeon E5-2650 v3) running at 2.3 GHz.
The 2 � 2 and NGP log-derivative propagations used 16 CPUs
(one for each collision energy) and required tlog

2�2 = 8.8 and
tlog
NGP = 3.5 h, respectively. Thus, the total wall-clock time for one
l calculation was ttotal

2�2 = tsf
2�2 + tlog

2�2 = 15.0 h and ttotal
NGP = tsf

NGP +
tlog
NGP = 4.1 h. The non-adiabatic 2 � 2 calculations require about

ttotal
2�2 /ttotal

NGP = 3.6 times more CPU time than the NGP ones. The
100 l calculations were separately distributed across approxi-
mately 20 compute nodes (each node consists of 32 CPUs and
128 Gb memory) and were completed over the course of
approximately three weeks.

Fig. 13 plots the ultracold rotationally resolved rate coeffi-
cient for the Li + LiNa(v = 0, j = 0) - Li2(v0 = 3, j0 = 5) + Na
reaction as a function of the three-body potential scaling factor
(l). The 2 � 2 and NGP results are presented in red and black,
respectively. As the scaling factor increases or decreases away
from l = 1 (i.e., no scaling), dramatic and often sudden changes
in both the 2 � 2 and NGP rate coefficients are observed.

These large changes are due to the change in nature of the
quantum interference from constructive to destructive and vice
versa. The quantum interference occurs between the direct and
looping contributions to the total scattering amplitude. The
direct pathway proceeds straight from reactants to products
through the Li2Na potential well whereas the looping pathway
‘‘loops around’’ and encircles the conical intersection (see
Fig. 6 in the paper).

Let f̃direct = fdirecte
iddirect and f̃loop = floopeidloop denote the

complex scattering amplitudes associated with the direct and
looping pathways, respectively. The fdirect and floop are the real
valued magnitudes and the ddirect and dloop are the real valued
phases. The total scattering amplitude is the sum of the two:

~ftotal ¼
1ffiffiffi
2
p ~fdirect þ ~floop

� �
: The cross sections and rate coeffi-

cients are computed from the modulus of the total scattering
amplitude given by eqn (19) where the relative phase D = dloop �
ddirect. The third term on the right hand side of eqn (19) is the
interference term. If the looping and direct scattering ampli-
tudes are comparable in magnitude: fdirect E floop = f, then we
obtain eqn (20). At ultracold collision energies the scattering
phase shifts dloop and ddirect have a propensity to approach an
integral multiple of p (i.e., Levinson’s theorem): ddirect E pndirect

and dloop E pnloop where the ndirect and nloop are integers. Thus
the relative phase also approaches an integral multiple of p:
D E p(nloop � ndirect) E np where the integer n = nloop � ndirect.
This implies that the interference term cosD in eqn (20)
approaches: cosD E 1 or cosD E 0 for even and odd values
of n, respectively. From Levinson’s theorem we know that the
integers ndirect and nloop denote the number of bound states
supported along the direct and looping reaction pathways,
respectively. Thus, the integer n is the relative number of bound
states between these two pathways which in general is either
even or odd. In practice, we never need to explicitly compute
these integers (or D) but can infer the even or odd nature of n
from the scattering amplitudes. Eqn (19) and (20) are valid for
both the 2 � 2 and NGP calculations. However, the 2 � 2

Fig. 13 Rotationally resolved rate coefficients for the Li + LiNa(v = 0, j = 0)
- Li2(v0 = 3, j0 = 5) + Na reaction are plotted as a function of the 3-body
potential scaling parameter at the ultracold collision energy of 1 nK. The
red and black data correspond to the coupled two-state diabatic (2 � 2)
and single surface adiabatic (NGP) calculations, respectively.
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calculations include the GP which gives rise to an additional
sign change or p phase shift in the scattering amplitude for the
looping pathway (relative to the NGP one). That is, dloop

2�2 =
dNGP

loop + p + e where e represents other differences (due to non-
adiabatic couplings) between the NGP and 2 � 2 scattering
phase shifts. The GP phase shift is defined as dGP

loop = dNGP
loop + p, so

that we can also write dloop
2�2 = dGP

loop + e. If other non-adiabatic
effects are small, then eE 0 and we obtain dloop

2�2 E dGP
loop (and

similarly dNGP
direct = dGP

direct E ddirect
2�2).

Substituting the above expressions for the looping and
direct phase shifts for d2�2 and dNGP into the D in eqn (20)
(and ignoring e), we obtain

| f̃ NGP/2�2
total |2 E f 2(1 � cos(np)), (A.2)

where the + sign corresponds to NGP and the� sign corresponds
to 2 � 2 (or GP). If n is an even integer, then eqn (A.2) gives

| f̃ NGP
total |2 E 2f 2

| f̃total
2�2|2 E 0. (A.3)

If n is an odd integer, then eqn (A.2) gives

| f̃ NGP
total |2 E 0

| f̃total
2�2|2 E 2f 2. (A.4)

In the ultracold limit, eqn (A.3) and (A.4) show that the
quantum interference can approach its maximal values of 2f 2

(constructive) or zero (destructive). The constructive or destruc-
tive nature of the interference is always opposite for the NGP
and 2 � 2 calculations and can reverse if the integer n changes
from being even to odd or vice versa. We note that the maximal
values given by eqn (A.3) and (A.4) are not fully realized in
practice since the direct and looping scattering amplitudes are
not exactly equal in magnitude and their scattering phase shifts
are not exactly an integer multiple of p. However, as discussed
below, these limiting cases are useful for understanding and
interpreting the large differences observed between the 2 � 2
and NGP results.

Armed with eqn (A.3) and (A.4), we can now understand and
interpret the changes in the rate coefficients plotted in Fig. 13.
First consider the scaling range between l = 0.975 and 1.0025.
In this region, the 2 � 2 rate coefficient is significantly
enhanced relative to the NGP one (by 50 times for l = 1). This
enhancement is due to constructive quantum interference as
shown in eqn (A.4) which implies n must be odd in this region.
Fig. 14 plots the ratio of the magnitudes of the looping and
direct scattering amplitudes averaged over the scattering angle
as a function of the PES scaling factor. We see that for 0.98 r l
r 1.0025 the ratio is near unity which ensures maximal
quantum interference. Fig. 15 plots cosD averaged over the
scattering angle as a function of the PES scaling factor. In the
region 0.975 r l r 1.0025 we see that hcosDi lies near �1.0
(except for a few values between 0.9825 and 0.99). The negative
cosD is consistent with an odd value of n. As l is decreased
below 0.98, the ratio in Fig. 14 decreases rapidly to below 10�1.
Thus, the direct scattering amplitude dominates and quantum

interference effects become small. In this case, the 2 � 2 and
NGP rate coefficients approach each other. Also in this region,
the cosD term reverses sign for lr 0.9725 so that the nature of
the quantum interference is reversed and now eqn (A.3) is
relevant (i.e., n becomes even). Indeed, in this region the NGP
rate coefficient is now larger than the 2 � 2 one. The change in
n from being odd to even (or vice versa) is due to the sudden
change in the relative number of bound states between the
direct and looping pathways. Presumably this change is due to
a bound (continuum) state leaving (entering) the well and
becoming a continuum (bound) state as the well depth is
decreased (increased) by the l scaling. This explains the sudden
change in sign of cosD between l = 0.9725 and 0.975. Now
consider the region 1.0025 o l r 1.0125. In this region the
ratios in Fig. 14 lie between 1 and 10 and the cosD are positive
and approach + 1 for l = 1.01. Again the positive cosD implies
an even n (i.e., eqn (A.3) is relevant) and the NGP rate coefficient

Fig. 14 The ratios of the modulus of the looping (f̃loop) and direct (f̃direct)
scattering amplitudes averaged over the scattering angle are plotted as a
function of the 3-body potential scaling parameter at the ultracold collision
energy of 1 nK. The ratios correspond to the rotationally resolved rate
coefficients plotted in Fig. 13.

Fig. 15 The average cosD values are plotted as a function of the 3-body
potential scaling parameter at the ultracold collision energy of 1 nK. The
hcosDi correspond to the rotationally resolved rate coefficients plotted in
Fig. 13.
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is larger than the 2 � 2 one. The quantum interference and
hence the difference between the rate coefficients is largest in
this region for l = 1.01 where cosDE 1. Between l = 1.0125 and
1.015, the cosD term changes sign and becomes negative again
reversing the nature of the quantum interference (i.e., n
becomes odd again). The 2 � 2 rate coefficients are now larger
than the NGP ones in Fig. 13. As l is increased further, the cosD
term oscillates back to being positive again with a peak value at
l = 1.0275. In the region of large positive l, the ratio in Fig. 14
continues to decrease rapidly which indicates that the direct
pathway is dominant. Thus, the quantum interference
decreases considerably and the 2 � 2 and NGP rate coefficients
become comparable in magnitude as seen in Fig. 13. We note
that a similar analysis was done for all of the other rotationally

resolved rate coefficients and they are all consistent with
eqn (A.3) and (A.4). The PES scaling studies show unambigu-
ously that the significant enhancement or suppression of the
2 � 2 rate coefficients relative to the NGP ones is due to the GP.

Fig. 16 and 17 plot the ultracold probability distributions of
the rotationally resolved rate coefficients for the Li + LiNa(v = 0,
j = 0) - Li2(v0, j0) + Na reaction for the NGP and 2 � 2
calculations, respectively. The normalized distributions s =
K/hKi (where hKi denotes the average value of the rate coeffi-
cients K for a given data set) are computed by binning the rate
coefficient Kv0j0 into equally space bins up to 14 times the
average value. In Fig. 16 and 17 the even and odd curves are
plotted in dark and light blue (red), respectively. There are
25 curves for each exchange symmetry in each plot which
correspond to the 25 values of the scaling parameter l.
On average, all of the curves are consistent with the Poisson
distribution e�s (black curve).
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B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn,
D. S. Jin and J. Ye, Science, 2010, 327, 853–857.

3 N. Balakrishnan, J. Chem. Phys., 2016, 145, 150901.
4 W. E. Perreault, N. Mukherjee and R. N. Zare, Science, 2017,

358, 356–359.
5 T. M. Rvachov, H. Son, A. T. Sommer, S. Ebadi, J. J. Park,

M. W. Zwierlein, W. Ketterle and A. O. Jamison, Phys. Rev.
Lett., 2017, 119, 143001.

6 J. Rui, H. Yang, L. Liu, D.-C. Zhang, Y.-X. Liu, J. Nan,
Y.-A. Chen, B. Zhao and J.-W. Pan, Nat. Phys., 2017, 13,
699–703.

7 W. E. Perreault, N. Mukherjee and R. N. Zare, Nat. Chem.,
2018, 10, 561–567.

Fig. 16 The probability distributions for all of the rotationally resolved rate
coefficients for the Li + LiNa(v = 0, j = 0) - Li2(v0, j0) + Na reaction are
plotted at the ultracold collision energy of 1.0 nK. The distributions
correspond to the single surface adiabatic (NGP) calculations. The results
for even and odd exchange symmetry are plotted in dark and light blue,
respectively. Each curve plots the distribution for a different 3-body scaling
parameter (see Fig. 13). The solid black curve is the Poisson distribution.

Fig. 17 Same as in Fig. 16 except that the distributions for the coupled
two-state diabatic (2 � 2) calculations are plotted. The results for even and
odd exchange symmetry are plotted in dark and light red, respectively.

This journal is the Owner Societies 2021 Phys. Chem. Chem. Phys., 2021, 23, 5096�5112 | 5111

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
Fe

br
ua

ry
 2

02
1.

 D
ow

nl
oa

de
d 

on
 1

/1
8/

20
26

 1
2:

59
:1

5 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0cp05499b


8 J. F. E. Croft, N. Balakrishnan, M. Huang and H. Guo, Phys.
Rev. Lett., 2018, 121, 113401.

9 X. Ye, M. Guo, M. L. González-Martnez, G. Quéméner and
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