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Accurate and rapid prediction of pK, of transition
metal complexes: semiempirical quantum
chemistry with a data-augmented approachy

Vivek Sinha, 2* Jochem J. Laan and Evgeny A. Pidko (2 *

Rapid and accurate prediction of reactivity descriptors of transition metal (TM) complexes is a major challenge
for contemporary quantum chemistry. The recently-developed GFN2-xTB method based on the density
functional tight-binding theory (DFT-B) is suitable for high-throughput calculation of geometries and
thermochemistry for TM complexes albeit with moderate accuracy. Herein we present a data-augmented
approach to improve substantially the accuracy of the GFN2-xTB method for the prediction of
thermochemical properties using pK, values of TM hydrides as a representative model example. We
constructed a comprehensive database for ca. 200 TM hydride complexes featuring the experimentally
measured pK, values as well as the GFN2-xTB-optimized geometries and various computed electronic and
energetic descriptors. The GFN2-xTB results were further refined and validated by DFT calculations with the
hybrid PBEO functional. Our results show that although the GFN2-xTB performs well in most cases, it fails to
adequately describe TM complexes featuring multicarbonyl and multinydride ligand environments. The dataset
was analyzed with the ordinary least squares (OLS) fitting and was used to construct an automated machine
learning (AutoML) approach for the rapid estimation of pK, of TM hydride complexes. The results obtained
show a high predictive power of the very fast AutoML model (RMSE ~ 2.7) comparable to that of the much
slower DFT calculations (RMSE ~ 3). The presented data-augmented quantum chemistry-based approach is
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Introduction

Proton transfer reactions are ubiquitous in chemistry. The pro-
pensity of proton transfer from a chemical species is related to its
acidity constant (pKj). In the context of the transition metal (TM)
complexes, pK, has a direct relevance to their (bio)chemical activity
and stability. In homogeneously catalysed (de)hydrogenation reac-
tions such as the hydrogenation of CO, to formates/formic acid!
and dehydrogenation of aqueous methanol,” the pK, of TM-based
catalysts has been recognized as an important design parameter.
For example, the pK, of a TM hydride determines the strength of
an acid necessary for the H, evolution.® Loss or gain of protons can
open up undesirable conversion paths or even initiate the decom-
position and/or deactivation of the catalyst.

Accurate estimation of the thermodynamic properties such as
the pK, of TM complexes is a major challenge for quantum
theoretical methods. Computational methods for rapid and
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promising for high-throughput computational screening workflows of homogeneous TM-based catalysts.

accurate screening of such thermodynamic properties are highly
desirable. Density functional theory (DFT) has been extensively
applied to estimate thermodynamic properties of TM complexes.*”
However, the DFT based prediction workflows commonly face
major challenges with respect to the accuracy of the calculations
(basis set; XC functional; solvation model) and the computational
costs. The accuracy of the method in DFT towards prediction of
thermochemical properties can be addressed by validation against
the experimental data. However, the computational cost for pre-
dicting molecular geometries and thermochemical properties
remains an important challenge; in particular, when the applica-
tions in high-throughput computational screening are sought for.
Despite the advances in software and hardware architectures,
DFT-based calculations for moderately sized TM complexes
(>50 atoms) can take several hours to complete in most cases
on a modern supercomputer. Furthermore, the electronic struc-
ture of TM complexes, particularly for the 3d metals, is a major
challenge for DFT.° The cost and accuracy of DFT makes it
challenging for its direct use in high throughput (HT) computa-
tional screening of TM complexes.

Data-driven or semiempirical quantum chemical approaches
can be used to circumvent the low throughput of DFT for predict-
ing geometries and thermochemical properties.”"" Recently a
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Fig.1 A schematic overview of the data-driven approach to predict
experimental pK, of TM hydride complexes.
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GFN2-xTB method (the latest one from the GFN(n) family), based
on the density functional tight-binding approach has been intro-
duced for the rapid prediction of geometry and thermochemical
properties of TM complexes.'> However, because of its semiempi-
rical nature, the accuracy of the GFN2-xTB is fundamentally
limited by the thermochemical span of the training set of mole-
cules and the level of theory used in the parametrization. We
propose that the accuracy of the GFN2-xTB method can be
improved using machine learning of a target chemical property
such as the pkK, values (Fig. 1).

Density functional theory (DFT) calculations have been success-
fully applied to estimate the pK, of diverse classes of
molecules.>">™® However, fewer studies have been carried out to
compute the pK, of TM complexes. Previously, DFT was success-
fully used to compute the pK, of hexa-aqua TM complexes because
of its relevance to the biochemical activity of TM cations."”° Qi
and co-workers used an ONIOM-based approach to estimate the
experimental pK, of TM hydrides.”’ Mufioz and co-workers
reported a theoretical approach to estimate the pK, of biologically
relevant pyridoxamine-Cu(i) complexes.?> Recently Cundari and
co-workers® applied DFT calculations to estimate the pK, of
methane adducts of 3d TM complexes.

Accurate treatment of solvent effects, especially in a protic and
hydrogen bonding environment often pose a major challenge for
the reliable computation of pK, values. Ab initio molecular
dynamics (AIMD) simulations with a fully explicit solvent have
been used to address solvation effects in computation of pK, of TM
complexes in protic environments."*'*** The reader is referred to
a review by Luber and co-workers® for a comprehensive overview
of AIMD-based protocols for computing pK..

DFT-based methods typically require geometry optimization and
calculation of the Hessian matrix to estimate the Gibbs free energy of
protonated and deprotonated complexes. Even for relatively small
complexes (~50 atoms) with a single TM center, DFT calculations
can take several hours to converge. AIMD simulations typically
require several days to be able to compute a single pK, value of a
TM complex. A model based on additive ligand acidity constants
(LACs) was proposed by Morris and co-workers, which avoids DFT
calculations and can compute the pK; of TM hydrides.*® The additive
LAC method uses the ligand acidity constants of ligands coordinated
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to the metal centre, the charge of the conjugate base form of the
metal complex, the location of TM metal in the periodic table and a
correction related to the stability and geometry of the metal centre.
While simple, reasonably accurate and motivated by physical princi-
ples, the additive LAC model requires knowledge of acidity constants
of coordinating ligands, which makes it difficult to use directly in
high throughput screening workflows. Cundari and co-workers
recently reported ML-based methods for the estimation of pK, of
methane adducts of TM complexes and demonstrated the potential
of ML for catalyst design via rapid property prediction.”” The potential
of GFNnxTB methods towards rapid and accurate prediction of
PK, was recently demonstrated in the SAMPL6 challenge by Grimme
and co-workers.”® They demonstrated that the workflows based on
GFN1-xTB and GFN2-xTB methods resulted in rapid and accurate
prediction of experimental pK, of 24 druglike molecules. The
performance of GFN2-xTB has also been tested upon a large number
of TM complexes taken from the Cambridge structural database.”®*
However, the performance of GFN2-xTB towards prediction of ther-
mochemical properties of TM complexes has not been extensively
validated against experimental and/or DFT computed data.
Therefore, research objectives in this study are two-fold: (1)
systematically improve the accuracy of the GFN2-xTB method for
prediction of experimental pK, of TM hydrides via a data-
augmented approach, and (2) assess the suitability of GFN2-xTB
and DFT//GFN2-xTB (i.e. DFT energy refinement on GFN2-xTB
optimized geometries) for predicting pK, as compared with the
conventional full DFT computational protocol. The presented data-
augmented approach leads to a systematic improvement in the
accuracy of the GFN2-xTB method for predicting the experimental
pK, of TM hydrides at negligible additional computational cost. As
a final test we use our data-augmented approach to predict the
ligand pK, of TM complexes and estimate the pK, of TM hydrides
for which ambiguous values have been reported in the literature.

Computational methods
Semiempirical tight-binding calculations

Semiempirical tight-binding calculations were carried out using the
XTB code.”>*® We applied the GFN2-¥TB method,**** recently
developed by the Grimme group. Molecular geometries were subject
to geometry optimization using the verytight criteria. The Hessian
matrix calculations were performed for all optimized geometries to
verify the absence of imaginary frequencies and that each geometry
corresponds to a local minimum on its respective potential energy
surface (PES). Solvent effects were implicitly accounted for using the
GBSA solvation mode*** as implemented in xTB.§

Density functional theory calculations

DFT calculations were carried out using the Gaussian 16 C.01
program package.*® Geometry optimizations were carried out using
the PBEO (also denoted as the PBE1PBE)*® exchange-correlation

+ Multiple solvents were unavailable in xXTB and were replaced by a solvent with
similar dielectric constant. Benzonitrile was replaced by acetonitrile, dichlor-
oethane was replaced by dichloromethane and mixtures were replaced by one of
the components.
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functional, def2-SVP*” basis set and the Grimme’s dispersion correc-
tions (D3 version).*® The choice of the PBEO functional is motivated
by our previous experience for prediction of reliable results for TM
complexes in good agreement with experimental data.

Furthermore, our initial test showed the superior performance of
the PBEO method for the prediction of experimentally determined
ligand pK, (N-H function) of several representative TM complexes.
The DFT computed-energies were additionally refined by single
point (SP) calculations using the PBE0-D3 method together with the
SMD variation of the IEFPCM implicit solvent model of Truhlar and
co-workers®® and the combination of the LANLO08 basis set*® on the
metal center and the cc-pvtz basis set for all other atoms.*'

We note two limitations of our current approach. All complexes
were computed at their lowest spin state and higher spin states
were not considered in our calculations. Furthermore, we did not
make a full exploration of the conformation space of the TM
complexes, which could contribute towards the observed pK,.
Conformation searching is computationally expensive at the DFT
level of theory. At the GFN2-xTB level of theory one could use
CREST calculations, which use a metadynamics-based approach to
make a robust exploration of various possible conformations of a
given complex.””** However, such a focused investigation of the
contribution of conformational freedom to the pK, of M complexes
is outside the scope of the current study. All geometries were
pre-optimized first at the GFN2-xTB level and then subject to full
DFT-based optimization. DFT-based geometry optimizations were
carried out in the gas phase. We also performed geometry optimi-
zation in the solvated phase (using the SMD solvation model). The
gas phase and solvated optimized geometries were found to be in
good agreement with each other (see Fig. S23, ESIT). We however
note that highly flexible molecular geometries with multiple con-
formations can show different global minimum in the gas and
solvated phases.

Machine learning methods

We performed DFT-B-based geometry optimizations for 177 com-
plexes in the gas phase and in solution. The output files were
analysed to extract 17 descriptors (see Table 2) based on the
computed electronic structure, geometry and energetics, which
were stored in the dataset along with the experimentally measured
PK, values obtained from the literature. For ML modelling we took
two approaches: (1) linear regression via the ordinary least squares
(OLS) fitting using sklearn library in python.*® (2) Automated ML
using auto-sklearn library in python.***” Auto-sklearn allows a
rigorous search of a number of ML regression models and hyper-
parameters. The Pearson correlation coefficient (12_score) was used
as a metric for the optimization of the ML model. The dataset was
split into the training and test sets (80-20 split). The ML model was
trained on the training set and its performance was tested on a test
set, which it has not seen before. Cross-validation (CV) set via k-fold
(5 folds) sampling was used, while optimizing the ML model.
The ML models were further tested for their accuracy on an
additional dataset of ligand pK, of TM complexes. ML models have
been solely trained on TM hydrides and their performance on
ligand pK, demonstrates their general applicability. We further use
the ML models to assign pK, values of complexes, for which
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multiple pK, values have been reported in the literature and
compare the results with the DFT-based predictions. The accuracy
of ML models is assessed via calculation of root mean squared
error (RMSE), wherever labelled data are available and compared
against the performance of the DFT-based methods, wherever
possible.

Determination of pK,

Several methods have been proposed in the literature for estimat-
ing pK, by means of DFT calculations."® For an acid-base titration
between an acid AH and base B to produce the conjugate base A
and conjugate acid BH, one can express the pK, of AH as

AH+B=A+BH

@)
pK.(AH) = pK,(BH) + %
AG = G(A) + G(BH) — G(AH) — G(B)

= [G(BH) — G(B)] — [G(AH) — G(A)] (2)

B is a reference base with a known pK, of its conjugate acid form,
BH. The quantities G(BH) — G(B) and pK,(BH) are constants for a
given solvent at a fixed temperature. Therefore, for a given solvent
and temperature pK,(AH) is a linear function of G(AH) — G(A).
We define proton affinity (PA) as the difference between the Gibbs
free energies of protonated (G(AH)) and deprotonated species
(GA)) ie.

PA(AH) = G(A) — G(AH) 3)

Equivalently one can also express the pK,(AH) using the PA
and solvated Gibbs free energy of a proton.

AH=A+HT"
[G(A) — G(AH) + G(H")]
pK.(AH) = 2303RT (4)
_ PA(AH)  G(H)

" 2.303RT  2.303RT

It can be shown that eqn (1) and (4) are equivalent and pkK,
can be expressed as a linear function of PA at fixed tempera-
tures and for a given solvent.

For both the DFT and GFN2-xTB calculations, we discovered
that the PA computed using Gibbs free energy (eqn (3)) corre-
lates perfectly with the PA computed using electronic energies
only (i.e. PA = E(A) — E(AH)). We therefore use electronic energy
to compute the PA (~E(A) — E(AH)) in our ML models. For
further details please refer to Fig. S3 and S4 in the ESL¥

Results and discussion
pK, MH dataset

A data-augmented approach requires reliable data. Generation of
data by experimentation and simulation is one of the key propel-
ling factors towards the rise of data-driven chemical sciences.
However, well-curated experimental datasets on TM complexes
with measured/computed thermodynamic properties are rare. The
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Cambridge structural database (CSD) partly serves this purpose by
providing geometries and measured/calculated properties of TM
complexes but lacks experimentally measured or computed pK,
values of TM complexes. In fact, to the best of our knowledge no
open datasets on experimentally measured pK, values of TM
complexes along with geometric information are available. To
address this we curated experimental pK, data for over 200 TM
complexes from the literature (Fig. 2).

Most of these complexes are transition metal hydrides where
the pK, of the M-H bond has been measured. The dataset is
provided with 3D coordinates of the TM complexes (acid and
conjugate base form) computed using GFN2-xTB. The dataset,
referred to as pK,MH is provided as a .csv file and includes the
DOI of original references and review papers that cite the
measured pK,. pK,MH consists of 201 TM complexes in 6
different solvents and 14 metal centers (Fig. 2).

In the process of curating the dataset we observed that a uniform
experimental method was not always used in determination of the
pK. of TM hydride complexes. On many occasions the pK, was
indirectly determined e.g. using linear correlations with a reduction
potential or via thermodynamic cycles. In some cases where the
conjugate base complex was unstable, pK, was determined by
indirect methods.>**>" The pK, data are therefore also expected
to contain errors related to the measurement/estimation method.

GFN2-xTB and DFT calculations

We computed the solvated PA for all complexes using the GBSA
implicit solvation method as implemented in xTB. Fig. 3 compares
the computed PA and the experimental pK, values for 172 com-
plexes in pK,MH. Our results show that the solvated PAs based on
the electronic energy (E(A) — E(AH)) (R* = 0.74, and RMSE = 5.73),
is a good descriptor of the experimental pK,. There is a minimal
loss of accuracy when using PA = E(A) — E(AH) as a descriptor as
compared to PA = G(A) — G(AH) (see the ESIY).

Dataset:
201 pK, values
ranging
from -6 to 50

Solvents:
CH5CN, PhCN,
CH,Cl,, H,0,
DCE, THF

14 M types:
Cr, Mn, Fe, Co, Ni,
Mo, Ru, Rh, Pd
W, Re, Os, Ir, Pt

System sizes:
10- 140
atoms

Fig. 2 A summary of the pK, MH dataset reported in this work used for the
data-augmented prediction of experimental pK, using the GFN2-xTB method.
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Fig. 3 The comparison of the experimental pK, values and the GFN2-
XTB-computed proton affinities (PA = E(A) — E(AH)) for TM complexes in
different solvents.

For individual solvents the estimation of the experimental pK,
using the GFN2-xTB-computed PA results in RMSEs of 4.6 (MeCN;
N=79),5.7 (THF; N = 14), 3.4 (DCM; N = 40) and 4.1 (DCE; N = 31)
(see ESIT). A worse correlation (R* = 0.46; RMSE = 8.2) is observed
for the DFT//GFN2-xTB-computed PA. Removal of 10 outlier com-
plexes however improved the correlation (R* = 0.77; RMSE = 5.5).
The outlier complexes mainly consisted of complexes with multi-
ple carbonyl (CO) groups (see Fig. S22, ESIT) with the exception of
complex 159 ([HFe(Py,Tstacn)]"?). The pK, of complex 159 was
experimentally determined in a solvent mixture of acetonitrile and
water but computed in pure acetonitrile. Our calculations suggest
that GFN2-xTB may have limited accuracy in describing the M-CO
bonds. This aspect is discussed later in the manuscript.

The correlation between the PA and the experimental pK, is
rather surprising taking into account that different solvents are
involved and the solvation free energy of proton or the PA and
pK, of a reference base were not considered (eqn (1) and (4)).
We speculate that this is related to a small variation in the
solvation free energy of H' across the range of solvents con-
sidered. These results indicate that PA is a good descriptor of
pK, of TM complexes.>

Having computed the PA using the GFN2-xTB and DFT//
GFN2-xTB methods, we turn to estimating the pK, using a full
DFT approach. The DFT computed PA correlates well with the
experimental pK, (R> = 0.84, and RMSE = 4.5) (see ESI{). For
individual solvent estimation of experimental pK, using DFT-
computed PA results in RMSEs of 3.3 (MeCN; N = 69), 2.3 (THF;
N=13), 3.1 (DCM; N = 38) and 2.3 (DCE; N = 30) (see the EST}).

To further assess the performance of GFN2-xTB, we compared
the accuracy of DFT, DFT//GFN2-xTB and GFN2-xTB for predicting
the experimental pK, of TM hydride complexes in our database in
acetonitrile solvent. We have chosen acetonitrile solvent for com-
parison since it has the largest share in the database and it is
parametrized both in Gaussian and xTB packages. We identified
69 TM complexes for which both DFT and GFN2-xTB calculations
were found to converge without errors. The resulting plot is shown
in Fig. 4. Going from GFN2-xTB (R* = 0.76; RMSE = 4.3) to DFT//
GFN2-xTB (R” = 0.51; RMSE = 6.1) leads to a drastic deterioration of
the predictive capability for experimental pK,. Full DFT-based

This journal is © the Owner Societies 2021
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Fig. 4 Comparison of DFT-, DFT//GFN2-xTB- and GFN2-xTB (inset)-computed pK, as the estimator of experimental pK, for 69 TM complexes in

acetonitrile.

predictions were found to have better correlation and higher
accuracy (R* = 0.86; RMSE = 3.3). These results further confirm
that the GFN2-xTB-predicted geometries are not always close to the
DFT-predicted minimum energy geometries.

To analyse this further, we analysed the difference in PA between
DFT and GFN2-xTB (APA = PApgr — PApprcenears = €(A) — e(AH)).
Here, e(A) = E(A)prr — E(A)prrjcrnesrs and e(AH) = E(AH)ppr —
E(AH)prrjcrnexre are the individual errors in conjugate base (A)
and acid type complexes. The mean and median values of e(A) are
—35.2 keal mol ™' and —30.6 kcal mol !, and for e(AH) are
—38.2 keal mol™" and —32.0 keal mol ™", respectively. Complex 45
has a high APA = —66 kcal mol ", with e(A) = —25 kecal mol™* and
e(AH) = —91 kcal mol . Therefore, the conjugate base form of
complex 45 can be considered to have an above-average stability,
while the acid form has a high error. On the other hand, complex 43,
which has a low APA = —1.4 kcal mol " has e(A) = —45.6 keal mol
and e(AH) = —47 kcal mol . Therefore, both the acid and conjugate
base forms for complex 43 have high error.

Complex 43 therefore has a lower overall error in PA due to
favourable error cancellation on the conjugate acid and base
forms. The mean and median of the absolute APA were found to
be 6.2 and 3.3 keal mol ", respectively, with a rather large standard
deviation of 10.7 keal mol " indicating an overall good agreement
between DFT and GFN2-xTB with some highly skewed cases of
large disagreement. The sign of APA determines whether the acid
(AH) or the base (A) form of the complex has a larger error as
compared to DFT. APA < 0 indicates a larger error in the acid
form (AH) of the complex, while APA > 0 denotes that the
conjugate base form (A) contributes to the overall error. Complexes
(in acetonitrile) that featured a |[APA| > 5 keal mol™" have been

This journal is © the Owner Societies 2021

tabulated in Table 1. The majority of complexes have a negative
APA indicating the higher instability of the AH forms of geometries
computed by GFN2-xTB as compared to DFT.

A cursory analysis of entries in Table 1 reveals that the complexes

with |APA| > 5 keal mol " either contain phosphine-based ligands
or multiple CO ligands or both. To compare the DFT and GFN2-xTB
predicted geometries we made structure overlay plots of the acid

Table 1 The TM complexes with a computed |APA| > 5 kcal mol™ and
the respective index of the complex in pK;MH, name (conjugate base), APA
(in kcal mol™) as well as the DFT-GFN2-xTB-errors in A and AH forms
(in kcal mol™)

e(A)/ e(AH)/ APA/
Index Complex keal mol™" keal mol™ keal mol ™"
7 Ni((P(Ph)),(N(Bn)),),] —64.7 —69.8 —5.1
15 Ni((P(Cy))2(N(¢-Bu))y)2] —54.1 —60.2 —6.2
16 Ni((P(Cy))2(N(Ph)),),] —59.3 —66.5 -7.2
25 PA(PNP),] —44.8 —35.9 8.9
28 Pd(depx),] —37.6 —44.8 -7.3
30 Pd(EtXantphos),] —54.8 —66.3 —11.4
26 Pt(PNP),] —63.8 -71.1 -7.3
32 Rh((P(Ph)),(N(PhOMe)),),]~ —66.2 —82.1 -15.9
33 [Rh((P(Cy))a(N(Ph)),).] ~59.5 —64.6 —5.2
45 CpCr(CO);] —25.4 -91.3 —66.0
46 CpMo(CO);]~ —12.4 —60.9 —48.5
47 CpW(CO);]~ -10.0 —48.8 —38.9
52 Co(CO);P(OPh);]~ -19.2 —28.0 —-8.8
56 HCp*Mo(CO),]" -17.6 ~77.6 —60.0
62 CpW(CO),(PMe;)]~ —12.2 —26.6 —14.4
64 Mn(CO),(PPh;)]~ —21.8 —28.0 —6.2
75 CpFe(CO),]~ —25.9 —-16.0 10.0
78 Cp*Fe(CO),]~ —30.6 —20.3 10.3
100  [Cp*Cr(CO)s]~ —38.1 —55.7 -17.6
102 [CpCr(CO),(IMe)]~ —41.9 —52.4 -10.5
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and conjugate base forms of selected complexes, which are pre-
sented in Fig. 5. The Pd-based PNP complex (25) shows a moderate
APA of 8.9 kcal mol . The structure overlay figure (Fig. 5) reveals
that the GFN2-xTB optimization results in hemi-labile PNP coordi-
nation in the [Pd(PNP),] complex, which probably contributes to a
higher error for the conjugate base form. Contrastingly such hemi-
labile coordination was not observed for the acid form of the
complex [HPd(PNP),]". For complex 30, the planarity of the phena-
throline ring is misrepresented in the acid form of the complex
leading to a negative APA of —11.4 kcal mol .

Similarly, the mismatch in orientation of benzene rings
between GFN2-xTB and DFT in the acid form of complex 32 leads
to a APA of —15.9 keal mol . Interestingly for the dicarbonyl W
complex 62 with a PMe; ligand, the energy difference between acid
and base forms are both relatively low. However, the acid form is
more destabilized due to an underestimated Cco-W-Cco angle
leading to a APA of —14.4 kecal mol™". In comparison, complex
7 has a APA of —5.1 keal mol ™" but energy differences in excess of
60 kcal mol " for the acid and base forms (Table 1). The higher
magnitude of APA of complex 62 despite better individual agree-
ments of both the acid and base forms with DFT stresses the
importance of error cancellation in computing thermochemical
properties at the DFT//GFN2-xTB level of theory.

Analysis of molecular geometries of the di-carbonyl complexes
[CPW(CO),(PMe;)] ™ (62), [CpFe(CO)]™ (75), [Cp*Fe(CO)|™ (78)
and [CpCr(CO),(IMe)]~ (102) revealed that the Cqo-M-Cgo angle
is in general underestimated (by 12.2°, 13.3° 16.5° and 36.2°,
respectively), in the conjugate base form of these complexes by
GFN2-xTB. The increasing underestimated angles are reflected in
larger energy differences for these complexes as well (Table 1).
Interestingly the Cco-M~-Cgo does not have a large deviation in the

[Pd(PNP),]
25

98

[HPA(PNP),]* [HPd(EtXantphos),]*
APA/  +89 -11.4
kcal mol-!
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acid forms of complexes 75 and 78 (also see Fig. S21, ESI}). In
contrast, the acid form of complex 62 has an underestimated Cco—
M-C¢o angle (~23°), and complex 102 features largely (>30°)
underestimated Cco—-M-Cco angles in both acid and conjugate
base forms. Therefore, the erroneous representation of the Cco-
M-Cco angle or M-CO bonding in general is not systematically
present in all complexes. The tricarbonyl complexes 45-47 and 56
all feature a very large and negative APA stemming from highly
destabilized acid forms of these complexes (Fig. 6). The structure
plots of complexes 45-47 and 56 in their acid forms reveal the
inaccurate description of M-CO bonding in GFN2-xTB.

The Cco-M-Cco angles between adjacent CO moieties are
largely underestimated, for example by ~35° in complex 45 (acid
form). It can therefore be inferred that the GFN2-xTB-optimized
geometries are less reliable for metal carbonyl complexes. The
unsystematic nature of the error makes prediction of pK, unreli-
able using the GFN2-xTB-optimized geometries. The prediction of
PA involves taking an energy difference between the A and AH type
conjugate base-acid complexes. This results in scenarios where
favourable cancellation of error is possible. For example, com-
plexes 45-47 and 56 have absolute errors (difference between
predicted pK, and experimental pK,) of 30-38 pK, units, respec-
tively, at the DFT//GFN2-xTB level of theory. However, the absolute
errors on pK, predicted by the stand-alone GFN2-xTB calculations
on the same complexes are between 1.0-3.8 pK, units indicating a
favourable error cancellation at the GFN2-xTB level of theory.
Therefore, despite inaccurate representation of M-CO bonding
the GFN2-xTB method gives consistent results when used as a
standalone demonstrating its robust thermochemical predictive
power. Moreover, examining the geometric overlays in Fig. 5 the
overlap of GFN2-xTB-predicted and DFT-predicted geometries have

[Rh((P(Ph))o(N(PhOMe)),),I- [CPW(CO),(PMes)] -

2
(

1
¥

(]
N
=
[HRh((P(Ph)),(N(PhOMe)),),] [HCpW(CO),(PMe3)]

-15.9 -14.4

Fig. 5 Structure overlay plots of acid and base forms of some selected TM complexes optimized using GFN2-xTB (silver) and DFT (green). The top row
shows conjugate base forms, while the bottom row shows the acid forms of complexes 25, 30, 32 and 62.
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45 [HCpCr(CO);] 46 [HCpMo(CO),] 47 [HCPW(CO),] 56 [HCp*Mo(CO);]

Fig. 6 GFN2-xTB-optimized geometries of three tri-carbonyl metal
hydride acids with Cp/Cp* ligand and different metal centers.

a good agreement in general despite significant mismatch for CO
ligands. For example, the Cp/Cp* ligands seem to overlap very well
between the geometries predicted by two methods.

Apart from the poor description of M-CO type complexes a
notable challenge for the GFN2-xTB method was identified to be
its convergence failure for complexes with multiple hydrides. We
found 16 TM complexes for which at least one or both of the base
and acid forms did not converge. With the exception of the
dinitrogen complex [HCr(N,)((P(Ph));(N(Bn));)(dmpe)]" (index 97)
for which the reason for convergence failure is not understood, all
of these complexes have multiple M-H bonds indicating that the
GFN2-xTB method faces problems with such systems.

Machine learning experimental pK, using GFN2-xTB

Given the stand-alone performance of the GFN2-xTB methods in
predicting experimental pkK,, it can be considered robust and a
good starting point for thermochemical property calculations. We
seek to improve the predictive capability of GFN2-xTB using a data-
augmented approach. Our hypothesis is that GFN2-xTB already
provides good geometric and energetic predictions. These predic-
tions when used as features in an ML model, can be used to learn
the experimental pK,. We therefore use GFN2-xTB-computed
molecular geometries and energetic features to learn the experi-
mental pK, of TM complexes. The choice of features is driven by
intuition and physical reasoning in the present work. A more
rigorous and automated approach towards construction and
identification of relevant features from DFT-B calculations is an
ongoing effort in our group.

We selected a set of 17 features, which include the HOMO and
LUMO energies of AH and A, DFT-B computed partial charges on
metal (AH and A) and hydrogen (which is to be deprotonated),

View Article Online
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atomic number, coordination number and coordination environ-
ments of metal centre in AH and A, dielectric constant of the
solvent, solvated and gas phase PA, M-H bond length and total
charge on AH complex (Table 2). Note that the total size of the
dataset used for ML (168) is smaller than the dataset, for which
experimental pK, values have been curated. For 16 TM complexes
DFT-B calculations did not converge (vide supra). We excluded
complexes with multiple metal centres from our analysis (7
entries). Moreover, some complexes had ambiguous pK, or pK,
values that were later revised in the literature (5 + 3 entries), and 3
entries are actually those of ligand pK,. We applied an ordinary
least squares fitting on 80% of the dataset to learn the experi-
mental pK, and use 20% of the dataset for testing the prediction
learnt by the model. The results are presented in Fig. 7.

The OLS model leads to a significant improvement in the
predicting power of the DFT-B method for the pK, of TM
complexes in the database resulting in an R* of ~0.87 and an
RMSE of ~4.1 pK, units (Fig. 7). Next, we explored the AutoML
method provided by the auto-sklearn library in python. The
details of the model are described in the Computational
methods section. The AutoML model found that the K nearest
neighbour (k-NN) algorithm performed the best on our dataset.
The complete ensemble of the learned ML algorithms is pre-
sented in the ESL.t The AutoML model resulted in an R* = 0.94
and an RMSE = 2.7 for the test set (Fig. 8). The AutoML model
therefore outperforms OLS and has similar accuracy to that of
pure DFT.

A particularly notable case is the WH(CO);(CsH,COO")
complex (index 99 in pK, MH), for which an experimental pK,
of 5.8 has been reported in water.”® The OLS model predicted a
pK, of 21.1 for this complex. Consistently a pK, of 18.0 is
predicted by the LAC method.*® The AutoML model predicted a
PK, of 17.0 for this complex. This is the only anionic acid in the
database, which could be the reason for erroneous predictions
by various models. This complex is therefore considered an
outlier and it is excluded from training/test sets and is not
plotted in Fig. 7 and 8.

We used the DFT, GFN2-xTB, OLS and autoML models to
estimate the pK, of complexes with multiple/revised pK, in the
literature and ligand pK,. We further added 7 additional com-
plexes, for which ligand pK, were reported in the literature.
Note that the ML models are purely trained on the pK, of metal

Table 2 Features used in the Machine Learning models and their coefficients learned by the OLS model

ML features Weight features - linear model

ML features Weight features - linear model

Solvated PA —40.20
HOMO (A) 11.08
LUMO (A) —2.42
Charge (AH) —5.22
Charge metal (A) —11.45
M-H max (AH) —-8.23
Coordination number (A) 30.65
cc (A) —10.73
Metal centre 4.17

Gas PA —3.95
HOMO (AH) 2.86
LUMO (AH) —70.11
Epsilon —0.015
Charge metal (AH) 14.15
Charge hydride (AH) 23.03
Coordination number (AH) —6.03
cc (AH) -7.33

M = metal centre; cc = sum of atomic number of all elements that are coordinated to M; epsilon = dielectric constant of solvent; charge (AH) = total
charge on AH complex; charge metal (A/AH) = charge computed on M via population analysis of DFT-B-computed electron density.
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Fig. 7 The comparison of the experimental and OLS-predicted pK, values
in (a) the training and (b) test sets.

hydrides and have never encountered ligand pK,. The assign-
ment of ligand pK, tests the generality and transferability of our
ML models. Furthermore, these test cases allow us to compare
the accuracy of DFT, GFN2-xTB, OLS and AutoML models on an
equal footing (Table 3).

Ligand pK, for complexes 66, 73 and 74 proved difficult to
predict for all the methods. GFN2-xTB performed worse (RMSE =
6.9), followed by OLS (RMSE = 6.0), AutoML (RMSE = 5.8) and DFT
(RMSE = 4.8). For the Trop, family of complexes, which are not a
part of pK,MH, the AutoML model performs well with an RMSE of
4.0, while OLS showed a high RMSE of 7.5 indicating poor
transferability of the OLS model. An estimated pK, < —5 was
established for complex 124 based on its reactivity with HOTf
(aqueous pK, = —5).>® Using the correlation of the DFT-computed
PA with exp. pK,, we estimated a pK, of —0.5 for HOT{. Therefore,
the pK, of complex 124 is expected to be <—0.5 in contrast to —5
as reported earlier.”® OLS predicts a highly negative pK, of —13.4.
AutoML, DFT (using linear scaling relation) and GFN2-xTB predict
similar pK, values of —1.9, —4.6 and —3.8, respectively. DFT
calculations using a reference base predicts a more negative
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Fig. 8 The comparison of the experimental and AutoML-predicted pKj,
values in the (a) training and (b) test sets.

value of —9.5. While all values are <—0.5, the variation in
predictions make it difficult to assign a particular value to the
pK, of complex 124.

For complexes 136, 137, 139 and 155 pK, values have not
been measured in the literature, but rather an acidity scale was
set up in CD,Cl,.>” Both the DFT and GFN2-xTB methods
consistently predict higher pK, values for these complexes in
contrast to OLS and AutoML, which predict smaller values. If
we consider the relative acidities as per the acidity scale, pK,
should follow 137 < 136 < 139 < 155. Only AutoML and
GFN2-xTB predicted pK, to follow this trend. For complexes 75,
76 and 78 the literature values were erroneously reported earlier
and were corrected in subsequent studies.®® All four
approaches work well with low RMSE values in predicting the
pK, of complexes 75, 76 and 78.

Experimentally measured pK, values typically have an error
in the order of 1 pK, units. To the best of our knowledge, a
comprehensive benchmark for the performance of computa-
tional methods towards prediction of experimental pK, of TM
complexes does not exist. AIMD simulations have been applied
to compute the aqueous phase ligand pK, of TM complexes and
are reported to have an error of 1-2 pK, units."” Qi and co-
workers performed CCSD(T) and DFT calculations using the

This journal is © the Owner Societies 2021
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Table 3 Experimental and predicted pK, for ligand pK, of TM complexes, and TM complexes with multiple/revised pK, reported in the literature.
Estimate of pK, values based on DFT calculations are also given. The DFT-based pK, was estimated using the equation for linear correlation of PA
estimated using DFT vs. exp. pKa (0.6388x — 171.41 (MeCN); 0.4974x — 136.09 (CH,CL,); 0.4903x — 132.69; x is PA in kcal mol™?). Values in parentheses
denote estimated pK, values via a reference base using eqn (1). GFN2-xTB-based pK, were estimated using the linear correlation of PA with exp. pK,

(0.3385x — 29.405 (CH,Cly); 0.3867x — 30.71 (MeCN); 0.9972x — 116.05 (THF))

Species Index Exp. pKa OLS AutoML DFT GFN2-xTB
Ligand pK,

[(M*-C6Ho)Mn(CO)5] 66 22.2 27.6 17.6 30.0 (26.8%) 22.3
[(PNP)Ru]" 73 20.7 24.3 12.3 18.6 (21.3%) 30.2
[(PNP)Ru-CO,] 74 24.6 32.7 21.5 26.5 (32.6") 31.9
RMSE 6.0 5.8 4.8 (5.3) 6.9
[Rh(trop,NH)tropNH,]" — 20.1>* 24.9 21.5 —

[Rh(trop,NH)bipy]" — 18.7°° 27.4 22.8 —

[Rh(trop,dach)]" — 15.7> 22.2 19.8 —

[Ir(trop,NH)phen(H,H)]" — 18.2°° 21.7 23.4 —
[Rh(trop,NH)phen(H,H)]" — 18.6°° 27.5 22.9 —

[Rh(trop,NH)phen(Me, H)] — 19.0%¢ 28.4 23.2 —
[Rh(trop,NH)phen(Ph,H)]" — 18.7°¢ 27.6 22.8 —

RMSE 7.5 4.0

Ambiguous pK, reported in literature

[(H,)Fe(CO)(dppe),]** 124 <-5° —13.4 -1.9 —4.6 (—9.5%) —-3.8
[HFe(CO)3(Ptols),]" 136 0.1° 3.9 2.3 7 0 (10 6 9 8.1
[HFe(CO)3(PPhs),]" 137 -1.1° 2.6 0.5 .0 (9.0 7.3
[HFe(CO)3(PPh,Cy),]" 139 1.3° 3.8 1.7 .0 (9. 1d) 8.3
[HFe(CO);3(PCys),]" 155 4.4° 5.6 4.2 .9 (8.7 9.3
PK, values revised in literature

[HCpFe(CO),] 75 27.1 23.7 27.4 25.2 (27.47) 26.7
[HCpRu(CO),] 76 28.3 27.2 29.7 24.5 (29.8%) 28.9
[HCp*Fe(CO),] 78 29.7 26.4 28.2 29.0 (30.27) 31.2
RMSE 2.8 12 2.5(0.9) 1.0

“ Using [H(n°-CeHe)Mn(CO),] (index 67 in PKa MH) asa reference. ”
reaction with HOTf, which has a pK, of —5 in water.

Using [HZCp*Ru(PMes) ]" (index 200 in pK,MH) as a reference. °
4 Using [(HZ)Fe(CNH)(depe) 1

Based on the

(index 147 in pK,MH) as a reference. ° These are not pK, values

but relative acidities on a pK scale in CD,Cl,. See ref. 57.7 Computed using [H,Fe(CO),] (index 53 in pk,MH) as a reference. £ Computed using

[H,Ru(CO),] (index 57 in pK,MH) as a reference.

ONIOM model to estimate the experimental pK, of 30 TM
hydrides in acetonitrile solvent. They reported RMSEs of 1.5
and 2.6 pK, units for CCSD(T) and DFT results, respectively.
The RMSEs for the current DFT results in different solvents
range from 2.3 to 3.3 pK, units (see ESI{), which is comparable
to the results reported by Qi and co-workers. Furthermore, the
RMSE of 2.7 pK, units obtained using auto-sklearn is compar-
able to the accuracy achieved with DFT calculations.

Summary and conclusions

In this manuscript we identify and address some of the key
challenges for accurate and rapid prediction of thermochemi-
cal properties of TM complexes using quantum chemical
approaches. We applied and compared two quantum chemical
methods: semiempirical GFN2-xTB and hybrid DFT. Using pK,
as a model thermochemical problem we first curated a novel
dataset pK,MH composed of pK, of ~200 TM hydride com-
plexes. Our calculations revealed that PA is a good descriptor of
experimental pK,. We further discovered that the computation-
ally expensive Hessian calculations can be avoided when using
PA to estimate experimental pK, values. Comparison of DFT
and DFT//GFN2-xTB calculations revealed that while GFN2-xTB-
predicted geometries are close to DFT-predicted geometries,

This journal is © the Owner Societies 2021

significant errors can occur in the case of metal carbonyl
complexes due to inaccurate representation of chemical bond-
ing of M-CO functions. We further found out that despite such
inaccurate geometric representations the GFN2-xTB method is
robust for thermochemical property predictions when used as a
standalone. However, direct use of GFN2-xTB-optimized geo-
metries for DFT-based single-point calculations is not recom-
mended due to the unsystematic nature of errors posed by the
GFN2-xTB-optimized geometries. The GFN2-xTB method faced
convergence issues for multi-hydride TM complexes.

Using a data-augmented approach we computed features from
GFN2-xTB and trained two different ML models to learn experi-
mental pK, values. The OLS method resulted in a reasonable
accuracy (R* = 0.87, and RMSE = 4.1), which is comparable albeit
inferior to DFT-based predictions. The autoML approach using
auto-sklearn library improved the performance of the GFN2-xTB
approach to near DFT accuracy with an R* of 0.94 and an RMSE of
2.7 on the test set. We further tested the ML models to predict
the pK, of TM complexes, which underwent deprotonation at the
ligands. Even though the ML models were trained on TM-hydrides
the AutoML model performed reasonably well for predicting
ligand pK, values showing its transferability.

Our calculations identify challenging cases for predicting
geometry and thermochemical properties of TM complexes
using GFN2-xTB methods. We further demonstrate the promise
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of the GFN2-xTB method as a robust, fast and accurate semi-
empirical method for calculating thermochemical properties of
TM complexes. Our data-augmented approach using an
AutoML approach can rapidly predict accurate experimental
pK, of TM complexes using GFN2-xTB calculations at near DFT
accuracy. The data-augmented GFN2-xTB approach developed
in this work is promising for development of high throughput
computational screening workflows for discovering TM cata-
lysts. We expect pK,MH to accelerate development and applica-
tion of data-driven chemistry approaches for TM complexes.
Further extension of this dataset with ligand pK, values of TM
complexes and automated construction of features for use in
the ML models are ongoing efforts in our group.
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