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Relaxometry models compared with Bayesian
techniques: ganglioside micelle example†

Pär Håkansson

In this work a methodology to perform Bayesian model-comparison is developed and exemplified in the

analysis of nuclear magnetic relaxation dispersion (NMRD) experiments of water in a ganglioside micelle

system. NMRD is a powerful tool to probe slow dynamics in complex liquids. There are many interesting

systems that can be studied with NMRD, such as ionic and lyotropic liquids or electrolytes. However, to

progress in the understanding of the studied systems, relatively detailed theoretical NMRD-models are

required. To improve the models, they need to be carefully compared, in addition to physico-chemical

considerations of molecular and spin dynamics. The comparison is performed by computing the Bayesian

evidence in terms of a thermodynamic integral solved with Markov chain Monte Carlo. The result leads to a

conclusion of two micelle water-pools, and rules out both less and more parameters, i.e., one and three

pools. On the other hand, if only the quality of the fits is considered (i.e., mean square deviation or w2) a

three water-pool model is the best. The latter can be expected since with more adjustable parameters a

better fit is more likely. Bayesian evidence is needed to rank the uncertainty of the models, and in order to

explain the outcome a notation of Ockham-entropy is defined. The two approximate selection tools, Akaike

and Baysian information criterions, may lead to wrong conclusions compared to the full integration. This

methodology is expected to be one of several important tools in NMRD model development; however, it is

completely general and should find awakened use in many research areas.

1 Introduction

The measurement of relaxation rates of nuclear spins versus
resonance frequency is typically denoted as relaxometry and
the recorded data form a relaxation dispersion (NMRD) profile.
The experiment typically covers kHz to MHz resonance frequency
and adds additional information to NMR spectroscopy (denoted
as NMR relaxation). In particular, relaxometry can characterise the
dynamics in a wide range from the nano- to micro-second
regime.1 These properties open the way to study complex systems
such as cement, petroleum fluids, biological tissue and collective
motion of whole proteins,2 and dynamics in liquid crystals.3

To obtain more meaningful information from relaxation
experiments, relaxation models are utilized to provide details of
the mechanisms underlying spin relaxation.4 Starting from the
spin-system under study, the relevant mechanism may involve
dipole–dipole, chemical exchange, paramagnetic and quadrupole
contributions,5–12 as well as chemical shift anisotropy.13

The challenges in building models involve the incorpora-
tion of consistent molecular dynamics processes to explain
experimental observations and account for spin-dynamics with

sufficient accuracy.14–16 Hence, these challenges may come in
the form of (i) multiple physical interpretations and (ii) more
than one parametrization within a specific physical picture. By
addressing (i) and (ii), the relaxometry-research community can
strengthen the communication of results and make progress in
model development for challenging systems.

Bayesian model selection is expected to provide a powerful
method to rank conclusions drawn from different models and
thus navigate past the challenges. Hence, in light of the data,
NMRD-profile and additional experiments such as NMR-
relaxation, diffusion and X-ray, we can determine the ‘‘best’’
model out of several competing proposals. The definition of
‘‘best’’ needs to include more than minima of cost functions
like w2.17 Rather, it should focus on the reproducibility and a
balance quality of fit versus uncertainty due to the multitude of
parameters to be determined.18

Model selection is expected to help in navigating the physics
and chemistry underpinning the relaxation models. This goes
beyond the qualitative guide for model selection via Ockham’s
razor, which may be formulated as ‘‘it is futile to do with more
what can be done with fewer’’.19

For the water study in this work, the proton dipole–dipole
(DD)-relaxation is the most important mechanism to model.
Even for one mechanism, multiple relaxation pathways can
prove important, such as intramolecular contribution,20
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intermolecular DD modulated by molecular diffusion,21,22 and/
or proton exchange.23 The vast majority of relaxometry studies
merge relevant physics in an analytical model describing the
dynamics of the system and lead to a relatively large set of
adjustable parameters.5 Ideally a signature NMRD feature can
be used and strengthen the model interpretation with fewer
parameters such as DD-relaxation enhancement.11 Such
pronounced features are explored for paramagnetic10,16 super-
paramagentic24 and quadrupole spin-systems.25,26

In this work the methodology is provided for Bayesian model
selection and tested on micelle NMRD data.5 In particular the
parametrization for a class of models (noted as (ii) above),
addresses the question: why does the two water-pool model give
the best explanation of data and not a simpler or more complex
model? Hence, does the data support this more complex model?

The communication can thus be strengthened, especially
towards researchers who are not experts in this field. Other
research-fields such as astrophysics and cosmology have a long
tradition of using and benefiting from these methods.27,28

A deeper understanding of approximations in analytical
models as well as a partial or complete reduction of adjustable
parameters has been obtained with molecular dynamics simu-
lations. In relaxometry studies, this is achieved for paramag-
netic relaxation enhancement,29 rotation and translation of
small molecules,30 water at the bilayer interface,8 water in
cement,31 and ionic liquids,13 lyotropic phases,14,32 porous
organic cages7 and proteins.33 The simulation studies opens
a way to explore the validity of analytical models and for
some systems serves as the method of choice. However, model
comparisons are not removed by using molecular dynamics
simulations; instead, questions such as what is the sufficient
size and timespan as well as what forcefield or quantum-
chemistry methods are sufficiently accurate arise. Hence, based
on different types of simulations, what outcome is the best in
describing NMR-relaxation/relaxometry?

The estimation of model parameters and model comparison
is centred around a cost function such as w2:

w2ðxÞ ¼
XN
i¼1

RT
i ðxÞ � Rexp

i

� �2
si2

; (1)

where RT
i (x) is the theoretical model, dependent on adjustable

parameters x, Rexp
i are the experimental observations and si is

the standard deviation in experimental observation i. The
adjustable parameters of the model (x) are of size k, i.e.,
correlation times, order parameter diffusion constant, etc.,
dependent on the physics and chemistry of the system under
study. In this format we may merge multiple relaxometry
experiments at various temperatures, diffusion measurements
and high-field relaxation data.5,34

There are large sets of tools proposed around cost functions
to compare models; the reduced w2 can be computed by
dividing by N � k and for instance over-fitting can be proposed.
However, in particular for nonlinear models we don’t know how
many degrees of freedom are present and the guess ‘‘N � k’’,

where k is the number of parameters, is not robust.35 Hence,
the w2-value does not allow for model comparison in general.

Two approximate routes: the Akaike information criterion
(AIC) and the Bayesian information criterion (BIC), both
attempt to balance quality of fit with complexity of the model.
These methods have as one assumption an asymptotic limit of
N for a reduced error.36 In recent work these have been tested
and found to have limited value in NMRD micelle studies.

The cross-validation (analysing part of the data) or more
generally the Bootstrap-sampling have the drawbacks that the
validity is in the asymptotic limit17,37 and for model comparison,
only approximate forms are provided.36,38 Given the common
situation of a small data set (N) in NMR-relaxation and NMRD the
bootstrap method will not be explored in the current work.

In this work we follow instead Bayesian theory and compute
the model evidence, which combines uncertainty due to a
multitude of adjustable parameters and the quality of fit. Thus,
a quantitative tool corresponding to Ockham’s razor is
obtained.36,39,40 A path to understand Bayesian evidence is
assisted by identifying and defining Ockham-entropy in this
work, since suitable terms to discuss the results are lacking.18

Bayesian evidence is a challenging high-dimensional inte-
gral to compute even with Monte Carlo methods. However, by
introducing a thermodynamic integration the sought property
is computed with multiple but vastly less demanding Markov
chain Monte Carlo (MCMC) methods.41 In this work we imple-
ment thermodynamic integration and show that this is a
computationally feasible route for relaxometry model compar-
ison. The result is quantitative discrimination between models
combining quality of fit and penalising over parametrization
with Ockham-entropy.

In this paper, the relaxation model derived in previous work5

is presented in Section 2. In Section 3, the relevant Bayesian
theory is provided with discussion of the introduced Ockham-
entropy. This is followed by aspects to consider in MCMC
simulations and the code is discussed in Section 4. Finally
the NMRD example is analysed and presented in Section 5,
followed by a summarising conclusion in Section 6.

2 Relaxation model

In this work we reexamine and follow closely the notation for
the model presented in ref. 5, and refer to this work for further
model discussions. The experimental observation of longitudi-
nal relaxation rate Rexp

1 (o0) is the rate-of-change in the spin
ensemble due to the influence of the environment at resonance
frequency o0. At relatively low fields the dominating relaxation
pathway is the DD-mechanism where the relaxation matrix for
pairwise DD-coupling is well documented in the literature.4,23

The key to the relaxation study5 is the formulation of a
relevant physical picture, i.e. the two water-pool model depicted
in Fig. 1. The two types of waters are denoted (bi, i = 1, 2) both
located at the micelle. Reasons for more than one pool may be
due to the large ganglioside head-group allowing for several
water locations, leading to different exchange times (tw,i) and
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populations (fbi), but modulation by the same overall micelle
rotation tR. The non-bound waters are denoted as bulk water in
Fig. 1. In addition there are 2–3% ganglioside protons that are
not addressed with the model.5

The theoretical prediction (RT
1(o)) takes the form

RT
1(o) = a + fb1R1,b1(o) + fb2R1,b2(o) (2)

where a are the sum of field independent contributions.5 The
order parameters originate from expressing spectral densities
within a two step model42

JiðnoÞ ¼ ð1� Si
2Þtf þ Si

2tc;i
1

1þ ðntc;ioÞ2
; (3)

where tf denotes fast local dynamics not explicitly accounted
for in the final model, but enters the parameters a. The field
dependent parts for the two waters are given by

R1;bi ¼ Si
2tc;ibIntra

0:2

1þ ðo0tc;iÞ2
þ 0:8

1þ ð2o0tc;iÞ2

�

þ WD 0:1þ 0:3

1þ ðo0tc;iÞ2
þ 0:6

1þ ð2o0tc;iÞ2

� ��
;

(4)

where WD denotes weight factor for inter-molecular proton inter-
action (second part of eqn (4)), tc,i represent an effective correla-
tion time and bintra is the amplitude of intra-water proton
interaction. The effective correlation time accounts for the com-
bined processes of micelle reorientation and water exchange:

tc;i ¼
tR � tw;i
tR þ tw;i

: (5)

2.1 Proposed models

The intra-molecular DD-amplitude may be determined from

bintra �
3

2

m0
4p

�hgH
2rHH

�3
� 	2

; (6)

with proton distance in water rHH = 1.58 Å and vacuum
permeability m0, Planck’s constant per radians (h�), and the
gyromagnetic ratio of a proton (gH). However, the amplitude
for inter-molecular proton interactions is not known and takes
the effective form binter = bintraWD. In this format we can not
resolve if intra or inter are the dominating relaxation pathways
and this is left for future work.

Relaxometry experiments are less sensitive to some model
aspects and it makes sense to reduce the number of determined
parameters. Following ref. 5, the product Si

2fbi is estimated,
together with tc,i and a. Thus, the two water-pool model
contains five adjustable parameters per temperature5 x =
{a,Si

2fbi,tc,i}, (i = 1, 2) and 15 in total.
We can not tell in advance how many water-pools there

actually are, and more importantly, how many the NMRD
experiments are sensitive to. This opens up a qualitative dis-
cussion along the line of Occham’s razor to motivate a suitable
number of water-pools, two in the original work.5 The number
of water-pools, however, forms a transparent example where
quantitative model comparison may be followed. Thus we
consider the models Ma, Mb and Mc with two, one and three
water-pools, respectively, leading to the number of adjustable
parameters being: ka = 15, kb = 9 and kc = 21.

The results are discussed in terms of Stokes–Einstein–Debye
(SED) relation and furthermore, a challenge is observed in
extracting temperature dependence in (Si

2fbi). These aspects
motivate a two-pool model Md with a reduced set of parameters
(kd = 10) explicitly including SED and with a constant parameter
(Si

2fbi).
As pointed out,5 modelling can be refined if we have

complementary heavy water experiments.43 Furthermore, clas-
sical molecular dynamics may propose individual values to
the merged (Si

2fbi) parameter,44 and quantum chemical mole-
cular dynamics may suggest constraints on proton exchange
times. High field T1 measurement increases the spanned
frequency range with one order of magnitude. Hence, the
model comparison is evolving and needs to be open to new
information.

3 Theory: Bayesian approach to model
selection

To define the model selection, consider the probability of
model Mj in the light of available data Rexp (in this work the
NMRD profile) that is formulated with Bayesian theory. With
the given (additional) information I (for instance known
concentration of surfactants, temperature of experiments,
etc.)41 the probability takes the form

PðMj jRexp; IÞ

¼ PðMj jIÞpðRexpjMj ; IÞ
Z

/ PðMj jIÞpðRexpjMj ; IÞ;
(7)

where the left hand side reads ‘‘probability of model Mj given
experimental data (Rexp)’’ and Z is a normalisation constant.
Thus, two models can be compared (P(Ma|Rexp,I)/P(Mb|Rexp,I))
without knowing Z. The right hand side contains the prior
probability P(Mj|I), i.e., the probability given to the model
before we have the data and the so called evidence p(Rexp|Mj,I).
The evidence may be expanded as41

pðRexpjMj ; IÞ ¼
ð
VðxjÞ

LðRexpjMj ; xjÞpðxj jMjÞdmðxjÞ; (8)

Fig. 1 Scheme of the two-pool H2O relaxation model. Hence, two water-
pools at the micelle with populations fb1 and fb2, in addition to the bulk
water. Micelle overall rotation has a characteristic time tR and the waters
have residence times tw,i (i = 1, 2).
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where the likelihood function in this work is computed from
eqn (1) as:

LðRexpjMj ; xjÞ ¼
1Q

i

ffiffiffiffiffiffiffiffiffiffiffi
2psi2

p exp �w2ðxjÞ=2
� �

: (9)

Thus an integral of likelihood function over the whole multi-
dimensional parameter volume (V(xj)) where parameters are con-
sidered random variables with probability measure m(xj), hence,
integral fulfils normalization citeria and parameters are well
defined over the domain. To get the probability of model Mj we
need to integrate the likelihood over the whole weighted para-
meter space given experimental data Rexp and information I.

3.1 Thermodynamic integration

For many problems, eqn (8) is a high-dimensional integral and is
difficult to estimate with numerical methods.36,40 A flavour of the
numerical challenge is given in Fig. 2 where the details of the
structure of the likelihood function needs to be integrated.40

By introducing a one-dimensional thermodynamic integral
instead of attempting direct computation of eqn (8), a much
less demanding problem is obtained. In fact, as exemplified,41

this may reduce the required number of sampling configura-
tions from 10138 to 106! To compute eqn (8) as a thermody-
namic integral (without introducing approximations) an
auxiliary function is introduced:40,41

FðbÞ ¼
ð
VðxjÞ

LðRexpjMj ; xjÞbpðxj jMjÞdmðxjÞ; (10)

and the derivate of ln[F] (q ln[F]/qb = F�1qF/qb) is used.
This gives:

@

@b
ln½FðbÞ�

¼ � 1

FðbÞ

ð
VðxjÞ

w2ðxjÞ
2

LðRexpjMj ; xjÞbpðxj jMj ; IÞdmðxjÞ

¼ �1
2
hw2ðxÞib � �

1

2NMCMC

XNMCMC

l

wðxlðbÞÞ2;

(11)

where the specific likelihood function (see eqn (9)) to power b is
used and the mean value h�ib is computed for the b-probability
density L(Rexp|Mj,xj)

bp(xj|Mj)dm(xj)/F(b). The approximation

involves the statistical uncertainty from a finite number of
MCMC configurations, described in Section 4.

Integrating eqn (11) over [0,1] gives

ln½Fð1Þ� ¼ ln½Fð0Þ� �
ð1
0

1

2
hw2ðxjÞibdb ¼ ln½pðRexpjMj ; IÞ�; (12)

where ln[F(0)] is zero (by normalisation) and the natural
logarithm of the desired probability is obtained.

We note that in the limit b- 1 the integral in eqn (12) has a
contribution from the quality of fit, hence, a smaller value of
hw2ib=1 reduces the negative log or increases the model prob-
ability. The meaning of the complete integral in eqn (12) is
addressed in what follows.

3.2 Entropy and model complexity

Although the integral of eqn (12) is a mathematic path to
compute Bayesian evidence, it also provides an insight on its
meaning, as seen from the reformulation:

�1
2
hwðxÞ2ib ¼ � C

ð
VðxÞ

w2ðxÞ
2

LðxÞbd~mðxÞ

¼ C

b

ð
VðxÞ

ln½LðxÞb�
� �

LðxÞbd~mðxÞ;
(13)

where a compact notation for the probabilities in eqn (11) is
introduced and the uniform prior-probability considered in
this work [p(x|M)] is contained in the integration boundaries
and normalization constant C instead of explicitly included.
The format of eqn (13) allows a comparison with the statistical
mechanics formulation of entropy:45

S ¼ �kB
X
n

ln½Pn�ð ÞPn ! �kB
ð
VðxÞ

ln½PðxÞ�ð ÞPðxÞd~mðxÞ; (14)

taken in the continuous limit, where kB is Boltzmann’s constant
and P is the probability density for physical states.

By comparing eqn (13) and (14) we see that the integral in
eqn (12) collects the entropy, or equivalently, the uncertainty in
going from only prior to final parameter information, from
the optimisation (or fit) of model to the experimental data. The
(b = 1) contribution is lower since here the best information
content is provided. Thus, a model is found that minimizes the
b-integral but also maximizes the propability of the model
[cf. eqn (7), simply considering log and non-log form]. With
the entropy connection, just like a volume of ideal-gas com-
pared with corresponding real-gas influences the entropy of a
physical system, we can expect that the number of parameters,
total volume, and extent parameters depend on each-other and
also influence the entropy (cf. eqn (13)).

The literature proposes that Bayesian evidence consists of a
best fit contribution and ‘‘model complexity’’,18,19,28,36,39,40

however the correspondence and direct connection to entropy
is not done. We find that for the physical chemistry community

Fig. 2 One-dimensional sketch illustrating the challenge with eqn (8), the
likelihood function (L) in solid-black line and prior probability distribution
of parameter (x) in dashed red line. The detailed structure of the likelihood
function makes a high-dimensional integral challenging to compute by
direct Monte Carlo sampling.
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it is useful to define Ockham’s entropy:

DSj;Ockham �
ð1
0

hw2ðxjÞibdb� w2ðxj;optÞ;

DSj;Ockham þ w2ðxj;optÞ ¼ �2 ln p RexpjMj ; I
� �� �

;

(15)

where the optimal fit (w2(xj,opt)) is discussed in Section 4.1. With
Ockham’s entropy we can begin to follow the consequences of
‘‘too many parameters’’ when building models.

3.3 Bayes factor

With two models proposed (Ma,Mb), eqn (12) enables the
calculation of Bayes factor:36

PðMajRexp; IÞ
PðMbjRexp; IÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

posterior odds

¼ pðRexpjMa; IÞ
pðRexpjMb; IÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼BabðBayes factorÞ

�PðMajIÞ
PðMbjIÞ|fflfflfflfflffl{zfflfflfflfflffl}
prior odds

; (16)

hence, for models that can be assumed equally probable before
data is analysed the Bab provides the posterior odds. Commonly
Bayes-factor is discussed in terms of the empirical Jeffreys scale
for the strength of evidence against model b, given in Table 1:

3.4 Approximate model selection criteria

There are a number of approximate model selection criteria
and we will explore the Akaike and Baysian information criter-
ion, (AIC) and (BIC), respectivley:

AIC = �2 ln(Lopt) + 2k,

BIC = �2 ln(Lopt) +k ln(N),

where Lopt is the maximum likelihood.40 For the case of
Gaussian likelihood used in this work (see eqn (11)) further
simplification is 2 ln(Lopt) = wopt

2 + ‘‘constant independent of
model’’. As for the full calculation provided in this work (see
eqn (12)) BIC and AIC penalise a model with poor fit (large w2)
and excessive adjustable parameters, with expected O(N�1)
error, of experimental data N.36

4 Methods

We present the parameter estimation with MCMC followed by
the procedure for the thermodynamic integral (eqn (12)); for
details we refer to the Matlab code and ‘‘readme’’ file presented
in the GitHub example.46 It is noted that central to the study is
the details of w2 and thus the standard deviation (si) of
experimental relaxation rates in eqn (1). The experimental
relaxation rates in the work of ref. 5 where obtained by fitting

a function to Rexp data points, leading to a much too small
standard deviation that was then calibrated with additional
experiments. It is noted that the calibration factor of 10 for si is

used,5 corresponding in this work to a factor 10=
ffiffiffi
2
p

due to the
normalization of 2 in this work (see eqn (1)).

4.1 MCMC parameter estimation

Before any work with model comparison, parametrization is
needed. The ideas are implemented in Matlab/octave code46

and the steps are given in the flow-chart of parameter estima-
tion (see Fig. 3). The start (a) for one of the models Ma,. . .,Md,
the parameter prior (p(xj|Mj,I)) is chosen, that for this work
is the uniform (uninformed) prior. For the user this involves
setting the parameter-boundaries xmin and xmax (see Section 5).
The choice of these ensures that parametrisation is reproduci-
ble within boundaries and no model is given extra advantage
due to small interval. The parameter prior is used in (b) to
generate Ntest starting configurations (in the range 4–10
{x}Ntest), where these parameter sets are random variables from
the sought prior distribution.

The core of MCMC is efficient sampling of configurations
(c). For ease of introducing alternative prior distributions the
current version, function MCMCstep.m,46 follows the Metropo-
lis algorithm,7,47,48 hence, the proposed new parameter config-
urations are sampled in a random direction (not for instance
guided by the likelihood function). Each parameter is given a
move individually, following the Gibbs sampling algorithm.49

The parameter moves are reflected at the boundaries (xmin and
xmax).

Table 1 Jeffrey’s scale rating evidence against b via Bayes factor, assum-
ing equal prior model probabilities for model a and b

2 ln[Bab] Evidence against Mb

0 to 2 Just mention
2 to 6 Positive
6 to 10 Strong
410 Very strong

Fig. 3 Flowchart MCMC parameter optimization.
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The acceptance ratio of steps should as a rule of thumb be
B0.5 to efficiently probe lower probability regions but where
higher value (shorter steps) leads to greater correlation between
configurations. It is noted that more efficient sampling may be
found, but these require model specific implementation.47 The
step-length can be optimised versus the measured step correla-
tion to further improve sampling. The step correlations are
computed from the saved configurations, i.e., normalised auto
and cross-correlation functions50 (see ESI† and implementa-
tion in the code46).

The step-lengths were determined by computing a sub-set of
steps where the mean acceptance ratio is computed followed by
calibration until within the interval [0.4, 0.6]. This was followed
by B105 MCMC iterations towards equilibrium, the region of
smallest w2 (denoted ‘‘burn-in’’). The burn-in is followed
directly by attempt of productive MCMC-steps (B106). The
above sequence of steps is typically not intervened in by the
user. At this point comes the main question of MCMC, have the
configurations reached equilibrium? This question is
addressed with a set of Ntest trajectories and looking for
consistency in wopt

2 versus the standard deviation of w2 (see
Fig. S1 in ESI†). If some configurations remain in a local
minimum, the annealing procedure is performed where simu-
lations corresponding to higher ‘‘temperatures’’ (low b) are
made and any local minima are more easily surpassed.

Obviously there is no global minimisation routine (MCMC
or otherwise) capable of arbitrary complex models; thus if some
very challenging problems occur, the user should also consider
if the model represents relevant physics worth proceeding with.

With all the {x}Ntest
configuration successfully completed (d)

additional sets are computed up to and including the burn-in
step, to verify that we have a reproducible global minimum in
w2. The results are summarised with xj-histograms, i.e. total
density projected on each variable xj. Histograms are integrated
to provide 95%-confidence intervals. The optimized parameters
are in this work given by

xopt ¼ argmin
x
ðw2ðxÞÞ; (17)

reported together with the 95%-confidence intervals. For the
considered models one calculation of MCMC takes 5–20 minutes
per separate MCMC-run on a MacBook Pro 3.1 GHz intel processor.
The implementation46 in Matlab R2019b has one option to submit
multiple runs to a supercomputer. The same code also runs with
the freely available Octave.51

What is found valuable in the provided implementation46

is the ease by which calibration of the MCMC step-length is
made automatic with the univariate moves (Gibbs sampling49).
In addition, how random initial configurations converge by
exploring a set of fixed annealing temperatures for the challen-
ging cases. Challenges may appear for models with larger
number of parameters that are still interesting to give a fair
comparison. The annealing enables completely random initial
configurations to query if the proposed model-result is repro-
ducible within the given parameter boundaries.

There are several MCMC programs and it is found that in
ref. 52 (used in NMRD53) the configuration move used is not
transparent to the implementation including annealing.
Furthermore, initial configurations are proposed to be from a
‘‘suitable starting point’’.52 Such an approach does not work
here where the goal is to probe the whole parameter volume as
potential starting points.

4.2 Numerical thermodynamic integral

The numerical computation of the thermodynamic integral in
eqn (12) is performed with the set of optimised configurations
{xopt}Ntest

(see Fig. 3) computing integrand at discrete b values.
The discretization is found by starting from five b values with
logarithmic discretisation on interval (0,1), where it is noted we
have the b = 1 value from the parametrization and the b = 0 case
is most efficient to generate with independently sampled con-
figurations from the prior parameter distribution.

Based on the integral computed with the trapezoidal rule,17

the interval with the largest contribution is located and split in
half and the integral is recomputed. This procedure continues
until the difference between two subsequent integrals is less
than the desired tolerance. The same discretization was then
used for all the models with b-values provided in the GitHub
example.46

5 Results and discussion

The main aim of this work is to provide numerical (MCMC)
Bayesian model selection to the relaxometry community and
exemplify how this can be used in the interpretation of NMRD
profiles. The example considered is relaxometry study of water
in ganglioside Micelles,5 where previous work considers a
model with two water-pools; this number (and not one, three
or more pools) is deemed the feasible amount of information to
extract from NMRD-profiles. The main question is if quantita-
tive model selection can conclude how many pools is best with
the given data.

5.1 Model parametrization

From the parametrization of the models (Ma, Mb, Mc and Md)
following Fig. 3 it is identified if any of the models provide
exceptional challenges before continuing work with model
comparison. The first stage, the parametrization, with optimal
fits is provided in Fig. 5 and the estimated parameters
in Tables 2–5, listing the parameter boundaries in the
bottom rows.

Common for models Ma to Md are that optimisation is
performed globally over the 90 data points and the exploration
of weight of inter-DD contribution case WD = 0.4. It was found5

that the model dependence of WD is weak and it is not the
focus of this work to explore this further.

For model Ma it is found that MCMC estimation provide
within 95%-confidence interval, w2

opt = 68 and largely, within the
confidence interval, the same parameters as the original work,5

with data in Table 2.
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Thus, the same physical interpretation5 is summarised, that is,
a slow correlation time tc,1 dominated by overall rotational
diffusion of ganglioside micelles; that from the Stoke–Einstein–
Debye (SED) relation is consistent with the radius of 54 Å,
concluded from measurements by other techniques.5 The shorter
correlation time, originating from tc,2 (see Fig. 1) is ascribed to the
proton exchange-modulated reorientation where water protons
exchange with labile surfactant protons.5,54

The difference in the size of the confidence intervals is
striking; for MCMC they are always larger where the difference
for (S2

2 fb2) is a factor 50.5 Considering steps to check the MCMC

parameter estimation, there are 7 simulations with random
starting configurations within parameter boundaries (see range
in Table 2). By estimating the MCMC-parameter auto-
correlation (tsteps) a handle is obtained on how well the para-
meter space is sampled. It is found that w2, (S2

2 fb2) and (S1
2 fb1)

are sampled with 4� 104, 2� 102 and 1� 103 correlation times,
respectively. This points to a sufficiently sampled parameter-
space given that additional ‘‘burn-in’’ is separately performed
(see ESI,† Fig. S2).

From the computed cross-correlations (see ESI†), a substan-
tial amount is seen between (S2

2 fb2)–(tc,2) and (S2
2 fb2)–a for the

20 1C NMRD-profile and they are illustrated with histograms in
the upper panels of Fig. 4. The parameter correlation explains
the large error boundary found in MCMC estimation. Note that
this in itself is not a problem for the MCMC-validity, except it
leads to a large parameter uncertainty. This is since the whole
parameter space is still sampled provided sufficiently long
MCMC simulation is performed. On the other hand, for con-
ventional fit-routine, parameter correlations introduce an error
in confidence intervals since the parameter distribution is not
known in that case.39

The parametrization of model Mb is given in Table 3 and
Fig. 5 (wopt

2 = 1346) assumes one water-pool. The model provides

Table 5 Md, following the two-pool assumption of ref. 5, modified form of model Ma. Global MCMC parameter estimation with three temperature data
(sample concentration 15 mM). The optimal fit is displayed in Fig. 5

T (1C) R (Å) tw,1 (ms) tc,2 (ns) a (s�1) S1fb1 (10�3) S2fb2 (10�3)

10 49 8 11 0.64 0.24 1.7
[48 50] [2.1 10] [9 16] [0.61 0.67] [0.23 0.26] [1.3 2.0]

15 — — 10 0.58 — —
[8 14] [0.55 0.60]

20 — — 9 0.54 — —
[7 12] [0.51 0.56]

xmin 2 xmax 10 2 100 0.001 2 10 0.1 2 100 0.001 2 0.8 0.0 2 0.1 0.0 2 0.1

Table 2 Ma, following the two-pool assumption of ref. 5. Global MCMC parameter estimation with three temperature data (sample concentration
15 mM). The fit is displayed in Fig. 5

T (1C) tc,1 (ns) tc,2 (ns) a (s�1) S1fb1 (10�3) S2fb2 (10�3)

10 157 11.6 0.64 0.25 1.6
[144 168] [6.6 18.6] [0.58 0.69] [0.23 0.27] [1.1 2.6]

15 132 9.0 0.58 0.25 1.8
[125 147] [5.9 17] [0.54 0.62] [0.22 0.27] [1.0 2.6]

20 123 9.6 0.53 0.23 1.6
[115 135] [6.4 17] [0.49 0.57] [0.20 0.25] [0.9 2.3]

xmin 2 xmax 1.0 2 1000 0.1 2 100 0.001 2 0.8 0.01 2 100 0.01 2 100

Table 3 Mb, following the one-pool assumption of ref. 5. Global MCMC
parameter estimation with three temperature data (sample concentration
15 mM). Total w2 is 1346. The fit is displayed in Fig. 5

T (1C) tc,1 (ns) a (s�1) S1fb1 (10�3)

10 119 0.77 0.38
[115 124] [0.75 0.80] [0.36 0.39]

15 102 0.70 0.37
[99 107] [0.69 0.72] [0.36 0.39]

20 94 0.64 0.35
[91 98] [0.63 0.66] [0.34 0.36]

xmin 2 xmax 1 2 1000 0.001 2 0.8 0.01 2 100

Table 4 Mc, following the three-pool assumption of ref. 5. Global MCMC parameter estimation with three temperature data (sample concentration 15
mM). The fit is displayed in Fig. 5

T (1C) tc,1 (ns) tc,2 (ns) tc,3 (ns) a (s�1) S1fb1 (10�3) S2fb2 (10�3) S3fb3 (10�3)

10 183 49 4.5 0.58 0.18 0.3 3.5
[153 215] [17 70] [1.2 40] [0.1 0.65] [0.13 0.24] [0.23 0.85] [1.8 12]

15 178 63 5.0 0.54 0.15 0.3 2.9
[132 204] [16 69] [1.1 11.1] [0.2 0.6] [0.12 0.25] [0.22 0.85] [1.4 11]

20 140 40 2.5 0.39 0.16 0.31 5.0
[122 192] [15 69] [0.8 7.9] [0.1 0.54] [0.08 0.22] [0.17 0.85] [1.7 13]

xmin 2 xmax 70 2 1000 15 2 70 0.1 2 15 0.001 2 0.8 0.01 2 100 0.01 2 100 0.01 2 100
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a poor description of high field data (see Fig. 5), however, the
model is simpler with a total of 9 adjustable parameters. The least
sampled parameter is (S1

2 fb1) with 6700 correlation times within
the MCMC run and auto-correlation (for each parameter in
MCMC run) is in the same regime as cross-correlations. The
correlation time tc,1 is about 20% shorter than for model Ma

and corresponds to a micelle radius about 3 Å smaller with the
correlation time interpreted in terms of SED.

For model Mc, the parametrization is provided in Table 4
and the best fit in Fig. 5 (wopt

2 = 18) where three water-pools are
assumed, is also the best of all models tested. However, it is
noted that this wopt

2 is more than a factor of three lower than the
number of experimental data-points, indicating an overfit of
data. The parameter boundaries (tc,2 and tc,3) are chosen to be
relatively narrow (based on the Ma result), in order for the study
to be reproducible from random initial parameter configura-
tions. The model Mc has a similar outcome to Ma, where tc,1 is
longer, however, considering the 95%-confidence intervals the
two models provide essentially the same outcome. The con-
fidence intervals are much larger for Mc, especially for the high-
field contribution a and amplitude (S3

2 fb3) as well as correlation
times tc,2 and tc,3. The correlation between several parameter
pairs is substantial, in particular tc,i and a, and this is exem-
plified with histograms in the ESI.†

Based on what is learned from MCMC study of model Ma we
propose an alternative in Md, to explore a simpler model. First,
from Table 2 the confidence intervals for (S2

2 fb2) are overlap-
ping and the parameter correlations suggest that one tempera-
ture independent parameter can be more useful for (Si

2 fbi).
Secondly, discussion of tc,1 is in terms of SED relation and can
be incorporated explicitly and with a temperature independent
micelle radius (R) and water residence time (tw,1). In total 10
instead of 15 adjustable parameters in Md.

Clearly this alters to some extent the physics of the model
and must be kept in mind, for instance, a model that explains
additional experimental data well is desired. The model Md is

Fig. 4 Normalized histograms illustrating the main correlations for model
Ma (upper row) and model Md (lower row), (tc,2–S2fb2) and (a–S2fb2) in the
left and right panel respectively. These are parameters for T = 20 1C
NMRD-profile.

Fig. 5 The global fit with different temperatures (10, 15 and 20 1C)
displayed with symbols r, � and J respectively; the surfactant concen-
tration is 15 mM and panels a–d display optimal fit of Ma� � �Md. The model
contributions are exemplified at 20 1C with a as green and Ri,b1, i = 1, 2, 3 as
blue, cyan and black respectively.
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first used to illustrate the computed Bayesian-evidence and it is
left for future work to derive a less complex model with the
relevant temperature dependence of (Si

2 fbi).
5

The parametrization of model Md is given in Table 5, with
best fit in Fig. 5 (wopt

2 = 75). Estimated micelle radius from the
SED relation explicitly included in the model is 49 Å and is
similar to what is obtained from Ma assuming tc = tR. The water
residence time for pool-1 (b1) is larger than tR (tw,1 B 10 ms)
with a large confidence interval. The amplitudes (Si

2 fbi) are
similar to model Ma. However, in Md parameter cross-
correlations (see histogram lower panels Fig. 4) are, together
with parameter confidence intervals, reduced compared to
model Ma.

5.2 Bayes evidence

Based on the fits in Fig. 5 and the wopt
2 values it is difficult to

decide how to proceed. Clearly model Mb has a poor fit at
higher frequency but still the parameters are the fewest and
make sense, hence, according to Ockham’s razor19 this could
be the best choice. Or it could be convincing with a good fit
(model Mc), especially if the additional parameters are useful in
a discussion of the physical chemistry of micelles.

At this stage the Bayes-evidence and corresponding factor
(see eqn (12) and (16) respectively), provide valuable informa-
tion. The ranking properties in relation to the original model
Ma with DSj,Ockham, wopt

2 , ln[Baj] and �2 ln[p(Rexp|Mj,I)] are
provided in Table 6.

In Fig. 6 the Bayes-evidence for model Ma and Mb, the two
and one water-pool models respectively, are shown with the left
panel displaying the integrand of eqn (12) and the right the
cumulative integral where b = 1 is the sought value. For low-b
values it is noted that the Mb performs better, whereas at b close
to 1 the model Ma is performing much better (see linear scale
inserts in Fig. 6). At low b the likelihood function has almost no

contribution in eqn (11) and thus the integrand hw2(x)i is
expected to be small only in a few small volume segments,
thus giving a smaller value due to the lower parameter volume
of Mb. Considering the whole b-interval the large w2 for Mb

(conventional poor fit) leads to a larger evidence integral for Mb.
Thus, comparing the values (�2 ln[p(Rexp|Mj,I)] in Table 6) the
model Ma is significantly better and the evidence against Mb

(single water-pool) is very strong on the Jeffery’s scale. The
latter is stated assuming that the prior probabilities for the
models are equal (see eqn (16)).

With three water-pools of model Mc the lowest wopt
2 (at 18) of

the four models is reached. The computed evidence is provided
in Fig. 7, where although a much better fit is achieved in terms
of wopt

2 , the Bayes-factor dictates very strong evidence against Mc

and the three water-pool model (following Jeffrey’s scale, see
Table 1). This has its origin in the increased Ockham-entropy of
model Mc.

Finally, the evidence for alternative two-pool model Md is
provided in Fig. 8. Here an interesting observation is that a
model with reduced Ockham-entropy (DSj,Ockham) is favoured,
in spite of its higher w2(xopt). The boundaries of micelle radius
are chosen such that the SED computed correlation time has
similar range as in model Ma. . .Mc. However, noting that the
amplitudes are assumed temperature independent makes the
physics of the two models slightly different and care is needed
not to over interpret the Bayes-factor, noting that a ranking
assumes equal probability of the two models compared (see
eqn (16)).

The approximate model selection criteria listed in Table 6
are the AIC and BIC. By comparing the magnitudes of
�2 ln[p(Rexp|Mj,I)] with AIC and BIC it is noted that the smallest
AIC value is for Mc thus the wrong order in comparison
with the complete integration. The BIC provides qualitatively
the same order. Discrepancy is large for BIC compared to

Table 6 Model selection indicators for Mj, j = a, b, c, d. Separate MCMC runs to compute error estimates. From left: number of water-pools, adjustable
parameters (kj), optimal and mean w2, Ockhams entropy (cf. eqn (15)) the Bayesian evidence, Bayesian factor, and the criteria AIC and BIC

Mj #water kj wopt
2 DSj,Ockham �2 ln[p(Rexp|Mj, I)] 2 ln[Baj] AIC BIC

Ma 2 15 68.0 � 0.06 462 � 1.3 530 � 1.3 — 98.0 � 0.06 203.0 � 0.06
Mb 1 9 1346 � 0.04 248 � 1.0 1594 � 1.0 1064 � 2 1264 � 0.04 1427 � 0.04
Mc 3 21 18.0 � 0.4 692 � 40 710 � 40 180 � 40 60 � 0.4 207 � 0.4
Md 2 10 75.3 � 0.04 246 � 5 321 � 5 �209 � 5 97.3 � 0.04 174.3 � 0.04

Fig. 6 The integrand and integral of eqn (12) in the left and right panels
respectively, for models Ma (red) and Mb (black). Insets display the linear
scale. The error bars are 3 standard errors. The b = 1 value in the left panel
is the sought evidence: �2 ln[p(Rexp|Mj,I)].

Fig. 7 The integrand and integral of eqn (12) in the left and right panels
respectively, for models Ma (red) and Mc (black). Insets display the linear
scale. The error bars are 3 standard errors. The b = 1 value in the left panel
is the sought evidence: �2 ln[p(Rexp|Mj,I)].
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�2 ln[p(Rexp|Mj,I)], larger than a factor two (on log-scale) for
Ma and Mc.

The Ockham-entropy (see DSj,Ockham in Table 6) is lowest for
Md and Mb, where the number of parameters is also low. This
property reflects the uncertainty in going from prior assump-
tions of parameters to the final parametrization and can be
expected to increase for larger parameter volume.

Clearly we do not know a priori how large MCMC simula-
tions are required, making researchers sometimes stay away
from this technique. However, provided is a set of tools to
monitor convergence and reproducibility and from a moderate
computational investment it is clear how challenging (or easy)
problems lie ahead. In particular with the option to follow
annealing the experience so far is that MCMC can do well in
parametrization of NMR-relaxation, relaxometry and line shape
studies,6,7,53,55 and should play an important role in Bayesian
evidence calculation.

5.3 Model comparison summary

The components to pay attention to for useful Bayesian model
comparison are summarized:
	 Accurate estimation of experimental variances (see

eqn (16)) plays a central role for the outcome model compar-
ison. It is noted that the variance obtained by conventional fit
to determine 1/T1 (like Levenberg–Marquardt algoritm), sys-
tematically underestimate the variance. To circumvent this, the
route5 of calibrating or obtaining estimated variance with
multiple experiments is used. An alternative route may be to
estimate signal to noise in the measured intensities and apply
estimation of 1/T1 and its variance via a separate MCMC run
following Fig. 3.
	 Parameter prior is here assumed to be uniform, meaning

the user sets the min and max of model parameters. The choice
of uniform is suitable since parametrisation should be close to
that achieved with conventional maximum likelihood methods,
to ease the comparison.5,34 Care is needed such that bound-
aries are set with equivalent strategy, noting that narrow
interval around optimal minima may give unfair advantage
with DSOckham for that model. Also a verification that w2 is
reproducible from multiple starting configurations (Fig. 3) is
good to know before going further.
	 The Bayesian evidence is accessible via MCMC (see Section 4.2),

provided models have relatively low computational cost.

	 Note that from a mathematical point of view the Bayesian
evidence can be computed for arbitrary models since whole
parameter space is integrated. This may allow for instance
Lorentzian or non-Lorentzian character of spectral densities
to be compared. It is noted, however, that for model compar-
ison we have to assume equal a priori probabilities of the
models that may not be true (see eqn (16)). Furthermore, extra
attention is required for the motivation of parameter bound-
aries, not to favour one model more than the other.

6 Conclusions

In this work the methodology of Bayesian model comparison is
provided and exemplified with nuclear magnetic relaxation
dispersion (NMRD) data. The NMRD profile provides the other-
wise difficult to measure slow dynamics in complex materials
and biological systems. However, to reach conclusive results
requires careful model development to capture the physics and
chemistry of the studied system. Thus, Bayesian model com-
parison fills a gap with quantitative input on how many
parameters and mechanisms are reasonable to include in a
model based on the data we have. This is a practical question
that should always occur when faced with data from a new
system.

The computational approach follows a thermodynamic inte-
gration to compute the Bayesian model evidence from a set of
MCMC simulations. The technique followed,41 makes this
challenging task feasible. Thus, in addition to quality of fit it
is identified that the introduced definition of Ockham-entropy
helps us understand the result. To work with entropy is suitable
for the physical-chemistry community and valuable in the long-
debated explanation of Bayesian evidence.18 Ockham-entropy
quantifies the uncertainty in going from prior assumptions,
from the limited knowledge before study of the system to the
final model parametrization. It is the Ockham-entropy that
provides the penalty for over-use of parameters.

It was found that the evidence can be computed with only
10–30 relatively low cost MCMC simulations, in this work each
MCMC was completed in 5–20 minutes, meaning that extensive
model comparison can be performed with access to a work-
station or single cluster-node.

The computed Bayesian evidence rules out the simplicity of
one- and the uncertainty of three water-pools in favour of a two-
pool model (Ma) based on the current NMRD data. Such a
conclusion can not be quantitatively drawn based on a conven-
tional least squares fit (or MCMC parametrization). Further-
more, a two-pool model (Md) involving less uncertainty
than (Ma) is provided with improved Bayesian evidence. The
proposed model Md suggests a direction for future work on a
suitable model that more accurately captures the relevant
physics and chemistry. These models can incorporate more
experimental data at higher field and another direction is to
incorporate information from MD simulations and for instance
resolve the order parameter and population.8

Fig. 8 The integrand and integral of eqn (12) in the left and right panels
respectively, for models Ma (red) and Md (black). Insets display the linear
scale. The error bars are 3 standard errors. The b = 1 value in the left panel
is the sought evidence: �2 ln[p(Rexp|Mj,I)].
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It is found that approximate tools to compare models can
deviate from the complete integral (AIC), or qualitatively follow
(BIC), however, the latter exhibit large discrepancy at logarith-
mic scale. These findings suggest that MCMC simulation
of Bayesian evidence will play an important role in the devel-
opment of NMRD theory; however, the method is completely
general and can find ample use in other areas of physical
chemistry as well.
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