ChemComm

CORRECTION

View Article Online

Cite this: Chem. Commun., 2021, **57**, 8520

Correction: Hexagonal boron nitride nanosheet as an effective nanoquencher for the fluorescence detection of microRNA

Xinyi Li,^a Song Chen,*^a Qian Liu,^b Yonglan Luo^c and Xuping Sun*^b

DOI: 10.1039/d1cc90289j

rsc.li/chemcomm

Correction for 'Hexagonal boron nitride nanosheet as an effective nanoquencher for the fluorescence detection of microRNA' by Xinyi Li et al., Chem. Commun., 2021, DOI: 10.1039/d1cc03011f.

The authors regret that the graph in Fig. 3B and the graphical abstract was missing curves c and d. The graphical abstract has been updated and the corrected Fig. 3 is given below.

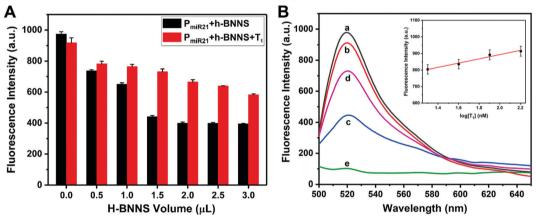


Fig. 3 (A) Fluorescence intensity histograms of P_{miR21} + h-BNNS and P_{miR21} + h-BNNS + T_1 in the presence of 0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 μ L of h-BNNS. (B) Fluorescence emission spectra of P_{miR21} under different conditions: (a) P_{miR21}; (b) P_{miR21} + T₁; (c) P_{miR21} + h-BNNS; (d) P_{miR21} + h-BNNS + T₁; and (e) h-BNNS. Inset: The fluorescence intensity of P_{miR21} + h-BNNS plotted against the logarithm of the concentration of T_1 .

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

a State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China. E-mail: songchen882002@hotmail.com

b Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China. E-mail: xpsun@uestc.edu.cn

^c Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China