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Current density and molecular
magnetic properties

Dage Sundholm, *a Maria Dimitrova ab and Raphael J. F. Berger b

We give an overview of the molecular response to an external magnetic field perturbing quantum

mechanical systems. We present state-of-the-art methods for calculating magnetically-induced current-

density susceptibilities. We discuss the essence and properties of current-density susceptibilities and

how molecular magnetic properties can be calculated from them. We also review the theory of spin-

current densities, how relativity affects current densities and magnetic properties. An overview of the

magnetic ring-current criterion for aromaticity is given, which has implications on theoretical and

experimental research. The recently reported theory of antiaromaticity and how molecular symmetry

affects the magnetic response are discussed and applied to closed-shell paramagnetic molecules. The

topology of magnetically induced current densities and its consequences for molecular magnetic

properties are also presented with twisted and toroidal molecules as examples.

1 Introduction

Earth’s magnetic field is too weak to detectably affect molecular
properties. There are though other reasons why a proper
understanding of the molecular magnetic response is essential
in chemistry, since magnetic fields of dozens of tesla can be

created on Earth. Such strong magnetic fields perturb the
electronic structure of molecules and lead to splittings of
energy levels that can be spectroscopically detected. The inter-
action of these magnetic fields are still weak as compared to
electrostatic forces implying that the theoretical treatment of
molecular magnetic interactions can be based on perturbation
theory. NMR spectroscopy, which is unarguably the most
prolific analytical method of chemical characterisation, is
based on the magnetic response of electrons and nuclei in
molecules. The probability current density, j(r), is the central
physical quantity of the magnetic response of the electrons.
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It can be used for assessing molecular aromaticity, electron
delocalisation and used for expressing and computing many
molecular magnetic properties. Independently of the central
role that j(r) is playing in theoretical magneto chemistry, the
probability current density is an interesting quantum mechan-
ical entity on its own rights. This is apparent, for example, in
relativistic quantum mechanics, where the current density is a
physically well-defined quantity.

This feature article will provide a short overview of the
current state of the art of the theoretical description of current
densities and molecular magnetic properties. By no means,
can we claim to give an exhaustive overview of all branches of
this field that is under active research.

2 Theoretical background
2.1 Quantum mechanical treatment of magnetic fields

The interactions between electrons and nuclei in atoms and
molecules are described by the Hamiltonian operator contain-
ing kinetic-energy and potential-energy terms. Exposing atoms
and molecules to a magnetic field gives rise to additional terms
in the Hamiltonian.1–3 The kinetic energy comprises the linear
momentum and the magnetic interaction. The canonical
kinetic (mechanical) momentum operator, p̂, is introduced,
which for an electron takes the form

p̂ = �ih�r + eA, (1)

where i is the imaginary unit, h� is the Dirac constant, r is the
vector differential operator, e is the electronic charge and A is
the magnetic vector potential, the curl of which gives the
magnetic flux, B, also known as the magnetic field strength,

B = r � A. (2)

Eqn (2) suggests that the magnetic flux can be defined by any
magnetic vector potential fulfilling

A0 = A + rf, (3)

where f is a continuous differentiable function with a
vanishing curl.

The magnetic vector potential of a uniform magnetic field at
point r can be given by

AðrÞ ¼ 1

2
B� rO; (4)

where rO = r � O is the distance from r to a gauge origin O.
In quantum chemistry, divergence-free vector potentials are
used (r�A = 0) in order to reduce the number of terms in the
Hamiltonian.

2.2 The Hamiltonian in the presence of a magnetic field

The Hamiltonian is derived by substituting the linear momentum
operator in the field-free Hamiltonian, Ĥ(0), with the kinetic
momentum operator in eqn (1), which yields terms of different
powers of the magnetic vector potential,

Ĥ = Ĥ(0) + Ĥ(1)(A) + Ĥ(2)(A2). (5)

For closed-shell molecules, the first-order dependence on the
magnetic field becomes

Ĥð1Þ ¼ e

2me
B � L̂O (6)

where me is the electron mass. The expression for the orbital
angular momentum operator, L̂O, around O is

L̂O = rO � p = �ih�(rO � r), (7)

where p is the momentum operator. The expression for the
first-order interaction between the spin angular momentum, Ŝ,
and the magnetic field resembles the one for the orbital
angular momentum,

Ĥ
ð1Þ
S ¼

e

me
B � Ŝ: (8)

The terms Ĥ(1) and Ĥ(1)
S can either increase or decrease the total

energy. In contrast, the quadratic dependence on the magnetic
field strength in Ĥ(2) can only increase the energy. It is given by

Ĥð2Þ ¼ e2

8me
B2r2 � B � rð Þ2
� �

: (9)

2.3 Gauge-origin transformations

The physical properties of a quantum mechanical system in a
magnetic field are independent of the origin of the magnetic
vector potential. Thus, the vector potential can be chosen
arbitrarily. This is a fundamental property at the core of the
standard model giving the freedom to choose any vector
potential up to a scalar gauge function with a vanishing curl.4

When the magnetic vector potential in eqn (4) is used, one can
freely choose the origin of the coordinate system, transform
A(r) between different coordinate systems or equivalently, shifting
the origin O of the A(r) potential, which can be seen by setting

f ðrÞ ¼ �1
2
ðO� BÞ � r in eqn (3).

The Hamiltonian is a Hermitian operator that remains
gauge-invariant, meaning that it does not change as a conse-
quence of gauge transformations, i.e., when shifting the gauge
origin, O. However, the wave function acquires a complex
exponential prefactor upon gauge transformations. When
adding a scalar gauge function to the magnetic vector potential
as in eqn (3), the change in the wave function is5

c0ðrÞ ¼ exp � ie

�hc
f ðrÞ

� �
cðrÞ: (10)

where c is the speed of light. Hence for a given magnetic field
there is no unique form of the magnetic vector potential,

r � A = B = r � A0. (11)

Formally one deals with a type of symmetry which is some-
times called gauge symmetry, gauge freedom or, emphasising
the arbitrariness of the functional expression, it is also called
the gauge problem. The latter point of view becomes relevant in
numerical computations where the choice of the gauge, though
formally irrelevant, has a substantial, sometimes huge effects
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on the numerical accuracy of the results. The former point of
view is important for theoretical considerations where one
enjoys the freedom to choose the form of the vector potential
that transforms the equations into convenient expressions.6

An alternative symmetric Coulomb (s.C.) gauge for a homo-
geneous magnetic field parallel to the z axis of the coordinate
system can be constructed as

As:C: ¼ 1

2
B� r ¼ 1

2

0

0

B

0
BBB@

1
CCCA� r ¼ B

2

�y

x

0

0
BBB@

1
CCCA; (12)

fulfilling the r � As.C. = B and r�As.C. = 0 conditions. The same
holds for

AC ¼ B

0

x

0

0
BBB@

1
CCCA; (13)

which is not of the symmetric Coulomb type and cannot be
expressed as a single cross product. Magnetic vector potentials
of the As.C. type or gauge-including atomic orbitals (GIAO), also
known as London orbitals,7–10 have mainly been employed in
quantum chemical calculations of molecular magnetic properties.
Magnetic properties have though also been calculated with the
Landau gauge.11

GIAOs can be constructed to resemble the magnetic
response of the wave function in eqn (10). They contain the
magnetic vector potential, AB

K, of the external magnetic field, B,
with the gauge origin at nucleus K as an exponential prefactor
to an ordinary basis function, wK(r),

oK(r, AB
K) = exp(�ir�AB

K(r))wK(r). (14)

Many studies have shown their importance in calculations of
molecular magnetic properties,7–10 since GIAOs consider the
magnetic response to first order for any choice of the gauge
origin leading to a rapid basis-set convergence as compared to
calculations employing ordinary basis functions. The magnetic
response of ordinary basis functions are correct only to zeroth
order.12

We also employ GIAOs in calculations of current-density
susceptibilities with the gauge-including magnetically induced
current method (GIMIC), as discussed in Section 2.9.

Since the magnetically induced current density JB, is a vector
field, one can compute it using a different origin of the vector
potential for every point in space. This scheme called the
continuous set of gauge transformation (CSGT) was introduced
by Keith and Bader,13 while Lazzeretti et al. called it the
continuous transformation of the origin of the current density
(CTOCD)14–16 approach. The gauge origin of the vector potential
seems then to have the form of a function O(r). However, this is
misleading since one cannot employ a single gauge transforma-
tion, since in general

r� 1

2
B� ðr�OðrÞÞ

� �
aB (15)

holds. Instead, it should be seen as using a continuous set
of equations to be evaluated separately for each point in space.
The first exploited CTOCD scheme was the so called CTOCD-
diamagnetic-component-to-zero (CTOCD-DZ) approach, where
each evaluation point is its own gauge origin,

O(r) = r. (16)

The CTOCD-DZ approach was later called the ipsocentric
method.13–15,17,18

2.4 Current density

The continuity equation ensuring charge conservation can
be derived using the hydrodynamical representation of the
Schrödinger equation,19,20

@ðc�cÞ
@t

¼ �r � jðrÞ: (17)

The probability current density or the current density, j(r), is
then given by

jðrÞ ¼ 1

2me
cp̂c� þ c�p̂cð Þ: (18)

The current density is a subobservable, meaning that it is
formally the expectation value of a quantum mechanical operator,
and hence experimentally measurable if a suitable instrument
were available.21 Multiplying j(r) by the electron charge yields
the charge current density, J(r) = �ej(r). The electronic current
density can be expressed as the expectation value of the anti-
commutator of the kinetic momentum and the electron-density
operator r̂(r),

j(r0) = hC|{p̂, r̂(r)}+|Ci. (19)

The electron-density operator is given by r̂(r) = d(r � r0) with the
Dirac delta function d.

The magnetically induced current density can be obtained to
first order by expanding the wave function in series according
to the Rayleigh–Schrödinger perturbation theory,22,23

C0 = C(0)
0 + C(1)

0 + . . ., (20)

where C(1)
0 is the first-order magnetically perturbed wave func-

tion that can formally be obtained by introducing the angular
momentum operator, L̂O, as the perturbation,

Cð1Þ0 : ¼ CL0
0 � B: ¼ e

2me�h

X
Ia0

Cð0ÞI

��� E Cð0ÞI L̂O

�� ��Cð0Þ0

D E
E
ð0Þ
I � E

ð0Þ
0

� B: (21)

E(0)
0 and E(0)

I in the denominator of eqn (21) are the energies of
the ground and the Ith excited state, respectively, which are
obtained in the absence of the external magnetic field.

The current-density expression can be obtained by inserting
C(1)

0 in eqn (21) into eqn (20), which is then use in eqn (19). The
quadratic and higher-order terms in B are omitted. The current
density induced by a magnetic field can be formally separated
into a diamagnetic term, JB

dia, and a paramagnetic term, JB
para.

However, this is a purely mathematical formality based on the
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fact that JB
dia resembles the classical Larmor current density.

Yet, only the sum of the Larmor and non-Larmor terms has a
physical meaning.

JB ¼ JBdia þ JBpara

JBdia ¼ �
e2

2me
B� rO Cð0Þ0

� �2
;

JBpara ¼ �i�h
e2

me

P
Ia0

Cð1ÞI rC
ð0Þ
0 þCð0Þ0 rC

ð1Þ
I

� �
:

8>>>><
>>>>:

(22)

When an N-atomic molecule is exposed to an external
magnetic field, the magnetic vector potential is

AðrÞ ¼ ABðrÞ þ
XN
K¼1

AmK ðrÞ; (23)

where AB(r) is the vector potential of the external magnetic field
and AmK(r) is the vector potential of the nuclear magnetic dipole
moment mK of nucleus K. To the first order, the magnetically
perturbed wave function takes the form

C = C0 + CB�B + CmK�mK + . . ., (24)

where CB is the change in the wave function due to the external
magnetic field and CmK is the wave-function response due to
the nuclear magnetic moment mK.

2.5 Relativistic current density

The relativistic current density based on the solution of Dirac’s
time-independent relativistic wave equation is

{ca�[�ih�r + A] + bmec2V}j = Ej, (25)

where a and b are the standard Dirac matrices,24 j is the
relativistic four-component wave function, and E is the energy
eigenvalue. The current density is then given by

j4c(r) = j†caj, (26)

where ca is the relativistic velocity operator. Thus, j4c(r) can be
interpreted as a velocity density discussed in Section 2.6.

For many-electron systems, the expression for the relativistic
current density can be recast in terms of the Gordon
decomposition25,26 as

j4cðrÞ ¼
X
i

�h

me
= jyi brji

n o
þ 1

�h
Ajyi bji þ

1

2
r� jyi bRji

n o� �

(27)

where ji are four-component Dirac orbitals and I denotes

imaginary part. R ¼ r 0
0 r

� �
is the spin operator. An addi-

tional term accounting for the spin contribution to the
exchange correlation potential appears at the Dirac–Kohn–
Sham (DKS) level of theory.27

2.6 The current density as a velocity density

Using atomic units but keeping the rest mass of the electron,
me, (i.e. h� = e = a0 = 1) eqn (18) yields the electron current
density, j(r), which can be interpreted as the real part of the

velocity density† originating from the velocity operator p/me,

jðrÞ ¼ < c�
p

me
c

	 

¼ 1

me
= c�rcf g; (28)

where < and I denote the real and imaginary part, respectively.
This expression can be extended to the case of a non-vanishing
external magnetic field by replacing the momentum operator,
p, in eqn (28) with the mechanical momentum operator p̂ given
by eqn (1), which is called minimal coupling. Substituting p -

p̂ = p + A yields

jðrÞ ¼ < c�
p̂
me

c
	 


¼ 1

me
= c�rcf g þ Ac�c (29)

which is equivalent to eqn (22). To consider the spin of the
electron, we can follow the derivation by Dyall and Fægri24 and
replace p̂ with r(r�p̂) in eqn (29), where r is a three-dimensional
vector of the Pauli spin matrices.‡24 Replacing the one-
component wave function, c, with the two-component Pauli
spinors, j, yields

j2cðrÞ ¼ < jy
rðr � p̂Þ

me
j

	 

(30)

¼ 1

me
= jyrj
� �

þ Ajyjþ 1

2me
r� ðjyrjÞ (31)

which is identical to the expression for the current density
derived by Landau from the Pauli–Schrödinger equation by
variation of the differential of the Hamilton function.28 This
expression cannot be derived from the Pauli–Schrödinger equa-
tion alone without considering the extremality condition of the
Hamilton function.29 In four-component relativistic theory, the
current density and its reformulation in terms of the Gordon
decomposition25,26 is

j4c(r) = j†caj (32)

¼ 1

me
= jybrj
� �

þ Ajybjþ 1

2me
r� ðjybRjÞ: (33)

The Gordon decomposition of the four-component relativistic
current density eqn (33) is in the two-component limit equal to
eqn (31).

2.7 Spin-current densities

The spin of the electron was introduced into the Schrödinger
equation by Pauli to fit experimental observations.1,2 In the
presence of an external magnetic field, the Schrödinger equa-
tion becomes a two-component equation, whose components
are coupled by the external magnetic field.30–32 The spin of the

† This velocity density should not be confused with the local velocity (see Section
2.13), nor with the classical or quasi-classical velocity density v defined via vq = j

with the electron density r.
‡ Dyall and Fægri started the derivation from the classical Hamiltonian by
replacing

(p)2 - (r�p)2

and obtained the Pauli–Schrödinger Hamiltonian after quantisation. The same
expression up to a factor of 3I2 is obtained by substituting p̂ - r(r�p̂). I2 is the
two-dimensional identity matrix.24
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electron is introduced in a natural way by using the relativistic
Dirac equation or the Lévy–Leblond equation,3,33 which is a
non-relativistic four-component equation with eigenenergies
and eigenfunctions that are identical to the ones obtained by
solving the Schrödinger equation.29 The spin-dependent term
in the probability current is

jspinðrÞ ¼
�h

2me
r� ðcyrcÞ: (34)

An elegant way to introduce the spin into the current-density
expression is to use the variation principle outlined, for example,
in the textbook of Landau and Lifshitz28 that yields the spin-
current density as a contribution to the charge current density
without further assumptions.

Following an argument from Greiner34, this additional
current-density term can be interpreted in analogy with classi-
cal electrodynamics as a magnetisation current density, JM,
describing a magnetisation density M induced by the current
density of a particle with charge q,

jMðrÞ ¼
1

q
r�Mð Þ ¼ �h

2me
r� ðcyrcÞ
 �

: (35)

For electrons, M is obtained by multiplying the spin density

rspin = c†rc with
�h

2me
, retaining its interpretation as the

magnetisation density that arises from the spatial distribution of
the spin which is the magnetic moment. The spin-current density
appears then as an additional term to the total current density.29

As jspin(r) is divergence-free, it does not contribute to the
charge-conservation equation in eqn (17). However, there are
theoretical and experimental evidences that jspin(r) is a measur-
able component of the probability current density of spin-1

2
particles and not a mere virtual term that completes the
magnetisation density with the spin contribution.29

2.8 Current-density susceptibility

The current density is a vector with its components in the three
Cartesian directions. Expanding the current density in a Taylor
series with respect to an external magnetic field results in the
zero-field current density, j0(r), which vanishes for closed-shell
quantum systems. The second term consists of the first deri-
vative of JB(r), called the current-density susceptibility tensor,
multiplied by the respective component of the magnetic field,

JBðrÞ ¼ j0ðrÞ þ
X

b2fx;y;zg

@JBðrÞ
@Bb

����
Bb ¼ 0

Bb þO Bb
2

� �
: (36)

Higher-order terms can generally be omitted, since magnetic
interactions under terrestrial conditions are weak in compar-
ison to Coulomb forces. The current-density susceptibility
tensor element in the a Cartesian direction for the magnetic
field in the b Cartesian direction is

J Bb
a ðrÞ ¼

@JB
a ðrÞ
@Bb

����
Bb ¼ 0

; where a; b 2 fx; y; zg: (37)

The current density scales almost linearly with the strength
of the external magnetic field when field is weak. In stronger
magnetic fields, non-linear effects become significant.31,35–39

The non-linearity is difficult to detect, since experimental
chemical shifts are measured with respect to a reference, whose
magnetic shielding constant also have a non-linear component
at strong magnetic fields. Small deviations from linearity were
recently found in measurements of 59Co NMR chemical shifts
using a 28T NMR spectrometer.40

2.9 The gauge-including magnetically induced current
method

An expression for the current-density susceptibility can be
obtained by combining the expression for calculating nuclear
magnetic shielding tensors using analytical derivative theory
with the corresponding Biot-Savart expression.41–44 The final
expression for calculating current-density susceptibilities con-
tains the one-electron density matrix in the atomic-orbital
(basis-function) basis, Dmn, and the magnetically perturbed

one-electron density matrices,
@Dmn

@Bb
. Gauge-origin indepen-

dence and a fast basis-set convergence are achieved by employing
gauge-including atomic orbitals defined in eqn (14).

The tensor elements of the current-density susceptibility can
be obtained as

J Bb
a ðrÞ ¼

X
mn

Dmn
@o�mðrÞ
@Bb

@ ~hðrÞ
@mK

a
onðrÞ

 
þ o�mðrÞ

@ ~hðrÞ
@mK

a

@onðrÞ
@Bb

� o�mðrÞonðrÞ
X
d

eabd
@2 ~hðrÞ
@mK

a @Bd

!
þ
X
mn

@Dmn

@Bb
o�mðrÞ

@ ~hðrÞ
@mK

a
onðrÞ;

(38)

where eabd is the Levi-Civita pseudotensor with a, b, d A
{x, y, z}.45 The actual interaction with the magnetic field is
described by the operators

@ ~hðrÞ
@mK

¼ ðr� RK Þ � p (39)

and

@2 ~hðrÞ
@mK@B

¼ 1

2
ðr�OÞ � ðr� RKÞ1� ðr�OÞðr� RK Þ½ � (40)

where RK are the nuclear coordinates. The same singularity
|r � RK|�3 appearing in all terms of the current-density
susceptibility expression cancel and can be omitted, even
though the expression in eqn (38) seems to depend on the
gauge origin and the nuclear coordinates. The current-density
susceptibility depends, though, implicitly on the nuclear positions.
Equivalent expressions can be derived for the current-density
susceptibility contributions of the spin-up and spin-down electrons
of open-shell molecules.42
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2.10 Continuous transformation of the origin of the current
density

The CTOCD method was introduced in 1993 primarily for
improving the numerical accuracy of current-density calcula-
tions. In 2001 Steiner and Fowler discovered the symmetry
rules for the diamagnetic and paramagnetic response using
molecular-orbital (MO) based first-order perturbation theory
and the CTOCD-DZ ansatz.46 They found that the paramagnetic
response is determined by rotational occupied-virtual transi-
tion matrix elements,

j l̂O
�� ��a� �

ej � ea
¼ j rO � ð�i�hrÞj jah i

ej � ea
; (41)

where | ji and |ai denote occupied and unoccupied orbitals,
respectively, and ej and ea are their energies, l̂O is the one-
particle angular momentum operator with respect to the origin,
O. The diamagnetic response is determined by translational
occupied-virtual transition matrix elements,

j pj jah i
ej � ea

¼ j �i�hrj jah i
ej � ea

(42)

where p is the one-particle linear momentum operator. Similar
expressions are obtained for the many-electron case, where | ji
and |ai denote the ground and excited states, respectively.
Hence, the selection rules for diamagnetic and paramagnetic
contributions can be obtained using group theory. Virtual
transitions from the ground state to excited states belonging
to the same irreducible representations as infinitesimal rota-
tions around the axis parallel to B yield paramagnetic contribu-
tions, whereas the diamagnetic contributions originate from
dipole-allowed transitions perpendicular to B with the same
irreducible representations as translations in the given point
group. Using the momentum/position off-diagonal hypervirial
theorem,47,48 the diamagnetic contribution can be shown to be
equal to the diamagnetic term obtained with the common-
gauge-origin (CGO) ansatz in the limit of complete basis set.

The CTOCD-DZ method is widely used due to its high
numerical accuracy compared to other CTOCD ansätze.
In particular, the zero-divergence condition is fulfilled with
high accuracy for regions of small electron density already
when employing relatively small basis sets. Variants of the
CTODZ-DZ method such as shifting the gauge origin in core
regions with high electron density closer to the nuclei (CTOCD-
DZ2) have been proposed.49

CTOCD-paramagnetic-component-to-zero (CTOCD-PZ) is the
antipodal ansatz, where the gauge-origin distribution O(r) is
chosen such that the induced current density is given by

JBðrÞ ¼ e

2me�h
B� ðr�OðrÞð ÞrðrÞ; (43)

where r(r) = |C(0)
0 |2 is the electron density. The CTOCD-PZ

implies that the paramagnetic current-density contributions
originating from excited states vanish. The theoretically
exact condition for the gauge-orgin distribution O(r) of the

CTOCD-PZ ansatz in the complete basis set limit is

OðrÞ ¼ 2n

e
rðrÞ�1<

ð
CL0

�

0 � pCð0Þ0 dr0; (44)

where CL0
0 is defined in eqn (21).

A series of approaches closely related to CTOCD-DZ and
CTOCD-PZ is implemented in the SYSMOIC package.50

Recently an origin-distribution scheme was proposed that leads
to vanishing divergence of the diamagnetic current-density
contribution, r�JB

dia(r) = 0. The origin-distribution function is
then of the form

OðrÞ ¼ r�rFðrÞ
rðrÞ ; (45)

which can be used when F(r) is a well-behaved real scalar
function.51 The diamagnetic contribution to the current density,

JBdiaðrÞ ¼ �
e2

2me
B�rFðrÞ; (46)

then inherits the topology of the origin-distribution function
F(r).§ In points r0 where rF(r0) = 0 holds, JB

dia(r) has stagnation
points. F(r) functions that can be expressed as a function of the
electron density are of particular interest, since a natural connec-
tion is then obtained between the topology of Bader-type bond
critical points and stagnation points of the current density.

2.11 Spin-current-density susceptibility

The orbital contribution to the spin-current-density suscepti-
bility can be calculated at non-relativistic levels of theory using
the gauge-including magnetically induced current (GIMIC)
method42 described in Section 2.9 or by using the continuous
transformation of the origin of the current density (CTOCD-DZ)
scheme described in Section 2.10.52 The spin-current-density
susceptibility of the spin-up and spin-down electrons are obtained
with the same expression as used for closed-shell molecules.
For open-shell molecules, one needs density matrices of the
spin-up (a) and spin-down (b) electrons that can be obtained in
electronic structure calculations on open-shell molecules. The
GIMIC method needs magnetically perturbed spin-density
matrices that are obtained by performing a calculation of the
orbital contribution to the NMR shieldings of open-shell mole-
cule. The spin-current-density susceptibility is the difference
between the current-density susceptibilities of the a and b
electrons and the current-density susceptibility is the sum of
the two.53 The spin-current density can be used in an integral
expression for calculating the elements of the nuclear hyperfine

§ The original work51 contains a flaw in the derivation of the functional form of
JB
dia(r), which led to a formulation equivalent to

JBdiaðrÞ ¼ �
e2

2me
B�rFðrðrÞÞ;

which is only a necessary but not a sufficient condition for the correct functional
form (eqn (46)). This error has consequences for one of the main results of the
study. The correct conclusion is that there is no inherent connection between
the topologies of the unperturbed electron density and any divergence-free
diamagnetic current contribution, arising from the zero-divergence constraint.
An erratum is under preparation.
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coupling tensor and the density of hyperfine coupling, which is
a function containing its spatial origin.52

2.12 Current-density susceptibility at relativistic levels

For closed-shell molecules, the largest purely relativistic con-
tribution to the current density arises from a non-vanishing
spin density, rB,SOC

spin , which is a second-order perturbation
induced by the spin–orbit coupling (SOC) interaction in
the presence of an external magnetic field.54 The spin–orbit
coupling results in a contribution to the total current density
via a spin-current-density-like term

J
B;SOC
spin ðrÞ ¼

�h

2me
r� rB;SOC

spin ðrÞ ¼
�h

2me
r� ðjybRjÞ; (48)

where the second expression can be identified when comparing
the expression to eqn (27).

Due to the SOC mechanism, rB,SOC
spin (r) is primarily located

near the nuclei of heavy elements and less pronounced but still
significant at the nuclei of lighter atoms that are directly
bonded to heavy atoms. The latter case is especially pro-
nounced when the bond is s-dominated, since then a Fermi-
contact coupling between heavy and light atoms can occur. This
is the heavy atom-light atom (HALA) effect.55 The spin density
at a covalently bonded hydrogen atom has the shape of an s
orbital whose amplitude quickly decreases with the distance
from the nucleus of the hydrogen atom leading to a spin-
current density with a small but sharp vortex as for HgH2

shown in Fig. 1.
Magnetically induced current densities can be calculated at

fully relativistic four-component (4C) density functional theory
(DFT) levels of theory with the ReSpect54,56–59 and Dirac60–63

programs. The ReSpect program can be used in studies of
closed-shell and open-shell systems. Perturbation-free current
densities of open-shell systems as well as current densities
induced by nuclear magnetic moments can be calculated and
visualised with ReSpect.27 The two codes employ GIAOs in
calculations of magnetic properties and magnetically induced
current densities. In 4C-DFT calculations of magnetically
induced current densities, restricted kinetically and magnetically
balanced basis sets are used. These basis sets in combination with

GIAOs ensure numerical stability and a rapid convergence of
magnetic properties with respect to the size of the basis set.

2.13 Topology of the current-density field

Topology analysis of molecular electron densities that was
introduced by Bader64–66 led to the development of the quan-
tum theory of atoms in molecules (QTAIM),67 which is a means
of partitioning the electron density, er(r), and molecular
properties into chemically meaningful atomic domains. The
current-density field can analogously be divided into atomic or
chemically relevant domains. Such topology analyses provide
valuable insights about the current-density distribution and the
origin of molecular magnetic properties.

Dirac68 and later Hirschfelder et al.69–71 developed the
theory of quantised vortices of the probability current-density
flux around the nodal regions of complex wave functions,
c = cr + ici. The vortices originate from wave interference
and, hence, have no classical interpretation. The local velocity,
v(r), of the probability current density, j(r), in eqn (18) is given
by the flux divided by the probability density, r(r) = |c(r)|2,

vðrÞ ¼ jðrÞ
rðrÞ: (49)

The local velocity can be integrated over a closed path, which is
defined up to an integer multiplier, i.e., it is quantised,ð

L

vðrÞ � dr ¼ 2pn
�h

m
; (50)

where the circulation number n is an integer, L is a closed path,
and m is the mass of the particle. The circulation is the same for
all loops of the same nodal regions of c(r).

The linear relation between the probability current density
j(r) and the velocity v(r) allows investigations of the current-
density field with methods developed for classical hydro-
dynamics studies.16,72,73 The velocity is given by

vðrÞ ¼ dr

dt
; or

dx

dvx
¼ dy

dvy
¼ dz

dvz
; (51)

which leads to

jðrÞ ¼ dr

dt
; or

dx

djx
¼ dy

djy
¼ dz

djz
; (52)

where t is any coordinate along the trajectory. The time arrow
gives the direction of j(r). The velocity vector field can be
investigated numerically using the Runge–Kutta method in
order to obtain the next step of the trajectory.74,75 The result
can be visualised as streamlines in three dimensions (3D) and
the tropicity of the vortex can be determined from the circula-
tion direction. Diatropic current-density vortices circulate in
the classical direction, while the opposite direction defines a
paratropic flow.

A magnetic field gives rise to an imaginary component of
the wave function which depends linearly on the magnetic
field strength. The intersections between the nodal surfaces
of the real and imaginary parts of the wave function create
axes or loops around which axial or toroidal vortices arise.

Fig. 1 Streamline representation of the magnetically induced spin-
current density Jspin

B,SOC(r) in HgH2 in a plane containing the nuclei
calculated at the four-component DKS level of theory. The external
magnetic field is perpendicular to the inspection plane. A strongly located
current density originating from rB,SOC

spin (r) with high curvature can be seen
close to the Hg nucleus and at the hydrogen nuclei.
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Hirschfelder71 showed that axial vortices have an orbital angular-
momentum dipole moment. When a nodal line forms a closed
loop, a toroidal vortex arises, such that it flows concentrically
around the nodal line. The angular-momentum dipole moment
vanishes for toroidal vortices but instead they possess orbital
angular-momentum quadrupole moments. Toroidal vortices can
interact with the gradient of the magnetic field but not with
homogeneous magnetic fields.71 Axial and toroidal vortices are
the only kinds of vortices associated with one-particle wave
functions.71 The analysis of the nodal lines of N-electron wave
functions can either be done in a 3N-dimensional space, or
in 3D after splitting the wave function into natural orbital
components which, however, do not necessarily fulfill the
continuity equation.76

The magnetically induced current density is a 3D vector field
that can be analysed by evaluating its singular points.
An expansion of the current density into a Taylor series at the
singular point r0 shows that it is to first order related to the
Jacobian matrix D(r) = [rJ(r)]r0, as

Ja(r) E Dba(rb � r0b). (53)

The singular points of the current-density field can be analysed
using the Jacobian matrix that can be efficiently obtained by
numerical differentiating the expression for the current-density
susceptibility in eqn (38) or by differentiating it analytically. The
number of non-zero eigenvalues of the D(r) tensor gives the rank
of the singular point, r, while the difference between the number
of eigenvalues with a positive and with a negative real part defines
the signature of the singular point, s. Singular points of the
current density are classified according to their Euler index
(r, s),16,76–78 which is analogous to the topological treatment of
the electronic density of molecules.67

An isolated singular point is a local maximum in two
dimensions but a minimum in the third one. Such points are
defined as (3, �1), where the + and � sign correspond to a sink
and a source, respectively. Points lying on stagnation lines are
denoted by (2, 0), meaning that two of the eigenvalues of D(r)
are of the same size but with opposite sign and the third
eigenvalue is zero. When the three eigenvalues of the Jacobian
vanish, the stagnation lines may split. The behaviour of the
vector field around a stagnation line is characterised either by
an index +1 when there is a vortical flux around the line, or by
the index �1 when the singular point is a saddle point. The
eigenvalues of D(r) are real for a saddle point and imaginary for
a vortex. Streamline representations are shown in Fig. 2.

Stagnation lines are open lines for axial vortices and they
can branch into N new lines at critical points as long as the total
index (�1) is conserved,76

i ¼
XN
k

ik ¼ �1: (54)

A streamline may not cross a reflection plane of the point-
group symmetry.16 The properties of stagnation lines differ
from those of the nodal lines of the wave function, since a

stagnation line can be associated not only with a vortical flow
but they can also form a set of saddle points.76

The set of asymptotic lines connecting two singular points
forming a surface is called a separatrix, which serves as the
boundary between the vortices of the current-density field. Separ-
atices may never cross due to charge conservation. Plotting all the
stagnation lines of the field gives its stagnation graph. Gomes
proved that there is one and only one vortical line extending to
infinity.76 It corresponds to a vortex that covers the whole mole-
cule and vanishes far away from it. The global domain is asso-
ciated with a dominating stagnation line parallel to the magnetic
field. The main stagnation line can branch in the vicinity of the
atoms where the electron density is large and may give rise to both
vortical and saddle stagnation lines resulting in many smaller
vortices inside the global current-density domain.

The stagnation graph of the molecule are useful since one
can visually identify domains of the current density associated
with chemical bonds, such as in Fig. 3, or with ring currents as
shown in Fig. 4. One can also identify atomic vortices in the
vicinity of the nuclei. In the centre of molecular rings there is
typically a vortex as seen in blue in Fig. 5. In polycyclic
molecules with fused rings, current-density pathways may trace
the perimeter of some rings but avoid others, i.e., forming
semilocal vortices. Heteroatoms often give rise to complicated
and sometimes unpredictable current-density pathways.79 The
current-density flux affects the nuclear magnetic shielding
constants as discussed in Section 2.15.

By placing the magnetic field in the z direction, the
negatively charged electrons flow in the clockwise direction
when looking towards the negative z axis according to classical
electrodynamics. However, the quantum-mechanical response
of the molecular electron density to the magnetic field can also
give rise to an induced current density in the counter-clockwise
direction. Thus, the direction of the current-density flux inside
a vortex is either clockwise or counter-clockwise for a given
direction of the external magnetic field.

2.14 Magnetisability

The magnetic interaction energy can be expressed as the scalar
product of the magnetically induced current density JB (r) with
the vector potential AB(r) of the external magnetic field, B,16,80–86

EBB ¼ �1
2

ð
ABðrÞ � JBðrÞd3r: (55)

Fig. 2 Streamline representation of the magnetically induced current
density around (2, 0) singular points.
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The elements of the magnetic susceptibility tensor, wab with a,
b A {x, y, z}, are defined as the second derivative of EBB with
respect to B,

wab ¼ �
@2EBB

@Ba@Bb

����Ba¼0
Bb¼0

¼ 1

2

@2

@Ba@Bb

ð
ABðrÞ � JBðrÞd3r

����Ba¼0
Bb¼0

: (56)

Magnetisabilities are generally calculated using analytic
gradient theory, which is also known as response theory.10,87–89

Closed-shell molecules are, with a few exceptions, diamagnetic
with a negative magnetisability,90–97 whereas molecules having a
positive magnetisability are paramagnetic. In open-shell systems,
paramagnetism is due to the spin of the unpaired electrons,
whereas closed-shell paramagnetic molecules discussed in
Section 2.18 are rare.

The second half of eqn (56) shows that the magnetisability
can also be calculated by differentiating the magnetic inter-
action energy in eqn (55).16,80–87,98–101 The elements of the
magnetisability tensor can then be expressed as

wab ¼
ð
rwabðrÞd

3r; (57)

where rwab(r) is the magnetisability density given by

rwabðrÞ ¼
1

2

X
dg

eadgrdJ
Bb
g ðrÞ; (58)

where eadg is the Levi-Civita symbol, a, b, g, d, rd A {x, y, z}. The
integral expression renders numerical integration approaches
feasible when the current-density susceptibility is available.
The magnetisability density provides information about the
spatial origin of the magnetisability, which is not possible
when using analytic gradient theory. The magnetisability den-
sity is gauge dependent, since one can choose an arbitrary
gauge origin in eqn (4) due to the charge conservation of the
current-density susceptibility,102

ð
J Bb

a ðrÞd3r ¼ 0: (59)

However, the obvious and most likely the correct choice is
O = 0, because otherwise, for example, symmetry-related atoms
would contribute differently to the magnetisability when the

Fig. 3 Streamline representation of the magnetically induced current
density and stagnation points in the vicinity of the C–H bond in benzene.
Saddle points are drawn in blue, while green and red show the diatropic
and the paratropic vortex points, respectively.

Fig. 4 Streamline representation of the magnetically induced current
density and stagnation points in benzene. Saddle points are drawn in blue,
while green and red show the diatropic and the paratropic vortex points,
respectively.
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chosen gauge-origin of the magnetisability operator differs
from zero. Since the current-density susceptibility can be
obtained from calculations of nuclear magnetic shieldings,
gauge-origin independent magnetisabilities are easily obtained
using the integration approach.86

Calculations of magnetic properties using functionals at
the meta-generalised gradient approximation (mGGA) require
extensions of the functional to ensure gauge-origin indepen-
dence103,104 since in the presence of a magnetic field the
ordinary kinetic density, t p |rj|2, depends the gauge origin
(O).105,106 Recent benchmark calculations have shown that the
widely used extension proposed by Maximoff and Scuseria
leads to unphysical paramagnetic contributions to the NMR
shielding constants of atoms.106,107 Such problems do not
appear when using the extension proposed by Dobson,103

which is used when studying molecules in explicit magnetic
fields at mGGA levels of theory36,38,108,109 and has also been
used in some other applications.105,110,111 The unphysical
effects are relatively small in calculations of NMR shielding
constants using many mGGA functionals,106 whereas gradient-
theory calculations of magnetisabilities lead to significant
deviations from reference data.86,112 The magnetisabilities are
more accurate when performing numerical integration using
current-density susceptibilities obtained in magnetic shielding
calculations.86,112

2.15 Nuclear shielding tensors

Atomic nuclei with non-zero spin give rise to a magnetic vector
potential, AmK

nuc,

AmK
nuc ¼

m0
4p

mK � r

r3
; (60)

since they possess their own magnetic moment, mK. The
combined magnetic vector potential of the external magnetic

field and the magnetic moments of the nuclei becomes

AðriÞ ¼
1

2
B� riO þ

m0
4p

X
K

mK � riK

riK3
; (61)

where m0 is the vacuum permeability, riO is the distance
between the position of electron i, ri, and the gauge origin,
the index K spans all nuclei, mK is the magnetic moment of
nucleus K, and riK is the distance between electron i and
nucleus K.

The external magnetic field interacts with the nuclear mag-
netic moments that experience a slightly weaker or stronger
magnetic field than the external one due to the magnetically
induced current density of the surrounding electrons which
shields or deshields the nucleus. The local contribution to the
effective magnetic field at the nucleus, Bloc, can be expressed
using the Biot-Savart law as

DBloc ¼
m0
4p

ð
r� JBðrÞ

r3
dr: (62)

The local change in the external field can be combined into the
shielding constant, sK, for nucleus K,

BK
loc = (1 � sK)B. (63)

The isotropic shielding constant is the trace of the shielding
tensor, which is a 3 � 3 tensor with elements for each pair of the
three Cartesian directions, a and b, for each nucleus, sK

ab. Nuclear
shielding constants can be probed experimentally in nuclear mag-
netic resonance spectroscopy (NMR) by comparing the response of
the nuclei of the investigated molecule to the nuclei of a standard.
Even though the strength of the magnetically induced current
density cannot be measured directly, NMR chemical shifts provide
an indirect means of evaluating them experimentally.

The molecular energy associated with the magnetic inter-
action between a nuclear magnetic moment and the external
magnetic field can be expressed via the magnetic vector
potential and the current density as

EmKB ¼ �
ð
AmK

nucðrÞ � JBðrÞdr: (64)

The nuclear magnetic shielding is the mixed second derivative
of EmKB with respect to the mK and B,

sKab ¼
@2EmKB

@mK
a @Bb

����
mK

a ;Bb ¼ 0
¼ �

ð
@AmK ðrÞ
@mK

a
� @J

BðrÞ
@Bb

d3r

����
mK

a ;Bb ¼ 0

(65)

where a, b A {x, y, z}. Alternatively, the shielding tensor can be
obtained from the Biot-Savart expression, which is the second
part of eqn (65).14,16,80,81,85,113,114 The expression for the mag-
netic shielding tensor elements then becomes

sKab ¼ �
m0
4p

X
dg

eadg

ð
rd � RKd

r� RKj j3
J Bb

g ðrÞdr; (66)

whereJ Bb
g ðrÞ is the magnetically-induced current-density

susceptibility, a, b, g, d A {x, y, z}, eadg is the Levi-Civita symbol,
|r � RK| is the distance from nucleus K.

Fig. 5 The integration plane shown in gray for calculating the strength of
the ring-current strengths of ring-shaped molecules, such as [C6I6]2+ here.
The ring current is dominated by the diatropic contribution at the carbon
ring and outside the iodine atoms. The paratropic ring current inside the
ring is shown in blue.131
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The integrand in eqn (66) is a scalar function known as the
nuclear magnetic shielding density80,81,115 whose spatial dis-
tribution provides detailed information about the origin of the
elements of the nuclear magnetic shielding tensor.114,116–122

Positive and negative contributions to the magnetic shielding
density yield the spatial origin of the shielding and deshielding
contributions, respectively. They provide a rigorous physical
basis for interpreting nuclear magnetic resonance (NMR)
chemical shifts. Visualisation of the shielding density, s(r),
showed that it is not the tropicity but the relative direction of
the current-density susceptibility with respect to the nuclear
magnetic moment vector individually at each point that deter-
mines the magnetic shielding or deshielding of the nucleus.114

Information about spatial contributions to the magnetisa-
bility and magnetic shielding densities of the individual cano-
nical orbitals can be obtained without any orbital-localisation
scheme.16,46,115,117–125 The total magnetisability and nuclear
magnetic shielding tensor of a given molecule are independent
of the partitioning of the current-density susceptibility into
orbital contributions, whereas the individual orbital contribu-
tions depend on the chosen orbital representation as also when
using local-orbital approaches such as the canonical-molecular-
orbital nuclear-chemical-shielding (CMO-NCS) method.126

2.16 Ring-current susceptibilities as an aromaticity index

Ring-shaped molecules sustaining a non-zero net ring current
when exposed to an external magnetic field perpendicular to
the ring are aromatic or antiaromatic depending on the direc-
tion of the ring current. Aromatic molecular rings sustain a net
diatropic ring current, that is, a ring current in the classical
direction, whereas antiaromatic molecules sustain a net ring
current in the non-classical (paratropic) direction.130 Ring
currents can be detected indirectly by measuring 1H NMR
chemical shifts or the anisotropy of the magnetic suscep-
tibility,7,127–129 which are important experimental indicators
for aromaticity. Computationally, the aromatic character can
be assessed by calculating the magnetically induced ring-
current susceptibility.

The degree of aromaticity and the aromatic pathways can be
obtained by integrating the current-density flux through a plane
parallel to the magnetic field direction and perpendicular to the
molecular ring. One of the vertical edges of the plane lies along
the axis of the current-density vortex and crosses a selected
chemical bond. The other vertical edge of the plane extends far
out where the current density vanishes. Likewise, the horizontal
edges of the plane extend until the current density vanishes
above and below the molecule, as shown in Fig. 5. The strength
of the current-density flux passing through the plane, I, is
obtained by numerical integration,41

I ¼
ð
S

X
b2x;y;z

Bb

jBjĴ
BbðrÞ � n̂ds: (67)

The tensor elements of the current-density susceptibility,

Ĵ BbðrÞ, in eqn (67) are contracted with the three components
of a specified direction of the external magnetic field, Bb,

normalised to one. The vector n̂ is the normal of the integration
plane. The SI unit for the current-density susceptibility is
nA T�1 m�2. The integration yields the strength of ring-
current susceptibilities in nA T�1.

The exact position where the integration plane crosses the
bond is not important because the ring-current susceptibility
strength should be the same for all points along the bond due
to charge conservation. Small deviations may appear due to the
use of finite basis sets, i.e., charge is not fully conserved. Larger
uncertainties are introduced for asymmetric molecular rings
where the vortex axis of the current-density susceptibility is not
always vertical but shifted from the geometrical centre and bent
with respect to the normal vector of the ring. Inaccuracies
becomes more prominent when passing through atoms as the
core orbitals sustain a larger current density.

The sign of the current-density susceptibility passing
through the integration plane can be used for assigning its
tropicity. By convention, diatropic current density is assigned
as positive and paratropic current density gets a negative sign.
However, since tropicity is a global property, this assignment
must be considered with care, because the simple sign approach
cannot distinguish between diatropic current densities and
returning paratropic current densities and vice versa.

The assignment of diatropic and paratropic ring-current
susceptibilities of polycyclic molecules is difficult, since the
flux of the diatropic and returning paratropic ring currents
through the plane can be superimposed.132,133 To resolve this
problem, one has to identify diatropic and paratropic current-
density fluxes and investigate them separately. Even though the
tropicity can be unambiguously determined by following the
trajectories of the current-density susceptibility, a thorough
visual inspection also provides a clear notion about the tropi-
city of the current density.

Calculations have shown that the strength of the ring-
current susceptibility of small aromatic molecules correlates
with the stabilisation energy due to electron delocalisation in
the conjugated chemical bonds.134–136 The correlation between
the strength of the ring-current susceptibility and the aromatic
stabilisation energy suggests that the ring-current criterion can
be used for determining the degree of aromaticity of molecular
rings. There is a similar correlation between the strength of the
current-density vortex of hydrogen bonds and the strength of
the hydrogen bond.137

Calculations of ring-current susceptibilities support Hück-
el’s p-electron counting rule which states that molecular rings
with (4n + 2) p electrons are aromatic and that antiaromatic
molecules have 4n p electrons.138–141 The aromaticity concept
has been extended to molecules with open shells and excited
states,38,42,142–145 as well as to non-planar molecules.44,131,146–166

The net ring-current susceptibility of non-aromatic molecules
vanishes, since they sustain diatropic and paratropic ring currents
of the same strength. For example, in 1,4-cyclohexadiene, the
current density is diatropic outside the CQC bond. The para-
tropic current density inside the ring is of about the same
strength. The current density passing the CH moieties is para-
tropic inside the ring and diatropic on the outside of the carbon
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atom. Calculation of the diatropic and paratropic contributions to
the ring-current susceptibility reveals that there is a current-
density vortex at the centre of the CQC bond.167

2.17 Antiaromaticity

Antiaromaticity, defined as the co-existence of a paratropic ring
current, symmetry breaking or structural distortion, and a
small Fermi gap168,169 can be understood in terms of a general
underlying symmetry principle as pointed out by Berger and
Viel:170 Molecules belonging to certain point groups with a
(near-)degenerate wave function, sustain a magnetically
induced paratropic ring current and have the possibility of a
(pseudo-)Jahn–Teller distortion. More specifically, let G be a
point group among Cn, Cnv, Cnd, Dn, Dnv, Dnd, S2(n�1) with n 4 2
but not belonging to the tetrahedral, T*, octahedral, O* and
icosahedral, I*, point groups. Any symmetry-induced two-fold
degeneracies (in G) are then necessarily connected with the
irreducible representation of the angular momentum operator,
l̂z, around the main symmetry axis, which is unique for these
point groups. If the wave function is degenerate, having
irreducible representations of e type (the only occurring type
of degeneracy in these point groups), the paramagneticity and
the symmetry-induced (first-order) Jahn–Teller distortions Q,
occur together, which Berger and Viel called the Symmetry
Principle of Antiaromaticity (SPA).170

The SPA can also be applied to closed-shell states that are
non-degenerate but nearly two-fold-degenerate. The magneti-
cally induced paratropic ring current then appears together
with a symmetry-induced (second-order) pseudo Jahn–Teller
distortion, Q. A schematic representation in terms of energy
level diagrams for both cases is given in Fig. 6.

Such near-degenerate electronic states are typically the
ground state of antiaromatic molecules. For example, calculations
on cyclobutadiene at the multiconfiguration self-consistent field
(MC-SCF) level of theory in the D4h point group171 showed that the
electronic 1B1g ground state (S0) and the close lying 1B2g state (S2)
are paramagnetically coupled in the presence of a magnetic field.
The angular momentum operator parallel to the main symmetry
axis belongs to the a2g irreducible representation. Since the
product of the irreducible representations of the two states
comprises the irreducible representation of the angular momen-
tum operator (b2g # b1g = a2g), the corresponding transition
matrix element of the angular momentum operator does not
vanish, implying that a magnetically induced paratropic ring
current is expected. A second-order Jahn–Teller effect along a
distortional or vibrational normal mode Q of the b1g irreducible
representation also leads to a distorted structure belonging to the
D2h point group because the b1g mode couples the 1B1g ground
state with the close-lying 1A1g state (S1).

The spatial symmetries of the three singlet states (S0, S1, S2)
and the first triplet T1 (3A2g) state are related as they span a two-
dimensional subspace of the Eg irreducible representation of
the D4h point group via A1g " A2g " B1g " B2g = Eg # Eg. After
the structural distortion, the degenerate representation splits
but the paramagnetic response remains symmetry allowed as
seen by applying branching representation theory.

This example can be verified using a simple model of two
electrons in two orbitals based on MC-SCF calculations. How-
ever, the principle is independent of any orbital frameworks
and can be generalised using the natural-orbital degeneracy of
the wave function. The present IUPAC definition of aromaticity
and antiaromaticity, going back to Minkin168,169 is in agree-
ment with the SPA, but it is not explicitly taken into account.

Hückel-antiaromatic molecules have often a broken 4- or 8-
fold symmetry. The irreducible representations of the ground
state and the lowest excited state or even the irreducible repre-
sentations of the highest-occupied molecular orbital (HOMO) and
the lowest-unoccupied molecular orbital (LUMO) are related via a
901 rotation around the highest symmetry axis of the point group.
Antiaromatic molecules become stable with respect to a (second-
order) pseudo-Jahn–Teller distortion by exerting this distortion
and thereby breaking the point-group symmetry of the ring. Too
large distortions result in a weaker paramagnetic response, since
the rotational relation between the ground and the excited state or
in many cases between the HOMO and LUMO is weakened
leading to a wider energy gap and a smaller angular momentum
transition integral. Consequently, antiaromaticity can be observed
only when there is a balance between the two effects (distortion
for stability and symmetry relation for paramagneticity). Berger
and Viel suggested that antiaromaticity can be defined via the SPA
as the presence of such a balance.170

2.18 Closed-shell paramagnetic molecules

The magnetisability can be written as a sum-over-state
expression where it is formally divided into gauge-dependent

Fig. 6 Schematic representation of the symmetry principle of antiaroma-
ticity (SPA), (a) a first-order case and (b) a second-order case occurring in
closed-shell species. G and H are the symmetry point groups of the
molecule, where H is a subgroup of G, and Q a mode of structural
distortion or a vibrational normal mode.
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negative diamagnetic (wdia) and paramagnetic (wpara) contri-
butions.16,97,101,172,173 The magnetisability is then given by

wab ¼

�1
4

P
i

Cð0Þ0 r2iOdab � riO;ariO;b
�� ��Cð0Þ0

D E

þ1
2

P
i

Ia0

Cð0Þ0 ðr̂iO � p̂iÞa
�� ��Cð0ÞI

D E
Cð0Þ0 ðr̂iO � p̂iÞb

��� ���Cð0ÞI

D E
E
ð0Þ
I � E

ð0Þ
0

;

8>>>>>><
>>>>>>:

(68)

The first term in eqn (68) is the diamagnetic contribution,
which is always negative and depends only on the ground-state
wave function. The second term is the paramagnetic contribu-
tion, which can be positive or negative depending on the
direction of the flux of the magnetically induced current density
susceptibility. Paratropic current densities result in positive
contributions to the magnetisability. The diamagnetic contri-
bution generally dominates, leading to a negative total magne-
tisability that scales nearly linearly with the size of the
molecule, which is known as Pascal’s rule.174 Ring-shaped
molecules with a strong paratropic ring current whose radius
is large may have a large positive contribution to the magneti-
sability leading to an overall positive magnetisability and
paramagnetism.90–94,96,97,175,176

Calculations on antiaromatic porphyrinoids showed that
they are closed-shell paramagnetic molecules when the strength
of the paratropic ring-current susceptibility exceeds about
�20 nA T�1.97 The same condition holds for molecules consis-
ting of several fused porphyrin rings. The paratropic current
density must be large as in strongly antiromatic molecules in
order to yield a paramagnetic contribution to the magnetisability
that is larger in absolute value than the diamagnetic contribu-
tion, which increases nearly linearly with the number of
atoms.174 Furthermore, the external magnetic field induces ring
currents only when it has a vector component perpendicular to
the ring, whereas experimental magnetisabilities, which are
obtained as the trace of the magnetisability tensor, have con-
tributions for all directions of the external magnetic field.
Alternatively, significant positive paramagnetic contributions to
the magnetisability can be obtained for ring-shaped molecules
with a large radius such as expanded porphyrins and porphyrin
nanowheels, when they sustain a paratropic ring-current
susceptibility in the presence of an external magnetic field.96,97

2.19 Twisted molecules

Calculations at the Hückel level of theory suggest that singly
Möbius-twisted conjugated molecular rings with 4n p electrons
are aromatic closed-shell molecules.146 Singly twisted molecular
rings with (4n + 2) p electrons are analogously expected to be
antiaromatic. The Hückel Hamiltonian for arbitrary number of
half-twists shows that the aromaticity and antiaromaticity rules
can be extended to molecules with multiple twists around the
molecular ring.177 Details about the aromatic character of twisted
molecules can be determined by performing calculations at DFT
and ab initio levels of theory.147,148,178

Twisted molecular rings are characterised by their linking
number, Lk, consisting of twist, Tw, and writhe, Wr. The twist is
a local property of the molecular skeleton that is obtained by
integrating all the local rotation angles around the ring. The
writhe is the deformation of the molecule as a whole in 3D.
It tells how deformation of the ring can reduce the local
twisting. Lk and Wr are non-local properties which can be obtained
by a double path integration around the ring.148,179–182 For a
closed loop, it holds that Lk = Tw + Wr. A singly twisted molecular
ring has an Lk value of �1p, where p is often omitted for
simplicity. The trans-C40H40 structures in Fig. 7(a and b) are
constructed using Lk = 0 and Tw = �Wr where Tw = 0 and Tw =
1.5, respectively. The Lk value can be positive or negative. Mole-
cular rings with the same absolute value of Lk have the same
structure but their chirality differs. Molecular rings with odd Lk

values are one-sided, whereas those with even Lk values including
zero have two sides. For all rings with even Lk values, the aromatic
character follows Hückel’s (4n + 2) p-electron counting rule, and
with 4n p electrons, the ring is antiaromatic.141,183 The opposite
rules hold for all rings with odd Lk values.

The external magnetic field in the calculations of the mag-
netically induced ring current in the trans-C40H40 structures
was set to be perpendicular to the maximum projection of the
molecular ring, as the induced flux of JB is expected to be
strongest in that orientation. The calculations showed that the
largest ring current is obtained for rings with Tw = Lk and
Wr = 0,162 even though rings with the smallest Tw value
are expected to have the largest p-electron delocalisation.148

Molecular rings with large Wr values have, though, a small
projection area perpendicularly to any orientation of the exter-
nal magnetic field, leading to a weaker ring current. When the
magnetic field is perpendicular to the trans-C40H40 ring in
Fig. 7(b), it does not sustain any ring current due to the
conflicting situation of the ring currents of the two loops,
whereas with the magnetic field oriented from above in
Fig. 7(b), the elliptical cross section of the ring is much smaller
than in Fig. 7(a).162

The aromaticity rules of twisted molecules also hold for
more complicated molecules like expanded porphyrinoids.184–190

Singly twisted hexaphyrins were shown to be aromatic, for-
mally with 4n p electrons, and antiaromatic with (4n + 2) p
electrons.184,191 Analogously, doubly twisted hexaphyrins obey
the ordinary Hückel rule for aromaticity and antiaro-
maticity.158,184,191–193 The general aromaticity rules for closed-shell

Fig. 7 The C40H40 trans-annulene with Lk = 0 and (a) Tw = �Wr = 0 and
(b) Tw = �Wr = 1.5.
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molecular rings state that evenly twisted molecular ring are aromatic
when they have 4n + 2 p electrons and antiaromatic when the
number of p electrons is 4n. For oddly twisted closed-shell
molecular rings, the opposite aromaticity rules holds. For open-
shell molecules in the triplet state, the aromaticity rules are again
reversed.143

2.20 Toroidal molecules

Toroidal molecules are a topological object with one hole.
Thus, according to Euler’s law they have genus 1.164,194,195

A torus can be described by two radii, the big radius, RT, of
the hole in the middle of the torus, and the small radius, rT, of
the cross-section of the torus. A toroidal molecule can be
constructed formally by twisting a carbon nanotube (CNT), so
that its two ends meet,196–198 or the molecular structure can be
more sparse.164,199,200 In some cases, the molecular structure of
toroidal molecules is helical, leading to chirality, since the helix
can be left- or right-handed.

An external magnetic field along the main axis of a chiral
toroidal molecule may induce a current density that has a flux
component along the ring of the tube (characterised by RT) and
another component around the small radius of the tube,
leading to an induced magnetic field inside the tube of the
torus without a north and a south pole. Due to the helical
structure of molecule, the current density around the tube
flows in opposite directions for the two enantiomers, leading
to opposite directions of the induced magnetic field along the
centerline of the tube. The corresponding anapole moment
(toroidal dipole moment) also points in opposite directions
along the symmetry axis.199–209

The difference in the magnetically induced current densities
and the induced magnetic fields can also affect the properties
of the two enantiomers in different ways when they are exposed
to magnetic fields. For example, in a non-uniform magnetic
field, the magnetically induced anapole moment can lead to an
energy difference between the two enantiomers.209 For a non-
uniform external magnetic field, the magnetic contribution to
the molecular energy as a function of the magnetic field
strength and the spatial changes in the strength of the magnetic
field is

EðB;CÞ � 1

2
BTlO �

1

2
CTa� 1

2
BTvB� BTMC� 1

4
CTAC; (69)

where B is a uniform contribution to the magnetic field, C = r �
BNU is the curl of the non-uniform contribution to the magnetic
field, a is the anapole moment, v is the magnetisability (magnetic
susceptibility) tensor, M is the mixed anapole susceptibility
tensor, and A is the anapole susceptibility tensor.209 The mag-
netic dipole moment, lO, at the gauge origin O is obtained from
the probability current density, j(r), as

lO ¼
ð
rO � jðrÞdr (70)

where rO = r � O. The non-uniform magnetic field can be
parameterised as209

BtotalðrÞ ¼ Bþ rThb�
1

3
rhTrðbÞ (71)

where b is a 3 � 3 tensor whose elements contain the magnetic
field gradients, rh = r � h is the spatial position relative to the
reference point h. By setting the symmetric part of b to zero,
Btotal(r) and the corresponding vector potential can be written as

BtotalðrÞ ¼ Bþ 1

2
C� rh (72)

and

AtotalðrÞ ¼
1

2
B� rO �

1

3
rh � ðC� rhÞ (73)

The magnetic field given in eqn (72) is the curl of the vector
potential in eqn (73).

The current density expression for the anapole moment at
the reference point h is209

a ¼ 1

3

ð
rh � ðrh � jðrÞÞdr: (74)

Alternative expressions for calculating the anapole moment can
be found in ref. 204 and 206. This is still a rather unexplored
research area where the topology of toroidal and chiral mole-
cules might lead to unusual properties and even cause energy
differences between enantiomers when the molecules are
exposed to non-uniform magnetic fields.

3 Conclusions and outlook

The magnetically induced current density is the fingerprint of
the molecular magnetic response. It is as fundamental as the
electron density, providing contributions to magnetic proper-
ties such as nuclear magnetic resonance (NMR) shieldings,
magnetisabilities etc. Numerical integration of magnetic pro-
perty densities in atomic domains yields the atomic contribu-
tions to these properties. Spatial contributions from individual
canonical orbitals to magnetic properties can also be obtained
by scrutinising orbital magnetic property densities. The
approach can be extended to spin-current densities, enabling
similar studies of electronic paramagnetic resonance (EPR)
spectroscopy parameters and other spin-current-density depen-
dent molecular properties. Spatial contributions to spin–orbit
coupling effects in heavy-element compounds can be obtained
by performing current-density calculations at relativistic levels
of theory. The numerical integration approach also opens the
avenue towards calculations of novel magnetic properties that
are difficult to compute using analytic gradient theory.

The degree of molecular aromaticity, the ring-current path-
ways and the extent of electron delocalisation can be determined
by integrating the strength of the magnetically induced current-
density susceptibility passing selected chemical bonds. Qualita-
tive information about the current-density flux can be obtained
using advanced methods of visualisation of current densities and
magnetic property densities. Additional information about the
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current-density flux can be obtained by separating diatropic and
paratropic current densities and analysing them separately. The
tropicity of the current density in each point in space can be
identified only by following the closed loops of the flux,
i.e., streamlines.

Calculation and interpretation of magnetically induced
current densities is an active research field with lots of new
possibilities to obtain information about molecular magnetic
properties and to understand the molecular behaviour in the
presence of magnetic fields. Qualitative information can be
obtained from the topology of the current density. Group-
theoretical considerations provide suggestions about the origin
of the diamagnetic and the paramagnetic response in sym-
metric molecules. An exact qualitative and an approximate
quantitative relation between the topology of the electron
density and the topology of the magnetically induced current
density might exist and is being investigated. The symmetry
principle of antiaromaticity might be generalised to aromatic
compounds and extended to a fully relativistic treatment.
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33 J.-M. Lévy-Leblond, Commun. Math. Phys., 1967, 6, 286–311.
34 W. Greiner, Quantum Mechanics, Springer Berlin Heidelberg, 2001.
35 K. K. Lange, E. I. Tellgren, M. R. Hoffmann and T. Helgaker,

Science, 2012, 337, 327–331.
36 S. Reimann, U. Ekström, S. Stopkowicz, A. M. Teale, A. Borgoo and

T. Helgaker, Phys. Chem. Chem. Phys., 2015, 17, 18834–18842.
37 R. D. Reynolds and T. Shiozaki, Phys. Chem. Chem. Phys., 2015, 17,

14280–14283.
38 T. J. P. Irons, L. Spence, G. David, B. T. Speake, T. Helgaker and

A. M. Teale, J. Phys. Chem. A, 2020, 124, 1321–1333.
39 S. Lehtola, M. Dimitrova and D. Sundholm, Mol. Phys., 2020,

114, e1597989.
40 A. M. Kantola, P. Lantto, I. Heinmaa, J. Vaara and J. Jokisaari, Phys.

Chem. Chem. Phys., 2020, 22, 8485–8490.
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61 M. Iliaš, T. Saue, T. Enevoldsen and H. J. A. Jensen, J. Chem. Phys.,
2009, 131, 124119.
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