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G-quadruplex DNA inhibits unwinding activity but
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G-quadruplex DNA interacts with the N-terminal intrinsically dis-
ordered domain of the DEAD-box helicase Ded1p, diminishing RNA
unwinding activity but enhancing liquid—-liquid phase separation of
Ded1p in vitro and in cells. The data highlight multifaceted effects
of quadruplex DNA on an enzyme with intrinsically disordered
domains.

G-quadruplexes (G4) are four-stranded nucleic acid structures
of stacked planar guanine tetrads. The guanines in each plane
interact through Hoogsteen hydrogen bonding."* G4 structures
play important roles in gene expression, DNA replication, and
telomere maintenance.®™ In addition, G4 structures have been
linked to genomic instability and human diseases, including
cancer and neurodegenerative disorders.®™

DEAD-box RNA helicases, characterized by a highly con-
served “Asp-Glu-Ala-Asp” (DEAD) motif, are found in all eukar-
yotes, as well as in many bacteria and archaea.'® These enzymes
are involved in most aspects of cellular RNA metabolism and
in the formation of stress granules and P-bodies, cellular
RNA-protein condensates that form by liquid-liquid phase
separation (LLPS)."”'! Many DEAD-box helicases have been
linked to diseases, including cancer, neurodegeneration and
viral infections.”>™** The DEAD-box RNA helicase Dedi1p, an
ortholog of human DDX3X, is involved in translation initiation
and localizes to stress granules and P-bodies.'>™"”

We have shown previously that Ded1p binds tightly to, but
does not unfold G4ADNA.*® To probe possible effects of G4DNA
on the function of Ded1p, we tested the impact of G4ADNA on
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the RNA unwinding activity of recombinant Ded1p (Fig. 1).
Addition of G4DNA inhibits RNA unwinding of Ded1p,
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Fig. 1 GA4DNA inhibits unwinding of dsRNA by Dedlp. (a) Unwinding of
dsRNA (50 nM) by Ded1p (1 nM). (b) Inhibition of dsSRNA (50 nM) unwinding
by Dedl1p (1 nM) by G4DNA (30 nM). (c) No significant impact of ssDNA at
30 nM on dsRNA (50 nM) by Ded1p (1 nM). (d) Unwinding of dsRNA (50 nM)
by Dedlp (1 nM) with increasing concentrations of G4DNA or ssDNA.
Apparent inhibition constants (K;) for G4DNA and ssDNA are indicated on
the right.
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compared to the reaction without DNA (Fig. 1a and b). An
equivalent concentration of a DNA (ssDNA) that does not form a
G-quadruplex, does not inhibit RNA unwinding of Ded1p to
the extent seen with G4DNA (Fig. 1c). We also performed
unwinding reactions with increasing concentrations of
G4DNA and ssDNA to determine the respective inhibition
constants (K;) (Fig. 1d). For GADNA, K; = 4.37 £ 1.24 nM, while
for ssDNA a K; = 276 + 27 nM reveals a more than 60-fold
weaker affinity (Fig. 1d). The results indicate tight binding of
G4DNA to Ded1p, consistent with previous equilibrium binding
data."® The data collectively demonstrate that G4DNA inhibits
the RNA unwinding activity of Ded1p.

We next examined which domains of Ded1p were involved in
the interactions with the G4DNA. In addition to the conserved
helicase domain, Ded1p contains an N-terminal unstructured
domain and a basic C-terminal tail (Fig. 2a).'° We probed
equilibrium binding of Dedlp variants without either the
N- or the C-terminal to the G4DNA (Fig. 2b). Compared to
full-length Dedlp (Kg4 = 1.3 + 0.3 nM), deletion of the
C-terminal tail (AC Ded1) has little effect on G4ADNA binding
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Fig.2 The N-terminal domain of Dedlp interacts with G4DNA.
(@) Domain architecture of Dedlp. N-term and CTT contain intrinsically
disordered regions. (b) A Ded1p variant lacking the C-terminal tail binds to
the G4DNA substrate with similar affinity to full length Dedlp while
deletion of the N-terminal domain results in an increase in the Ky from
1.3 + 0.3 nM for full length Dedl1p to 16 4+ 7 nM for AN Ded1p. (c) 30 nM
G4DNA inhibits unwinding of 50 nM dsRNA by 1 nM full length and AC
Dedlp, but has no effect on unwinding by AN Ded1p. 30 nM ssDNA control
did not inhibit unwinding by any of the Dedlp variants.
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(Kq = 1.0 £ 0.2 nM). However, deletion of the N-terminal
unstructured domain (AN Ded1), markedly reduces affinity
for GADNA (K4 = 16 £+ 7 nM), compared to full-length Ded1p.
These observations suggest that the N-terminal unstructured
domain of Dedlp plays a major role in G4DNA binding,
whereas the C-terminal domain is largely dispensable. The
N-terminal domain of Ded1p contains RGG repeats, which have
been shown in other proteins to bind quadruplex structures.*
The helicase domain is also likely involved in G4DNA binding
because AN Ded1p retains some G4DNA binding activity.

Consistent with the involvement of the N-terminal domain
in G4DNA binding, G4ADNA inhibits RNA unwinding for both
full length Ded1p and AC Ded1p (Fig. 2c). The ssDNA does not
significantly inhibit unwinding by any of the Ded1p variants at
30 nM. Without the competing DNA, the rate of dsSRNA unwind-
ing by AN Ded1p is reduced roughly 10-fold, relative to full-
length Ded1p, while the rate of duplex RNA unwinding by AC
Ded1p was reduced more than 40-fold, consistent with previous
results.”® Our observations show that both termini are impor-
tant for efficient unwinding by Ded1p.

DEAD-box helicases with unstructured termini undergo
liquid-liquid phase separation (LLPS), a process that underlies
stress granule formation."®*® Stress granules are non-
membranous organelles in the cytoplasm composed of transla-
tionally repressed mRNA and proteins. Ded1p functions in
translation initiation, in part by remodelling RNA secondary
structure in 5-UTRs."> LLPS and sequestration of Dedlp in
stress granules reduce translation of mRNAs that depend on
Ded1p, while allowing translation of mRNAs that do not require
Ded1p.?° It has been recently reported that G4 structures can
also promote phase separation.”’>* We have previously shown
that oxidative stress promotes accumulation of G4DNA in the
cytoplasm of some human cancer cell lines.** Furthermore, we
found that cytoplasmic G4DNA promotes formation of stress
granules through binding to different stress granule proteins
such as DHX36, TIA1, and G3BP.>* We thus asked whether
G4DNA could promote LLPS of Ded1p in vitro (Fig. 3). Ded1p
was labelled with Cy5, and incubated with Cy3-labelled G4ADNA.
We observed LLPS, including formation of a significant fraction
of large (>20 um) Ded1p granules after 1 hour (Fig. 3a, and
ESI,T Fig. S1). LLPS of Ded1p with Cy3-labelled ssDNA or ssSRNA
did not result in formation of comparable fractions of large
granules. In addition, the number of large granules increased
with increasing concentrations of G4DNA. In contrast, the
number of large granules decreased with increasing concentra-
tions of ssSDNA or ssRNA (Fig. 3b).

Next, we examined whether G4DNA stimulates LLPS of
Ded1p in cells. Since we could not efficiently introduce extra-
cellular G4DNA into the cytosol of S. cerevisiae, we tested how
Phen-DC3, a well-characterized G4 stabilizer,>® affects Ded1p
LLPS in vivo (Fig. 4). S. cerevisiae cells expressing Ded1-GFP
from its endogenous chromosomal locus, were grown to early-
log phase, then Phen-DC3 was added to the culture to 10 uM.
After eight hours of Phen-DC3 treatment, large Ded1-GFP foci are
observed. The size of Ded1-GFP foci further increased after
19 hours of Phen-DC3 treatment. A high-resolution 3-dimensional

This journal is © The Royal Society of Chemistry 2021
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Fig. 3 GA4DNA facilitates formation of large Dedlp granules in vitro. (a)
Representative images of granule formation of 4 uM Ded1 (with 50 nM
Cy5-Ded1p) with 0.05 pM G4DNA, ssDNA, or ssRNA labeled with Cy3. (b)
Histogram of diameters of Ded1 granules per image frame (0.135 mm?) for
conditions described in (a). ~200 frames were averaged per condition.
Lower right panel: fold change in the number of granules with a diameter
greater than 20 pm at increasing nucleic acid concentrations.

scan of the cell after 19 hours of Phen-DC3 treatment shows that
Ded1-GFP forms a non-membrane organelle-like structure at the
outside of the nucleus in the cell (ESLt Video S1). These observa-
tions indicate that Phen-DC3 promotes LLPS of Ded1-GFP in cells.

To examine the impact of Phen-DC3 on nucleic acid remo-
delling by Ded1p, we tested the effect of Phen-DC3 on the
ATP-independent G4RNA destabilization by Ded1p in vitro
(ESLt Fig. S2). We found that 0.5 uM Phen-DC3 inhibits
G4RNA destabilization by Ded1p, but not its helicase activity
on RNA-DNA duplexes (ESLt Fig. S2 and S3). 1 uM Phen-DC3
can inhibit RNA duplex unwinding by Ded1 (ESL,t Fig. S4). We
thus note that inhibition of the helicase activity might con-
tribute to the stimulation of Ded1p LLPS by Phen-DC3 in cells,
in addition to the G4 stabilization by Phen-DC3.
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Fig. 4 The G4 stabilizer Phen-DC3 promotes LLPS of Ded1-GFP in cells.
S. cerevisiae cells expressing Ded1-GFP from its endogenous chromoso-
mal locus were grown to early-log phase at 28 °C, then treated with 10 uM
Phen-DC3 for the indicated time. Arrows indicate Ded1-GFP foci.

In sum, we demonstrated that G4DNA inhibits RNA unwinding
activity of DEAD-box helicase Dedl1p, and promotes LLPS of
Ded1p. Our findings suggest possible new roles for G4 structures
and DEAD-box RNA helicases. Many viruses harbor G4 signatures
in their genome.”®”” Using G4 DNA or RNA to stimulate LLPS
while inhibiting unwinding activities of (a) DEAD-box RNA
helicase(s), would be an efficient strategy for a virus to hijack
the translation apparatus of the host cell for virus propagation.
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