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Exactly solvable 1D model explains the
low-energy vibrational level structure of
protonated methane†

Jonathan I. Rawlinson, *a Csaba Fábri bc and Attila G. Császár bc

A new one-dimensional model is proposed for the low-energy vibra-

tional quantum dynamics of CH5
+ based on the motion of an effective

particle confined to a 60-vertex graph C60 with a single edge length

parameter. Within this model, the quantum states of CH5
+ are obtained

in analytic form and are related to combinatorial properties of C60. The

bipartite structure of C60 gives a simple explanation for curious sym-

metries observed in numerically exact variational calculations on CH5
+.

Protonated methane, CH5
+, also called methonium, is considered

to be the prototype of pentacoordinated nonclassical carbonium
ions.1–3 The curious carbonium cations yielded an extremely rich
chemistry and a Nobel prize to their discoverer, George Olah.4

Nevertheless, these are not the only sources of fame for carbonium
ions and in particular for CH5

+. Over the last two decades,5 the
internal motion of CH5

+ has been posing a formidable challenge to
high-resolution spectroscopists.5–15 The most outstanding issue is
that the observed spectra of CH5

+ remain exceptionally complex
even when they are observed at temperatures of a few K,9,13 due to
the quasistructural nature16 of this molecular ion.

As to the utilization of quantum chemistry to solve the experi-
mental puzzle, through huge numerical efforts accurate rovibra-
tional energy levels and eigenstates have been made available for
CH5

+ in recent years.7,12,14 These studies have revealed close-lying
clusters in the rovibrational energy levels, with fascinating symmetry
characteristics. These features have defied explanation by conven-
tional means, motivating the development of novel models for CH5

+.
The most important models put forward so far are as follows: (a)
particle-on-a-sphere (POS),17–23 (b) five-dimensional (5D) rotor

(superrotor),24–26 and (c) quantum graph.15,27 So far, the quantum-
graph model seems to have resulted in the most satisfactory
explanation of the low-energy quantum dynamics of CH5

+, including
both vibrations15 and rotations.27

Quantum graphs have a long history in chemistry and
physics, dating back to Linus Pauling’s description of electrons
in organic molecules in the 1930s.28 They have only recently
been introduced to the study of nuclear dynamics, where they
have proved useful in high-resolution spectroscopy15,27 and
also in explaining a-cluster dynamics in nuclear physics.29,30

Quantum graphs31 are metric graphs, that is each of their edges
possesses a length. In the context of rovibrational dynamics of
molecules, each vertex of the graph represents a version32 of an
equilibrium structure. Depending on the nuclear permutation-
inversion symmetry32 of the molecule of a given composition,
even if the molecule has a single minimum on a given potential
energy surface it may possess a large number of versions. The
vertices defined by the versions are connected by edges which
represent collective internal motions converting different ver-
sions into each other. Once a quantum graph is set up, one
constructs the one-dimensional (1D) Schrödinger equation for
an effective particle confined to the graph and solves it to
determine the energy levels and eigenstates (ESI†). In this way,
the complex multidimensional rovibrational quantum
dynamics of a polyatomic molecule is mapped onto the effec-
tive motion of a 1D particle confined to a much simpler space.

In the case of CH5
+, the equilibrium structure, the only one

found on its ground electronic state, is composed of a H2 unit
sitting on top of a CH3

+ tripod, an arrangement with Cs point-
group symmetry. The five protons can be rearranged in 5! = 120
ways, generating 120 symmetry-equivalent versions. These ver-
sions become the 120 vertices of a quantum graph G120.15 There
are two types of motion interconverting the 120 versions,
equivalent to scrambling the H atoms of CH5

+: the internal
rotation of the H2 unit by 601 (both clockwise and counter-
clockwise), and the flip motion that exchanges a pair of protons
between the H2 and CH3

+ units. The barriers to these motions
on the potential energy hypersurface of CH5

+ 33 are known to be
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relatively low. It is plausible that the low-energy dynamics is
dominated by motion along these particular paths, so that
motions other than the internal rotation and flip motions can
be disregarded. Thus, one can take these motions to corre-
spond to the edges of G120. As one flip edge and two internal
rotation edges are connected to each vertex of G120, each vertex
has a degree of three (G120 is a 3-regular graph). Due to the
nature of the underlying internal motions, the 120 internal
rotation and 60 flip edges are assigned effective lengths Lrot and
Lflip, respectively.

As shown before,15,27 the quantum graph G120 reproduces
the low-energy rovibrational energy levels of CH5

+, as well as of
CD5

+, remarkably well when optimized values are used for Lfip

and Lrot (ESI†). For instance, the G120 model perfectly repro-
duces the curious block structure (states occuring in groups of
15 and 30, see Table 1) of the vibrational eigenstates of CH5

+,
first noted in a variational study of Wang and Carrington12 and
later confirmed in ref. 14. As seen in Table 1, rovibrational
eigenstates of CH5

+ are labelled by irreducible representations
(irreps) of the molecular symmetry (MS) group32 S5* = S5 �
{E,E*}, generated by S5 permutations of the five protons
together with spatial inversion E* (E denotes the identity
operation).

Beyond the existence of blocks, in Table 1 one can notice
other clear symmetry relations for the first 60 quantum states.
A comparison of the group-theoretic relation

(A1
+ " G1

+ " H1
+ " H2

+) # A2
�C A2

�" G2
�" H2

�" H1
�

(1)

with the data in Table 1 suggests a direct correspondence
between the 15 positive-parity states in Block 1 [appearing on
the left-hand side (LHS) of eqn (1)] and the 15 negative-parity
states in Block 2 [right-hand side (RHS) of eqn (1)]. Likewise,

(G2
� " H2

� " I�) # A2
� C G1

+ " H1
+ " I+, (2)

suggesting a link between the 15 negative-parity states in Block
1 and the positive-parity states in Block 2. These remarkable
symmetry relations have been lacking any simple explanation,
even in terms of the G120 model. As this paper proves, introduc-
tion of the simplest quantum-graph model, G60, of the quan-
tum dynamics of CH5

+, derived from G120, is sufficient to
explain the curious energy-level and symmetry structure of
the lowest vibrational states of CH5

+, and, as a bonus feature,
it allows the analytic determination of the quantum states of
the model problem.

Let us start our journey toward the simplest model with the
quantum graph G120. We recall two important characteristics of
our original study.15 First, we neglect the potential energy along
the edges of G120, since the barriers to the internal rotation and
flip motions are small (about 30 cm�1 and 300 cm�1,
respectively33). Second, we fix the effective edge lengths Lflip

and Lrot. In ref. 15 this was done by an optimization procedure
to give the best fit to either 7D or 12D reference data. In both
cases the optimized Lflip was much smaller than the optimized
Lrot, with the ratio Lflip/Lrot = 1.0/61.2 in the 7D case.

Our new model is based on the following idea: the ratio Lflip/
Lrot is so small that it is tempting to imagine shrinking the flip
edges to zero length, identifying the two vertices at the end-
points of each flip edge to give a single vertex. Setting Lflip = 0
has a negligible effect on the accuracy of the fit, at least at low
energies. At the same time, this approximation gives a huge
simplification: the number of vertices is halved and we get a
new quantum graph, G60, with only the internal rotation edges
remaining. It is reasonable to identify each new vertex with the
midpoint of the (now contracted) flip edge, which is a
C2v-symmetric transition state, as illustrated in Fig. 1. G60

represents 60 symmetry-equivalent versions of this configu-
ration. We propose that the most important characteristics of
the low-energy vibrational quantum states of CH5

+ can be
understood in terms of a 1D, potential-free motion between
these versions corresponding to the vertices of the quantum
graph G60. Note that each vertex is connected to precisely four
other vertices, as shown also in Fig. 1, giving rise to the 4-
regular (quartic) quantum graph G60, illustrated in Fig. 2.

There is an alternative way of rationalizing the above con-
traction procedure. At the energies we are interested in, one can
show that the G120 wave functions for the energy eigenstates are
approximately constant along the flip edges. In this limit, the
boundary conditions of G120 become equivalent to those of G60

(ESI†). Either way, G60 only retains edges corresponding to the
internal rotation. Our simplified model therefore has the
feature of explaining the low-energy dynamics solely in terms

Table 1 The block structure characterizing the first 60 vibrational states
of CH5

+, revealed in variational nuclear-motion computations.12,14 The
numbers in parentheses give the total number of positive and negative
parity states within a block

Block 1 Block 2

0–60 cm�1 (15,15) 110–200 cm�1 (15,15)
A1

+ " G1
+ " H1

+ " H2
+" G1

+ " H1
+ " I+ "

G2
� " H2

� " I� A2
� " G2

� " H1
� " H2

�

Fig. 1 Local structure of the quantum graphs G120 (blue and red edges)
and G60 (black edges). The red edges correspond to the flip motion and the
labels indicate which proton is exchanged from a H2 unit to a CH3

+ unit.
The blue edges correspond to an internal rotation and the labels indicate
the H2 unit which rotates relative to the CH3

+ unit in a clockwise (+) or
anticlockwise (�) fashion. The midpoint of each red flip edge is a C2v-
symmetric transition state (ts). In going from G120 to G60, the red edges
shrink so that we are left with just the transition states connected by black
edges.
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of the internal rotation motion without the flip motion, with
the constant wave function argument allowing for backstage
full exchange of the protons. This model is thus set up in clear
violation of the claim of the authors of ref. 34, namely that ‘‘the
combination of the two [internal motions] enables large-
amplitude motion and thus full scrambling . . . whereas partial
scrambling leads to the well-known small-amplitude motion
only’’.

We now seek the quantum states corresponding to motion on
the G60 graph. The eigenenergies are found by solving the time-
independent Schrödinger equation for a freeeffective particle
moving along the edges, with the so-called Neumann boundary
conditions31 imposed on the eigenstates. These conditions are
that the wave function should be continuous everywhere, with
zero total momentum flux out of each vertex. As we have already
pointed out, G60 is a 4-regular graph with all edges having a
common length l = Lrot. Perhaps surprisingly, these properties
imply that the structure of the quantum energy levels can be
determined entirely from combinatorial properties of the graph.

More precisely, given a wave function c defined on the
graph G60 and obeying the time-independent Schrödinger
equation along each edge,

�1
2

d2c
dx2
¼ Ec; (3)

where x is a mass-scaled coordinate, consider the vector of its
values at each vertex v = (c(v1),c(v2),. . .). It is straightforward to
prove (ESI†) that c is an eigenfunction with energy E satisfying
the Neumann boundary conditions if and only if

Av ¼ 4 cos
ffiffiffiffiffiffi
2E
p

l
� �

v; (4)

i.e., if and only if l ¼ 4 cos
ffiffiffiffiffiffi
2E
p

l
� �

is an eigenvalue of the
adjacency matrix A for the graph G60, with v in the corres-
ponding eigenspace. A is simply a matrix whose elements
indicate whether given pairs of vertices are connected by an
edge or not:

Að Þij¼
1 if vertices vi and vj connected
0 otherwise

�
(5)

and is a familiar concept in elementary graph theory.35

Eqn (4) therefore relates the quantum spectrum (the eigenva-
lues of the Hamiltonian) to the so-called combinatorial spectrum
(the eigenvalues of the adjacency matrix). The combinatorial
spectrum is a concept already utilized in molecular
spectroscopy,36 and only depends on the connectivity of the
graph as encoded in A.

To find the combinatorial spectrum of G60, we look for roots
of the characteristic polynomial wA(l) = det(lI � A) associated
with the adjacency matrix A. An explicit expression for A is
easily derived by considering paths of the form illustrated in
Fig. 1. In the end, we obtain

wA(l) = (l4 � 9l2 + 16)5(l4 � 12l2 + 16)4(l2 � 1)11(l2 � 16),
(6)

and the full combinatorial spectrum is given in Table 2. Table 2
also shows the dimensions of the corresponding eigenspaces
and the irreps of the MS group S5*.

We pause here to note the striking similarity between Tables
1 and 2. First, note that the combinatorial spectrum splits into
positive l and negative l, with each corresponding to a total
eigenspace dimension of 30. Moreover, the eigenspaces asso-
ciated with positive l transform in precisely the same irreps as
Block 1 of Table 1, while those associated with negative
l transform precisely like Block 2. Thus, purely combinatorial
properties of the quantum graph G60 have captured the block
structure of the lowest vibrational states of CH5

+. Even more
interestingly, we have an explanation for the curious relation-
ship between Block 1 states and Block 2 states: this corresponds
to a l - �l symmetry of the combinatorial spectrum
(see Table 2), under which the S5* irreps are related by multi-
plication with A2

�. The symmetry of the combinatorial spec-
trum under l - �l is a simple consequence35 of the fact that
the quantum graph G60 is bipartite: the set of vertices V can be
divided into two disjoint and independent sets A and B such
that every edge connects a vertex in A to one in B. The sets A and
B are related by odd permutations of the protons (ESI†).

Fig. 2 Illustration of the 4-regular quantum graph G60. In this model of
the quantum dynamics of CH5

+ there is a single edge length, connecting
versions of C2v-symmetric transition states, corresponding to midpoints of
the flip edge of G120.

Table 2 The combinatorial spectrum of the quantum graph G60, where
dim (l) gives the degeneracy of a given eigenvector corresponding to the
eigenvalue l [see eqn (6)]

l dim(l) S5* irrep

4 1 A1
+

1þ
ffiffiffi
5
p

4 G2
�

1

2
1þ

ffiffiffiffiffi
17
p� � 5 H1

+

1

2
�1þ

ffiffiffiffiffi
17
p� � 5 H2

�

�1þ
ffiffiffi
5
p

4 G1
+

1 11 H2
+ " I�

�1 11 H1
� " I+

1�
ffiffiffi
5
p

4 G2
�

1

2
1�

ffiffiffiffiffi
17
p� � 5 H1

+

1

2
�1�

ffiffiffiffiffi
17
p� � 5 H2

�

�1�
ffiffiffi
5
p

4 G1
+

�4 1 A2
�
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Eqn (4) relates the combinatorial spectrum to the quantum
spectrum, as illustrated in Fig. 3. We can see the consequences
of the l - �l symmetry for the quantum energy levels: each
state in Block 1 comes with a partner in Block 2, with their

corresponding values of
ffiffiffiffiffiffi
2E
p

l being related by reflection in the

line
ffiffiffiffiffiffi
2E
p

l ¼ p=2. In particular, the dimensionless ratios

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 I�ð Þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 Iþð Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 Hþ1
� �q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 H�2
� �q ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 Hþ2
� �q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 H�1
� �q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 Hþ1
� �q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 H�2
� �q ; . . . (7)

are all equal to 1 in the G60 model. These dimensionless ratios
agree with the variational seven-dimensional model7,12,14

results to within 20 percent (see the ESI†).
In this paper we have drastically simplified the quantum

graph model of the low-energy rovibrational quantum
dynamics of CH5

+ by reducing the original 120-vertex quantum
graph to a 60-vertex graph, G60. G60 was constructed by shrink-
ing the edges corresponding to the flip internal motion that
exchanges a pair of protons between the H2 and CH3

+ units of
the equilibrium structure of CH5

+. Thus, at first sight we
neglect one of the two important large-amplitude internal
motions characterizing the exchange dynamics (scrambling)
of the H atoms of CH5

+. This allows us to obtain the quantum
states of G60 in analytic form, with the structure of the energy
levels depending only on combinatorial properties. The eigen-
values of this simple 1D, potential-free model are in excellent
agreement with the energies of the first 60 vibrational states
determined by sophisticated variational nuclear-motion com-
putations utilizing a potential energy hypersurface. Further-
more, the bipartite structure of G60 gives a natural explanation
for symmetries in the vibrational energy-level structure of CH5

+,
again in perfect agreement with the results of variational
nuclear-dynamics computations. Note that neither the varia-
tional computations7,12,14 nor the quantum-graph models15,27

yield only the Pauli-allowed states of CH5
+ (states with A2

�, G2
�,

and H2
� symmetry have non-zero spin-statistical weights), so

our discussion focused on all possible states; the non-existing
states can be filtered out a posteriori.
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14 C. Fábri, M. Quack and A. G. Császár, J. Chem. Phys., 2017,

147, 134101.
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