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A new one-dimensional model is proposed for the low-energy vibra-
tional quantum dynamics of CHs" based on the motion of an effective
particle confined to a 60-vertex graph I's; with a single edge length
parameter. Within this model, the quantum states of CHs" are obtained
in analytic form and are related to combinatorial properties of I'¢o. The
bipartite structure of I'sg gives a simple explanation for curious sym-
metries observed in numerically exact variational calculations on CHs".

Protonated methane, CHs", also called methonium, is considered
to be the prototype of pentacoordinated nonclassical carbonium
ions."” The curious carbonium cations yielded an extremely rich
chemistry and a Nobel prize to their discoverer, George Olah.*
Nevertheless, these are not the only sources of fame for carbonium
ions and in particular for CHs". Over the last two decades,’ the
internal motion of CHs" has been posing a formidable challenge to
high-resolution spectroscopists.”™> The most outstanding issue is
that the observed spectra of CHs' remain exceptionally complex
even when they are observed at temperatures of a few K,”** due to
the quasistructural nature'® of this molecular ion.

As to the utilization of quantum chemistry to solve the experi-
mental puzzle, through huge numerical efforts accurate rovibra-
tional energy levels and eigenstates have been made available for
CH5" in recent years.”'>'* These studies have revealed close-lying
clusters in the rovibrational energy levels, with fascinating symmetry
characteristics. These features have defied explanation by conven-
tional means, motivating the development of novel models for CH;".
The most important models put forward so far are as follows: (a)
particle-on-a-sphere (POS),"” > (b) five-dimensional (5D) rotor
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Exactly solvable 1D model explains the
low-energy vibrational level structure of
protonated methanef
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(superrotor),”*2® and (c) quantum graph.>* So far, the quantum-

graph model seems to have resulted in the most satisfactory
explanation of the low-energy quantum dynamics of CH;', including
both vibrations' and rotations.””

Quantum graphs have a long history in chemistry and
physics, dating back to Linus Pauling’s description of electrons
in organic molecules in the 1930s.>® They have only recently
been introduced to the study of nuclear dynamics, where they
have proved useful in high-resolution spectroscopy'>?’ and
also in explaining a-cluster dynamics in nuclear physics.”**°
Quantum graphs®' are metric graphs, that is each of their edges
possesses a length. In the context of rovibrational dynamics of
molecules, each vertex of the graph represents a version®” of an
equilibrium structure. Depending on the nuclear permutation-
inversion symmetry®” of the molecule of a given composition,
even if the molecule has a single minimum on a given potential
energy surface it may possess a large number of versions. The
vertices defined by the versions are connected by edges which
represent collective internal motions converting different ver-
sions into each other. Once a quantum graph is set up, one
constructs the one-dimensional (1D) Schrédinger equation for
an effective particle confined to the graph and solves it to
determine the energy levels and eigenstates (ESIt). In this way,
the complex multidimensional rovibrational quantum
dynamics of a polyatomic molecule is mapped onto the effec-
tive motion of a 1D particle confined to a much simpler space.

In the case of CHs', the equilibrium structure, the only one
found on its ground electronic state, is composed of a H, unit
sitting on top of a CH;" tripod, an arrangement with Cy point-
group symmetry. The five protons can be rearranged in 5! = 120
ways, generating 120 symmetry-equivalent versions. These ver-
sions become the 120 vertices of a quantum graph I'y5,."> There
are two types of motion interconverting the 120 versions,
equivalent to scrambling the H atoms of CH;': the internal
rotation of the H, unit by 60° (both clockwise and counter-
clockwise), and the flip motion that exchanges a pair of protons
between the H, and CH;" units. The barriers to these motions
on the potential energy hypersurface of CH;"** are known to be
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Table 1 The block structure characterizing the first 60 vibrational states
of CHs*, revealed in variational nuclear-motion computations.*>** The
numbers in parentheses give the total number of positive and negative
parity states within a block

Block 1 Block 2

0-60 cm™" (15,15) 110-200 cm™" (15,15)
A'® G ©@H ®H'® G'@H,"@I' ®

G, @H, @I A, ©@ G, ©@H @ Hy

relatively low. It is plausible that the low-energy dynamics is
dominated by motion along these particular paths, so that
motions other than the internal rotation and flip motions can
be disregarded. Thus, one can take these motions to corre-
spond to the edges of I'15. As one flip edge and two internal
rotation edges are connected to each vertex of I'1,4, each vertex
has a degree of three (I'y,, is a 3-regular graph). Due to the
nature of the underlying internal motions, the 120 internal
rotation and 60 flip edges are assigned effective lengths L, and
Lyip, Tespectively.

As shown before, the quantum graph I';,, reproduces
the low-energy rovibrational energy levels of CHs", as well as of
CDs", remarkably well when optimized values are used for Leip
and L, (ESIT). For instance, the I';,, model perfectly repro-
duces the curious block structure (states occuring in groups of
15 and 30, see Table 1) of the vibrational eigenstates of CH;",
first noted in a variational study of Wang and Carrington? and
later confirmed in ref. 14. As seen in Table 1, rovibrational
eigenstates of CHs' are labelled by irreducible representations
(irreps) of the molecular symmetry (MS) group®* Ss* = S5 x
{E,E*}, generated by Ss; permutations of the five protons
together with spatial inversion E* (E denotes the identity
operation).

Beyond the existence of blocks, in Table 1 one can notice
other clear symmetry relations for the first 60 quantum states.
A comparison of the group-theoretic relation

15,27

(141+ @ G1+ @ HlJr (&) H2+) ®A ~A @G, ©H, ©H

(1)

with the data in Table 1 suggests a direct correspondence
between the 15 positive-parity states in Block 1 [appearing on
the left-hand side (LHS) of eqn (1)] and the 15 negative-parity
states in Block 2 [right-hand side (RHS) of eqn (1)]. Likewise,
G ©Hy @I')®A, ~G, @H @I, (2

suggesting a link between the 15 negative-parity states in Block
1 and the positive-parity states in Block 2. These remarkable
symmetry relations have been lacking any simple explanation,
even in terms of the 'y, model. As this paper proves, introduc-
tion of the simplest quantum-graph model, I's,, of the quan-
tum dynamics of CHj', derived from Ij,,, is sufficient to
explain the curious energy-level and symmetry structure of
the lowest vibrational states of CHs*, and, as a bonus feature,
it allows the analytic determination of the quantum states of
the model problem.
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Let us start our journey toward the simplest model with the
quantum graph I';,o. We recall two important characteristics of
our original study."” First, we neglect the potential energy along
the edges of I'y,0, since the barriers to the internal rotation and
flip motions are small (about 30 ecm ' and 300 cm
respectively’®). Second, we fix the effective edge lengths Lg,
and L. In ref. 15 this was done by an optimization procedure
to give the best fit to either 7D or 12D reference data. In both
cases the optimized Lg;, was much smaller than the optimized
Lo, with the ratio Lejp/Loe = 1.0/61.2 in the 7D case.

Our new model is based on the following idea: the ratio Lg;p,/
L, is so small that it is tempting to imagine shrinking the flip
edges to zero length, identifying the two vertices at the end-
points of each flip edge to give a single vertex. Setting Lg;, = 0
has a negligible effect on the accuracy of the fit, at least at low
energies. At the same time, this approximation gives a huge
simplification: the number of vertices is halved and we get a
new quantum graph, I's, with only the internal rotation edges
remaining. It is reasonable to identify each new vertex with the
midpoint of the (now contracted) flip edge, which is a
C,,-symmetric transition state, as illustrated in Fig. 1. I's
represents 60 symmetry-equivalent versions of this configu-
ration. We propose that the most important characteristics of
the low-energy vibrational quantum states of CHs;' can be
understood in terms of a 1D, potential-free motion between
these versions corresponding to the vertices of the quantum
graph I'¢o. Note that each vertex is connected to precisely four
other vertices, as shown also in Fig. 1, giving rise to the 4-
regular (quartic) quantum graph I, illustrated in Fig. 2.

There is an alternative way of rationalizing the above con-
traction procedure. At the energies we are interested in, one can
show that the I';,, wave functions for the energy eigenstates are
approximately constant along the flip edges. In this limit, the
boundary conditions of I'j,, become equivalent to those of I'¢y
(ESIt). Either way, ', only retains edges corresponding to the
internal rotation. Our simplified model therefore has the
feature of explaining the low-energy dynamics solely in terms

g 12(+) ds 12(-) yy

’Y .
ya/w S
wél +)yé‘sls(),};3

Fig. 1 Local structure of the quantum graphs I'1;zo (blue and red edges)
and I'eo (black edges). The red edges correspond to the flip motion and the
labels indicate which proton is exchanged from a H, unit to a CHz" unit.
The blue edges correspond to an internal rotation and the labels indicate
the H, unit which rotates relative to the CHz* unit in a clockwise (+) or
anticlockwise (—) fashion. The midpoint of each red flip edge is a Cp,-
symmetric transition state (ts). In going from I'1o0 to I'sg, the red edges
shrink so that we are left with just the transition states connected by black
edges.

This journal is © The Royal Society of Chemistry 2021
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Fig. 2 Illustration of the 4-regular quantum graph I'sg. In this model of
the quantum dynamics of CHs™ there is a single edge length, connecting
versions of Cp,-symmetric transition states, corresponding to midpoints of
the flip edge of I'j»o.

of the internal rotation motion without the flip motion, with
the constant wave function argument allowing for backstage
full exchange of the protons. This model is thus set up in clear
violation of the claim of the authors of ref. 34, namely that “the
combination of the two [internal motions] enables large-
amplitude motion and thus full scrambling ... whereas partial
scrambling leads to the well-known small-amplitude motion
only”.

We now seek the quantum states corresponding to motion on
the I'sp graph. The eigenenergies are found by solving the time-
independent Schrodinger equation for a freeeffective particle
moving along the edges, with the so-called Neumann boundary
conditions®! imposed on the eigenstates. These conditions are
that the wave function should be continuous everywhere, with
zero total momentum flux out of each vertex. As we have already
pointed out, I's is a 4-regular graph with all edges having a
common length [ = L. Perhaps surprisingly, these properties
imply that the structure of the quantum energy levels can be
determined entirely from combinatorial properties of the graph.

More precisely, given a wave function  defined on the
graph I'sy, and obeying the time-independent Schrodinger
equation along each edge,

1d%y

g = BV, ©)

where x is a mass-scaled coordinate, consider the vector of its
values at each vertex v = (y/(v,),/(v2),. . .). It is straightforward to
prove (ESIT) that i is an eigenfunction with energy E satisfying
the Neumann boundary conditions if and only if

Av = 4005(\/2—E1)v, (4)

ie., if and only if 4 =4cos(V2El) is an eigenvalue of the
adjacency matrix A for the graph I'¢y, with v in the corres-
ponding eigenspace. A is simply a matrix whose elements
indicate whether given pairs of vertices are connected by an
edge or not:

w15

and is a familiar concept in elementary graph theory.*®

if vertices v; and v; connected
otherwise

(5)
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Eqn (4) therefore relates the quantum spectrum (the eigenva-
lues of the Hamiltonian) to the so-called combinatorial spectrum
(the eigenvalues of the adjacency matrix). The combinatorial
spectrum is a concept already utilized in molecular
spectroscopy,® and only depends on the connectivity of the
graph as encoded in A.

To find the combinatorial spectrum of I's,, we look for roots
of the characteristic polynomial y,(%) = det(AI — A) associated
with the adjacency matrix A. An explicit expression for A is
easily derived by considering paths of the form illustrated in
Fig. 1. In the end, we obtain

6

1a() = (2 — 922 + 16)°(2* — 1227 + 16)*(2*> — 1)"'(2* — 16),

(6)

and the full combinatorial spectrum is given in Table 2. Table 2
also shows the dimensions of the corresponding eigenspaces
and the irreps of the MS group Ss*.

We pause here to note the striking similarity between Tables
1 and 2. First, note that the combinatorial spectrum splits into
positive 4 and negative 4, with each corresponding to a total
eigenspace dimension of 30. Moreover, the eigenspaces asso-
ciated with positive 4 transform in precisely the same irreps as
Block 1 of Table 1, while those associated with negative
A transform precisely like Block 2. Thus, purely combinatorial
properties of the quantum graph I's, have captured the block
structure of the lowest vibrational states of CHs". Even more
interestingly, we have an explanation for the curious relation-
ship between Block 1 states and Block 2 states: this corresponds
to a A —» —1 symmetry of the combinatorial spectrum
(see Table 2), under which the Ss* irreps are related by multi-
plication with A,”. The symmetry of the combinatorial spec-
trum under 2 — —/ is a simple consequence® of the fact that
the quantum graph I's, is bipartite: the set of vertices V can be
divided into two disjoint and independent sets A and B such
that every edge connects a vertex in A to one in B. The sets A and
B are related by odd permutations of the protons (ESIt).

Table 2 The combinatorial spectrum of the quantum graph I'sg, Where
dim (2) gives the degeneracy of a given eigenvector corresponding to the
eigenvalue 1 [see eqgn (6)]

A dim(4) Ss* irrep
4 1 A"

1+ \/§ Gy

1 5 H,"
51+ V17) !

1 5 H,~
5(=1+V17) 2
—-1+V5 4 G’

1 11 H®I
-1 11 H~ ®r
1— \/g 4 Gy

1 5 H,*

E(l —V17) !

| _

-1 - \/5 G,

—4 1 Ay
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Block 3

Block 2

Block 1
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Fig. 3 Illustration of the block structure and the symmetry properties of
the spectrum of the quantum graph I'eo. Black dots indicate energies of
the quantum states.

Eqn (4) relates the combinatorial spectrum to the quantum
spectrum, as illustrated in Fig. 3. We can see the consequences
of the 4 — —/ symmetry for the quantum energy levels: each
state in Block 1 comes with a partner in Block 2, with their
corresponding values of v/2E! being related by reflection in the
line v2E! = m/2. In particular, the dimensionless ratios

VET) +VET) \E () + /B
VEHD) + JE2(Hy) \JE(H]) + B2 ()

are all equal to 1 in the I's, model. These dimensionless ratios
agree with the variational seven-dimensional model”**"
results to within 20 percent (see the ESIT).

In this paper we have drastically simplified the quantum
graph model of the low-energy rovibrational quantum
dynamics of CH;" by reducing the original 120-vertex quantum
graph to a 60-vertex graph, I'. I'so Wwas constructed by shrink-
ing the edges corresponding to the flip internal motion that
exchanges a pair of protons between the H, and CH;" units of
the equilibrium structure of CHs'. Thus, at first sight we
neglect one of the two important large-amplitude internal
motions characterizing the exchange dynamics (scrambling)
of the H atoms of CH;". This allows us to obtain the quantum
states of I'go in analytic form, with the structure of the energy
levels depending only on combinatorial properties. The eigen-
values of this simple 1D, potential-free model are in excellent
agreement with the energies of the first 60 vibrational states
determined by sophisticated variational nuclear-motion com-
putations utilizing a potential energy hypersurface. Further-
more, the bipartite structure of I's, gives a natural explanation
for symmetries in the vibrational energy-level structure of CH;",
again in perfect agreement with the results of variational
nuclear-dynamics computations. Note that neither the varia-
tional computations”'*'* nor the quantum-graph models*>?”
yield only the Pauli-allowed states of CH; " (states with A% G,
and H,™ symmetry have non-zero spin-statistical weights), so
our discussion focused on all possible states; the non-existing
states can be filtered out a posteriori.
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