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A new route to azocines and benzoazocines from furopyridinones is
described through a photochemically induced [1,3]-sigmatropic
rearrangement. The method gives access to these 8-membered
nitrogen heterocycles from dimethyl squarate in four stages and
with excellent atom economy by sequencing thermal and photo-
chemical ring expansion steps under continuous flow.

Azocanes and their unsaturated analogues form a class of 8-
membered nitrogen heterocycles that includes the manzamine
alkaloids and other natural products.'” Though they have the
attributes of a privileged structure in medicinal chemistry,®
they remain underexploited in that context due to challenges
associated with their synthesis.” In particular, syntheses based
on ‘end-to-end’ cyclisation strategies have to overcome trans-
annular strain and the loss of entropy on ring closure,>”®
making it necessary to employ high dilution or pseudo-high
dilution conditions to reduce competing intermolecular
reactions.” Herein we describe a new route to azocines 3 and
benzoazocines 6 by photo-induced ring expansion of vinyl- and
aryl-furopyridinones 2 and 5 respectively (Scheme 1).">'! In
addition we show how the same products can be formed
directly from alkynylcyclobutenones 1 and 4 by sequencing
thermal and photochemical rearrangements under flow.">"?
The discovered was made during a follow-up study on the
thermal rearrangement of aminocyclobutenones 1/4 to furopyr-
idinones 2/5.">'* The presence of an extended chromophore in
the products prompted us to examine their photochemistry."?
Pleasingly, when an acetonitrile solution of 2a was irradiated with
UVA light (4 = 370 nm, 36 W) under continuous flow, using a set-
up akin to that described by Booker-Milburn and Berry et al.,"*™*>
it gave furoazocine 3a in 48% yield (Scheme 2). Similarly,
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furopyridinones 2b and 2c¢ gave furoazocines 3b and 3c in 47%
and 54% yield respectively on irradiation.

Attention next turned to aryl-substituted furopyridinones
5a-h, which were readily prepared by thermal rearrangement
of the corresponding alkynylcyclobutenones 4 (Scheme 4 and
ESI%)."® Each underwent ring expansion on irradiation with
UVA to give the corresponding benzoazocines 6a-h (Tables 1
and 2) with a skipped diene unit. Yields were typically in the
range of 51-74%, except for substrate 5h with the electron
deficient arene which was significantly lower (28%). Cases
where the migrating bond was between two benzylic centres,
e.g. 5i-n (Table 2), were also high yielding and notably gave
benzoazocines 6i-n as single diastereoisomers. Their relative
stereochemistry was confirmed by x-ray crystallographic analy-
sis of 6i and 6l (Fig. 1).

The mechanistic course of the reaction was next examined
by TD-DFT,'® using 5a — 6a as the exemplar. Calculations
showed that the singlet excited state '[5a]* could relax directly
to azocine 7a via a 1,3-sigmatropic rearrangement (Fig. 2),"°
before giving benzoazocine 6a via a thermal [1,5]-sigmatropic
H-shift (estimated E, = 16.0 kcal mol™*).*°

Interestingly, for the related thiophene derivative 5n the
conjugated tetraene 7n was evidenced as an intermediate by
"H NMR, albeit as a mixture with 6n. On standing that sample
underwent isomerization to give tris-heterocycle 6n as the sole
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Scheme 1 Sequential thermal and photochemical ring expansion reactions
for the synthesis of azocines and benzoazocines from cyclobutenones.
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Scheme 2 Photochemical ring expansions of furopyridinones to azocines.*5*

Table 1 Benzoazocines from furopyridinones following UVA irradiation
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product (Scheme 3). TD-DFT analysis indicated that the barrier
for the [1,5]-H-shift, 7n — 6n (26.7 keal mol ', see ESI}), was
significantly higher than for 7a — 6a, suggesting that isomeriza-
tion may be by protonation and deprotonation in this case. The
method was then extended to the 2-thiophenyl and 3-pyridyl
analogues, 50 and 5p with both giving a tris-heterocyclic product,
60 and 6p, albeit in low yield with the electron deficient hetero-
aromatic (Scheme 4).

Finally, we have been able to produce benzoazocines 6 from
alkynylcyclobutenones 4, directly and in high yield, by sequen-
cing the respective thermal and photochemical rearrangements
under flow (Scheme 5). Thus, dioxane solutions of cyclobute-
nones 4a, e, g, i, | were first subjected to thermolysis at 210 °C
for a residence time of 100 min, then irradiated with UVA light
from 6 x 1.7 W LEDs for 10 min to give the corresponding
benzoazocines 6a, e, g, i, 1 in 74-84% yield. Notably, the
efficiency with which each starting material was prepared
ensured that these four-stage sequences from dimethyl squa-
rate 8 each proceeded in ~50% overall yield.*!
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Table 2 Photochemical rearrangements of diarylfuropyridinones
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Fig. 1 X-Ray crystal structures of benzoazocines 6i [CCDC 1969077%] and
6l [CCDC 2025763%].

Sequential thermal and photochemical rearrangements
were also effective with alkynylcyclobutenone 1c¢ (Scheme 6).
In this case it was found advantageous to conduct the ther-
molysis in two stages due to its poor conversion to the inter-
mediate furopyridinone 2¢ following a single pass at 160 °C. As
with the aforementioned examples, the overall yield of azocine
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Fig. 2 Calculated free energy barriers for the rearrangement of 5a.
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Scheme 3 Evidence for the intermediacy of polyene 7 was provided by
extension to the heteroaromatic analogue 5n.
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Scheme 4 Further examples involving heteroaromatic ring systems.*”

3c given after sequencing these steps under continuous flow
was substantially higher than that achieve using stepwise
procedures.>

In conclusion, we have developed a new route to azocines
and benzoazocines involving the photochemical ring expansion
of furopyridinones. The ease with which these products can be
prepared from dimethyl squarate 8 in high yield and diaster-
eoselectivity, and with excellent atom economy, makes this an
attractive entry to a class of nitrogen heterocycles that is
difficult to access using classical procedures.

Dr Wei Sun and Morgan Manning contributed equally in
respect of the experimental work, with Dr Mark Light per-
forming the X-ray analyses and Prof. David Harrowven super-
vising the work.
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Scheme 5 Preparation of cyclobutenones 4 and conversion to benzoa-
zocines 6 by sequenced thermal and photochemical rearrangement under
continuous flow.
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Scheme 6 Sequenced thermal and photochemical rearrangement of
cyclobutenone 1c to azocine 3¢ under continuous flow.
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A significant loss of mass balance to mixed fractions occurs on
purification of furopyridinones 2 and 5 by column chromatography.
We believe this to be the primary reason for the yield
elevation observed when the thermal and photochemical steps are
sequenced.
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