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The SARS-CoV-2 main viral protease (MP™) is an attractive target for
antivirals given its distinctiveness from host proteases, essentiality
in the viral life cycle and conservation across coronaviridae. We
launched the COVID Moonshot initiative to rapidly develop patent-
free antivirals with open science and open data. Here we report the
use of machine learning for de novo design, coupled with synthesis
route prediction, in our campaign. We discover novel chemical
scaffolds active in biochemical and live virus assays, synthesized
with model generated routes.

Coronaviruses are a family of pathogens that is frequently asso-
ciated with serious and highly infectious human diseases, from the
common cold to the SARS-CoV pandemic (2003, 774 deaths, 11%
fatality rate), MERS-CoV pandemic (2012, 858 deaths, 34% fatality
rate) and most recently the COVID-19 pandemic (ongoing pan-
demic, 1.7 million deaths up to Dec 2020). The main protease
(MP™) is one of the best characterized drug targets for direct-acting
antivirals."> MP™ is essential for viral replication and its binding
site is distinct from known human proteases, thus inhibitors are
unlikely to be toxic.>* Moreover, the high degree of conserva-
tion across different coronaviruses renders MP™ targeting a fruitful
avenue towards pan-cornavirus antivirals.” To date, most
reported MP™ inhibitors are peptidomimetics, covalent, or both.>
Peptidomimetics are challenging to develop into oral therapeutics,

@ PostEra Inc, 2 Embarcadero Centre, San Franciso, CA 94111, USA.
E-mail: alpha.lee@postera.ai
b pepartment of Physics, University of Cambridge, CB3 OHE, UK
¢ The COVID Moonshot Consortium. Web: www.postera.ai/covid
4 The Pritzker School for Molecular Engineering, The University of Chicago,
Chicago, IL, USA
¢ Computational and Systems Biology Program Sloan Kettering Institute,
Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
S Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot,
76100, Israel
1 Electronic supplementary information (ESI) available: Experimental and assay
details, and the full list of contributors in the COVID Moonshot Consortium. Our
training set, de novo design method and generated molecules are available on
https://github.com/wjm41/mpro-rank-gen. See DOI: 10.1039/d1cc00050k
1 These authors contributed equally to this work.

This journal is © The Royal Society of Chemistry 2021

¥ ROYAL SOCIETY
PP OF CHEMISTRY

Discovery of SARS-CoV-2 main protease inhibitors
using a synthesis-directed de novo design modelf

Aaron Morris,+? William McCorkindale,qEb The COVID Moonshot Consortium,©
Nir Drayman,” John D. Chodera,® Savas Tay,” Nir London

"and Alpha A. Lee (2 *2

and covalent inhibitors incur additional idiosyncratic toxicity risks.
We launched the COVID Moonshot consortium in March 2020,
aiming to find oral antivirals against COVID-19 in an open-science,
patent-free manner.®

Here we report the prospective use of a simple model to
rapidly expand hits. Starting from 42 compounds with ICs,
within assay dynamic range (<100 pM) and 515 inactives, our
model designed 5 new compounds predicted to have higher
activity, together with predicted synthetic routes. All designs
were were chemically synthesized and experimentally tested,
and 3 have measurable activity against MP™. The top com-
pound has comparable MP™ inhibition to the best in the
training set, but with a different scaffold, and is active against
the OC43 coronavirus in a live virus assay.

Algorithmic de novo design aims to automatically generate
compounds that are chemically diverse, synthetically accessible
and biologically active.” Classic approaches apply heuristics to
fragment and modify known active compounds, with the region
of chemical space explored and synthetic accessibility con-
strained by those rules.>>'® Recent machine learning
approaches explore chemical space in more abstract molecular
representation space,**** but this often comes at the expense of
synthetic accessibility."* Our approach builds on rule-based
fragmentation and molecule generation, but employs a method
that combines regression and classification amid noisy data,
and use of machine learning to predict synthesis routes. Our
model comprises two parts: compound prioritisation and
chemical space exploration.

Our compound prioritisation model aims to predict whether
a designed compound is likely to be an improvement in activity
over the incumbent. However, as is typical in the hit-expansion
stage, bioactivity modelling is hindered by insufficient data
where the majority of compounds are inactive, and noisy
data as measurement variability increases for lower affinity
compounds. Thresholding the data and framing the problem
as classification of active/inactive would not allow us to
rank compounds based on predicted improvement over the
incumbent, yet the amount of measured bioactivity data
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Fig. 1 Relative ranking of ligands can be predicted by our learning-to-
rank machine learning model. (A) A schematic of the model setup.
A classifier takes the difference in pharmacophore fingerprint between
two molecules and predicts where one molecule is more or less active
than the other. (B) The receiver operating characteristic curve of classifying
whether a molecule is more/less active than the other. AUC 95% CI
reported in main text.

and the measurement noise makes a regression approach
challenging.

To overcome both challenges, we develop a learning-to-rank
framework.'"'® Rather than training a regression model to
predict the IC5, of a compound, we instead train a classifier
to predict whether a compound is more or less active than
another compound, with the input to the model being the
difference in molecular descriptors between the molecules
(see Fig. 1 for a schematic). This model accounts for both
compounds with ICs, measurements and compounds that are
simply inactive-active compounds are ranked by their ICs, all
inactives with no measurable IC;, are considered less active
than active compounds, and inactive-inactive pairs are
ignored. Further, we account for noise by only considering
ICs, differences amongst actives above 5 pM. We use the FastAl
Tabular model,'® with input features generated from concate-
nated Morgan, Atom Pair, and Topological Torsion fingerprints
implemented in RDkit,"” and dataset was randomly split into
training (80%) and testing (20%); details about model imple-
mentation can be found in ESI{ and source code.

Fig. 1 shows that our binary ranking model achieves an AUC
of 0.88 (95% CI: [0.83,0.96]) in ranking ligands within the test
set, and AUC for 0.94 (95% CI: [0.91,0.98]) where we compare a
ligand in the training set against another ligand in the test set;
the latter is more relevant as our goal is finding ligands more
active than the best incumbent. The 95% confidence interval is
computed using bootstrapping. We also compare our model
against OpenEyea€™s FRED hybrid docking mode as imple-
mented in the “Classic OEDocking” floe, a physics-based dock-
ing algorithm, on the Orion online platform, which achieves
AUC of 0.72; 95% CI: [0.722,0.723] (see ESIT for implementation
details). Note that docking does not require ligand bioactivity
as training data, thus is not a directly comparison to machine
learning. In the ESIf Material, we discuss that our model
ranks ligands better than a model that directly learns ICs,
(AUC = 0.86; 95% CI: [0.71,0.95]).

Beyond train-test split, model performance can be evaluated
from a time-split. Five months have elapsed from the time we
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Table 1 Enrichment factor for the time-split dataset, where we consider

model performance on data arriving after the model has been deployed to
generate compounds for synthesis and testing

Percentile 1% 2.5% 10%

Enrichment factor 1.7 2.3 1.7

deployed our model to select compounds to writing up the
manuscript. During that time, the COVID Moonshot Consor-
tium (a team of expert medicinal chemists) has independently
designed, synthesised and tested 356 compounds,'® out of
which 15% were better than the top 2 compounds (having
ICs, comparable within error) in our dataset. Table 1 shows that
our model has an enrichment factor of ~2, i.e. if we rescore the
356 compounds synthesized by the medicinal chemistry team
using our model, and pick the top 1%-10% percentile, the
proportion of molecules that would be better than the top 2
compounds would be ~2x higher than human selection.
Having demonstrated the accuracy of our ranking model, we
now turn to chemical space exploration. We first consider a set
of chemically reasonable perturbations (e.g. amide to retro-
amide, amide to urea), which is applied to the whole set of
active molecules. We then fragment along synthetically acces-
sible bonds (e.g. amides and aromatic C-C and C-N), and
reconnect the synthons to generate an exhaustive library. The
resulting library of 8.8 million generated molecules is scored
using our ranking model by the probability of having a higher
potency compared to the most potent molecule in the dataset.
Although virtual “reactions” were used to generate new mole-
cules, the synthons are not necessarily off-the-shelf nor the
reactions optimal. As such, we use a retrosynthesis predictor to
triage based on synthetic accessibility., We fed top hits
into Manifold, our platform for synthesis route prediction
(https://postera.ai/manifold). Manifold searches for synthetic
routes starting from purchasable molecules. The underlying
technology is based on Molecular Transformer, a machine learn-
ing model for reaction prediction using sequence-to-sequence
translation.’>*® The top 5 molecules with predicted routes <4
steps were synthesised and tested (Fig. 2A). For comparison, the
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Fig. 2 Our synthesis-driven design model prioritises molecular scaffold
that are not in the top hits. (A) The 5 compounds selected by our
methodology for synthesis and testing. (B) The top 3 compounds from
the training set, with potency and cytotoxicity measurements.
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Fig. 3 Model generated synthetic schemes that are experimentally validated.
Schemes (A—E) show the synthesis schemes generated by our model (grey)
and experimental schemes for Compounds 1-5. The ESIt contains experi-
mental procedures provided by our contract research organisation.

most potent molecules from the training set are shown in Fig. 2B;
1-5 have Tanimoto similarity <0.48 (1024 bit ECFP6) to every
molecule in the training set.

Fig. 3 shows that for Compounds 1, 2, 4 and 5 our retro-
synthesis algorithm generates successful routes, thus provides
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Fig. 4 Three compounds generated using our synthesis-directed model
exhibit Mpro activity. Our most active compound has measurable antiviral
activity against the OC43 coronavirus and no measurable cytotoxic effect
(CCs0(As40) > 100 uM). 95% ClI: IC50 (MP™®)-Compound 1 [3.42,4.86] uM,
Compound 2 [15.1,16.5] uM, Compound 3 [48.8,69.4] uM; EC50 (OC43)-
Compound 1 [10.1, 18.4] uM. See ESI for assay details.

a reasonable estimate of synthetic complexity. The syntheses
were carried out at the Wuxi AppTec and compounds were
assayed as received. Minor variations in building blocks were
employed depending on what was readily available. We note
that our algorithm failed to estimate the synthetic complexity of
Compound 3. The final amide formation step was unexpectedly
challenging, and no desired product was seen despite signifi-
cant efforts in condition screening. Compound 3 was furnished
via an alternative strategy, employing an Ullmann coupling to
arylate the amide, which was not predicted by our approach.

Compounds 1-5 were tested for Mpro activity using a
fluorescence assay. Fig. 4 shows that Compounds 1-3 have
IC5, within assay dynamic range (<100 uM), and Compound 1
has ICs, = 4.1 pM. Compound 1 is further assayed in live virus
assays, with the less pathogenic OC43 coronavirus, showing
ECso = 13 uM and is not cytotoxic (CCso > 100 pM against As,e
cell line; CCs, is the concentration required to cause 50% cell
death). We employ OC43 as a rapid surrogate assay for
SARS-CoV-2 as the former can be done in a BSL-2 rather than
BSL-3 lab. Interestingly, the top non-cytotoxic hit of the training
set (TRY-UNI-2eddb1ff-7) does not show OC43 activity, show-
casing the utility of using generative models to suggest new
scaffolds with complementary physicochemical properties.

In summary, we demonstrated the utility of a de novo design
model, guided by estimation of synthetic complexity, for gen-
erating ideas in hit expansion. At the time of writing, the
quinolone series is undergoing optimisation by the COVID
Moonshot initiative (https://postera.ai/covid). Data for Com-
pound 1-5 is registered as the ALP-POS-ddb41b15 series on
the Moonshot platform.
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