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Establishing quantitative structure—property relationships for the
rational design of small molecule drugs at the early discovery stage
is highly desirable. Using natural language processing (NLP), we
proposed a machine learning model to process the line notation of
small organic molecules, allowing the prediction of their melting
points. The model prediction accuracy benefits from training upon
different canonicalized SMILES forms of the same molecules and
does not decrease with increasing size, complexity, and structural
flexibility. When a combination of two different canonicalized
SMILES forms is used to train the model, the prediction accuracy
improves. Largely distinguished from the previous fragment-based
or descriptor-based models, the prediction accuracy of this
NLP-based model does not decrease with increasing size, complexity,
and structural flexibility of molecules. By representing the chemical
structure as a natural language, this NLP-based model offers a
potential tool for quantitative structure—property prediction for drug
discovery and development.

The advances of various innovative chemical biology and
medicinal chemistry technologies have prompted the identifi-
cation of new therapeutic targets, as well as vastly expanded
chemical libraries for accelerated drug discovery.'™ Although
the identification of chemical binders with pharmacological
targets is the first critical step towards successful drug discovery,
the subsequent pharmaceutical “develop-ability” assessment of
lead compounds often presents another key hurdle preventing
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the transformation of discoveries into drug products.’”” Using
small organic molecules as common examples, their physico-
chemical properties, including the solubility, hydrophobicity,
cell membrane permeability, and stability, could significantly
impact their “drug-likeness”.”” Therefore, any tools allowing
early prediction of such molecular properties or rational design
of compound libraries based on the properties mentioned above
would be highly desirable.

The melting point (T},) of small organic molecules specifies
the temperature wherein an orderly packed, 3D crystal lattice
reaches thermodynamic equilibrium with its corresponding
disordered melt, thus converting from the solid to the liquid
state. T, is intimately correlated with some important properties
of pharmaceutical compounds, especially the solubility, arguably
the most critical physiochemical property of small molecular
drugs.®® In this study, we proposed a novel T}, prediction model
(More information about the model see Method in ESIt) based
on natural language processing (NLP), without any input of
chemical descriptors requiring additional computational or
experimental efforts, due to the following considerations:

First, despite the ease of the experimental determination of
T, there is still a practical need for rapid T;, prediction without
any synthesized materials to allow the rational profiling of com-
pound libraries with a tremendous amount of new chemical entities
and the early assessment of the drug-like properties of target
compounds to avoid downstream developability challenges.®™*

Second, a variety of existing T,, prediction models can be
classified into a descriptor-based or fragment-based approach,'*™*”
and both rely on prior quantum and solid-state chemistry theories
and contain some hard-to-understand chemical descriptors. In the
current NLP approach, 3D chemical structures are topologically
represented by line notations of chemical features, using a simpli-
fied molecular-input line-entry system (SMILES) as the only input for
the model. SMILES is the most widely used line notation in chemical
nomenclature, similarity search, and data exchange for its handy
readability and writability by both humans and computers. SMILES
stores the structural information of atoms, bonds, connectivity,
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aromaticity, and stereochemistry in a linguistic construct using
ASCII strings. Practically, conversion of 3D chemical structures into
SMILES could be easily achieved, while a SMILES string could
correspond to many 3D molecular structures."”

Last, NLP is a process that transfers natural language to
computers, which has been widely used in the fields of auto-
matic translation, speech recognition, chatbots, etc.'® The study
of natural language relies on the relationship between words,
given the premise that words with similar meanings tend to
appear in similar contexts and patterns. The idea is quite
similar in establishing quantitative structure-property relation-
ships, which assumes that molecules with similar chemical
structures tend to possess similar properties. Similarly, some
other properties of molecules, such as chemical stability,
toxicity,’® and nuclear magnetic resonance spectroscopy,>’
have been also analysed by NLP-based models.

Our model is predicting the structure-related properties of
compounds solely through artificial intelligence-based linguis-
tic methodologies, which have no apparent linkage with any
existing chemistry theories. The feasibility and prediction
accuracy of the model was evaluated and compared to pre-
viously reported fragment-based or descriptor-based models.
Then, the impact of the SMILES forms and molecular size and
complexity on the prediction accuracy was analysed. Since the
major objective of this work was to demonstrate successful T},
prediction by the NLP approach solely from SMILES strings, the
impact of polymorphism on the melting point was not con-
sidered. Molecules with very different T, values (range > 5 °C)
in the dataset, possibly due to polymorphs or experimental
variabilities, were thus excluded on purpose.

In Fig. 1a, the experimental and predicted T}, values for both
the training and test data are shown. A significant correlation
was found for a majority of compounds in the dataset, with
correlation coefficients (R*) of 0.8746 and 0.8103 for the training
and test data, respectively. The absolute mean errors (MAEs)
were 23.87 °C and 30.00 °C for the training and test data,
respectively, while the root mean square errors (RMSEs) were
32.34 °C and 39.04 °C, respectively. The chemical structures of
several of the worst predicted molecules from the test data set
are shown in Fig. 1b.

Residual analysis was performed by plotting the T,,, residuals
against the predicted T, to check the appropriateness of the
model. The residuals were almost symmetrically distributed
along the y-axis, and no obvious pattern was found (Fig. 1c),
confirming that the regression model was appropriate. Never-
theless, when Ty, residuals were plotted against the experimental
T (Fig. 1d), there was a mild decreasing trend of the residuals
with increasing experimental T, indicating an overestimation
for compounds with a low experimental 7, and underestimation
for those with a high experimental T,.

Since the SMILES string is the only input of the model, the
way SMILES is incorporated into the model could play a critical
role in the model performance. In general, one SMILES string
corresponds to only one specific chemical structure. However,
depending on the selection of the starting point, main chain,
and open-loop position, multiple SMILES strings exist for a
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Fig. 1 Model prediction performance. (a) The joint distribution of predicted
Tm and experimental T, values on both the training data and test data. Six of
the worst predicted molecules are marked from (1) to (6). (b) Chemical
structures, experimental T, and predicted T,, of the outliers stated in (a).
(c) The joint distribution of predicted T,, and T,,, residuals of the molecules in
the test data. (d) The joint distribution of experimental T, and T, residuals
of molecules in the test data. (Note: In (c or d), the high-value area and
low-value area shown in the contour plots represent areas with dense and
sparse data points, respectively.)

given structure, and canonicalized SMILES strings generated
by different toolkits for one given structure might differ
significantly’"*> (Fig. 2a). It is similar to natural language,
where one could use different ways of expression to convey
the same meaning. For example, we could say ‘We knew
nothing.” or ‘Nothing did we know.’, wherein the inversion of
the verb and subject does not change the meaning of the
sentence. Hence, it is important to know whether our model
could not only distinguish different molecules whereby analysing
the SMILES strings but also recognize the same molecule from the
manifold with an equivalent SMILES expression. Therefore, the
impact of two canonicalized SMILES forms (Open Babel and
RDKit) on the prediction accuracy was investigated by incorporating
into the models in different combinations (Fig. 2b).

The results (Table 1 and Fig. 2¢) of our model showed that
when only one SMILES form was imported into the model, the
model had difficulty predicting another SMILES form that was
not previously imported, resulting in a significant decrease
in the prediction accuracy (Al vs. A3 and A2 vs. A4). When
multiple forms of canonicalized SMILES were imported into the
model for training, the prediction accuracy was comparable for
all of the form, and the overall performance regarding the
RMSE and MAE was improved (B1 vs. Al and B2 vs. A2), with a
similar or (to some extent) superior effect as the sample size
increased (B1 and B2 vs. C).

We hypothesized that the input of diverse canonicalized
SMILES forms might help the model to find not only the
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Fig. 2 Impact of different canonicalized SMILES forms and sample sizes
on the prediction accuracy. (a) The chemical structure and canonicalized
SMILES strings of ibuprofen in the two toolkits: Open Babel and RDKit.
(b) The combination of different canonicalized SMILES forms of the input
in the training and test data. (c) The frequency distribution difference of the
absolute values of the T,, residuals caused by different canonicalized
SMILES forms. From 2c(1) to 2c(3), each figure shows the frequency
distribution histogram and the frequency Gaussian regression curve of
the absolute values of the T,, residuals in the corresponding two experi-
ments. The purple area in each figure is the overlap of the histogram of the
corresponding two experiments, and all the bar widths are 5 °C. (d) The
relationship between the prediction performance and the size of the
training dataset. As the sample size of the dataset increased, the RMSE
and MAE gradually decreased, but the improvement was more obvious
when the sample size was less than 20 000, and it levelled off when the
sample size was greater than 20 000.

Table 1 Prediction performance of the SMILES-based model using dif-
ferent canonicalized SMILES forms?

R*? RMSE (°C) MAE (°C)
A1 0.81(0.812 & 0.002)  39.04(38.75 + 0.34)  30.00(29.89 =+ 0.31
A2 0.82(0.815 + 0.003)  38.52(38.29 4 0.38)  29.07(28.99 + 0.21

A3

B1

0.75(0.749 + 0.002

0.83(0.825 + 0.002

44.90(44.79 £ 0.31

37.35(37.54 £ 0.29

34.73(34.52 £+ 0.26

28.33(28.27 £ 0.11

B2  0.83(0.830 =+ 0.001
C  0.82(0.822 =+ 0.001

36.88(37.00 + 0.16
37.86(37.92 + 0.20

27.88(27.94 + 0.25

)
)
A4 0.74(0.737 £ 0.002)
)
% 28.54(28.49 + 0.18

) )

( ) )
46.00(45.90 + 0.33)  35.54(35.33 + 0.30)
( ) )

( ) )

) )

“ See Table S1 (ESI) for a table including training data results. ? Values
in parentheses are average values calculated by five repeated experi-
ments using different training and test data.

sequential alignment or the distance of fragments in the
SMILES strings but also other strong relationships between
fragments, which could be features that are more intrinsic for
Tm prediction. When the size of the dataset available for
training is limited, increasing the diversity of SMILES forms
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could provide us with an alternative way to improve the model
prediction accuracy. Furthermore, even with a sufficiently large
training set, the amount of information that the model
extracted from the SMILES strings could fail to increase with
an increase in the SMILES sample size after a certain threshold
(Fig. 2d and Table S2, ESIt), indicating that the information
residing within the SMILES strings could be exhausted. There-
fore, the diverse canonicalized SMILES forms could still offer
extra merits to improve the prediction accuracy.

Hence, the similarity between SMILES and natural language
entitles the application of NLP approaches to explore the
relationship between the structure and T,,. Our model also
demonstrated that a successful T;,, prediction with an accuracy
comparable to or even better than the state of the art (Table 2)
in terms of the RMSE, MAE, and R* could be achieved solely
and directly from SMILES by the application of the NLP
approach.

Furthermore, it was reported that the size of molecules, the
complexity and flexibility of molecular structures, and the
intermolecular interaction could either be related to the Ty,
or have an impact on the prediction accuracy.>* It raised the
question of whether the prediction accuracy of our model was
consistent for molecules with various properties. To answer this
question, we performed residual analyses on these related
properties, including the molecular weight (MW), length of
SMILES string, number of branches, number of rotatable
bonds, number of hydrogen acceptors, and number of hydro-
gen donors.

When plotted against MW (Fig. 3a), the Ty, residuals of the
test data were almost evenly distributed on both sides of the
x-axis, and the variation in the T, residuals did not increase
with increasing MW. This fact suggests that the model works
almost consistently for compounds with distinct MWs within
the range of the dataset. For the length of the SMILES string
(Fig. 3b), the T, residuals were distributed evenly along the
x-axis, but the variance of the residuals changed with increas-
ing length. For the number of branches (Fig. 3¢), heteroscedas-
ticity was also observed, and the variance of the Ty, residuals
decreased with an increasing number of branches, suggesting
that the prediction accuracy of molecules will improve with
longer SMILES string lengths or more branches. Regarding the
number of rotatable bonds and the number of hydrogen bond
acceptors and donors (Fig. 3d-f), likewise, the T, residuals

Table 2 Comparison of the melting point prediction accuracy with other
state of the art methods

RMSE (°C) R MAE (°C)
Our method” 36.88 0.83 27.88
Karthikeyan et al.'? 49.8 0.57 N/A
Hughes et al.™* 48.1 0.50 33.8
McDonagh et al.’ 41.3 0.75 N/A
Tetko et al.”'” 36.8 £ 0.3 N/A N/A

“ Test data of B2. ” The reported RMSE of the model developed by Tetko
et al."” was slightly lower than our model, but in that model, the outliers
were excluded, while in our study, the outliers in the training set were
kept to maintain the diversity of the molecules.

Chem. Commun., 2021, 57, 2633—-2636 | 2635


https://doi.org/10.1039/d0cc07384a

Published on 11 January 2021. Downloaded by Fail Open on 7/23/2025 9:08:45 AM.

Communication

~ 0o —~

S s D g o 8

o [ “ 1

Y =] -y ----- = E
= -

= = Z £

Z 50 g Z

3 $ _

-1 & &a 100f t >

-100

0
s
g
H

URY
2 3
2 8
<

200 200 600 0 20 40 60 80 0 10 20

Molecular weight

-~
e
&

H

idual (° C)
]

Variance
Variance

Variance
Residual (° C)

9
3
=
]
3
4

-100 I

~200]
[ H 10

No. of H-bond donors

Resit

No. of Rotatable bonds No. of H-bond acceptors

Fig. 3 Impact of the molecular size and complexity on the prediction
accuracy. (a—f) The joint distribution of the T,, residual vs. the molecular
weight, the SMILES string length, the number of branches, the rotatable
bond number, the hydrogen bond acceptor number, and the hydrogen
bond donor number.

were distributed evenly on the two sides of the x-axis, but the
variation in the residuals did not increase; instead, they tended
to decrease when increasing the number of rotatable bonds or
increasing the number of hydrogen bond acceptors or donors.
The heteroscedasticity pattern implied that the variance of the
T, residuals slightly decreased with the increasing number of
hydrogen bonds or rotatable bonds, which is quite different
from previously reported models. These results suggest that our
model had uniqueness in the accuracy of its predictions
compared to traditional models.

In recent years, although the Transformer®® has brought
unprecedented influence to the field of machine translation, it
does not apply to all linguistic problems.>**® On the contrary,
through the improvement and popularization of many
scholars,””*® the long short term memory (LSTM)>’
our model has been successfully in many language models.
In fact, in addition to LSTM, we also tested four other structures,
including the Transformer, with the similar number of para-
meters. The LSTM offered the best performances (Table S3, ESIT),
indicating that LSTM developed its ability to extract information
from line notations of chemical structures.

In conclusion, by solely using SMILES as a structural
input without any chemical descriptors, we applied a natural
language processing approach to predict the melting point
of small organic molecules, and the model demonstrated a
surprising accuracy comparable to or even better than state of
the art. The model is applicable for molecules with diverse
properties, and the prediction accuracy is a function of the
sample size, as well as the number of multiple SMILES forms
used in the training set. Different from previous fragment-
based or descriptor-based models, our model provides better
prediction accuracy for molecules with many rotatable bonds
and thus more flexible configurations. The model provides a
potential tool to establish a quantitative structure-property

used in
30,31
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relationship and facilitate rational molecular design for drug
discovery and development.

This research is supported by Johnson & Johnson and the
Beijing Advanced Innovation Center for Structural Biology.

Conflicts of interest

There are no conflicts to declare.

Notes and references

1 L. H. Jones and M. E. Bunnage, Nat. Rev. Drug Discovery, 2017, 16,
285-296.

2 D. A. Fidock, Nature, 2016, 538, 323-325.

3 G. Zimmermann and D. Neri, Drug Discovery Today, 2016, 21,
1828-1834.

4 E.]. Martin, J. M. Blaney, M. A. Siani, D. C. Spellmeyer, A. K. Wong
and W. H. Moos, J. Med. Chem., 1995, 38, 1431-1436.

5 C. A. Lipinski, F. Lombardo, B. W. Dominy and P. ]J. Feeney,

Adv. Drug Delivery Rev., 1997, 23, 3-25.

C. A. Lipinski, J. Pharmacol. Toxicol. Methods, 2000, 44, 235-249.

C. A. Lipinski, Adv. Drug Delivery Rev., 2016, 101, 34-41.

S. H. Yalkowsky and S. C. Valvani, J. Pharm. Sci., 1980, 69, 912-922.

J. L. McDonagh, T. van Mourik and J. B. Mitchell, Mol. Inf., 2015, 34,

715-724.

10 M. Grover, B. Singh, M. Bakshi and S. Singh, Pharm. Sci. Technol.
Today, 2000, 3, 28-35.

11 M. Grover, B. Singh, M. Bakshi and S. Singh, Pharm. Sci. Technol.
Today, 2000, 3, 50-57.

12 M. Karthikeyan, R. C. Glen and A. Bender, J. Chem. Inf. Model., 2005,
45, 581-590.

13 L. Zhao and S. H. Yalkowsky, Indus. Eng. Chem. Res., 1999, 38,
3581-3584.

14 L. D. Hughes, D. S. Palmer, F. Nigsch and J. B. Mitchell, J. Chem. Inf.
Model., 2008, 48, 220-232.

15 U. P. Preiss, W. Beichel, A. M. Erle, Y. U. Paulechka and I. Krossing,
ChemPhysChem, 2011, 12, 2959-2972.

16 C.W. Coley, R. Barzilay, W. H. Green, T. S. Jaakkola and K. F. Jensen,
J. Chem. Inf. Model., 2017, 57, 1757-1772.

17 1. V. Tetko, D. M. Lowe and A. J. Williams, J. Cheminf., 2016, 8, 2.

18 T. Young, D. Hazarika, S. Poria and E. Cambria, IEEE Comput.
Intelligence Magazine, 2018, 13, 55-75.

19 S. Zheng, X. Yan, Y. Yang and J. Xu, J. Chem. Inf. Model., 2019, 59,
914-923.

20 E. Jonas, presented in part at Advances in neural information
processing systems, 2019.

21 D. Weininger, J. Chem. Inf. Model., 1988, 28, 31-36.

22 D. Weininger, A. Weininger and J. L. Weininger, J. Chem. Inf. Model.,
1989, 29, 97-101.

23 C. A. Bergstrom, U. Norinder, K. Luthman and P. Artursson, J. Chem.
Inf. Comput. Sci., 2003, 43, 1177-1185.

24 A. Vaswani, N. Shazeer, N. Parmar, ]. Uszkoreit, L. Jones,
A. N. Gomez, et al., presented in part at Neural Information
Processing Systems, 2017.

25 Z.Dai, Z. Yang, Y. Yang, ]J. Carbonell, Q. V. Le and R. Salakhutdinov,
presented in part at Annual Meeting of the Association for Compu-
tational Linguistics, 2019.

26 T. Domhan, presented in part at Annual Meeting of the Association
for Computational Linguistics, 2018.

27 A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke and
J. Schmidhuber, IEEE transactions on pattern analysis machine
intelligence, 2008, 31, 855-868.

28 J. Schmidhuber, Neural networks, 2015, 61, 85-117.

29 S. Hochreiter and ]. Schmidhuber, Neural Comput., 1997, 9,
1735-1780.

30 1. Sutskever, O. Vinyals and Q. V. Le, presented in part at Advances
in neural information processing systems, 2014.

31 A. Graves, A.-t. Mohamed and G. Hinton, presented in part at 2013
IEEE international conference on acoustics, speech and signal
processing, 2013.

Nelie RN o))

This journal is © The Royal Society of Chemistry 2021


https://doi.org/10.1039/d0cc07384a



