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Herein, we have unravelled the key influence of aromatic interactions
on the mechanistic pathways of peptide self-assembly by introducing
suitable chromophores (pyrene vs. naphthalene). Although both self-
assembled peptides are indistinguishable in their morphologies,
this minor structural difference strongly affects the packing modes
(parallel vs. antiparallel) and the corresponding self-assembly mecha-
nism (cooperative vs. isodemsic).

Self-assembly is a ubiquitous phenomenon that regulates key
processes and functions in living organisms." Inspired by these
sophisticated architectures and with the aim of addressing crucial
issues in biology and materials science, a wide variety of artificial
building blocks have been explored for constructing programmable
self-assembled nanostructures.” In this regard, peptides are arche-
typal building blocks because of their biocompatibility, biodegrad-
ability and tunable self-assembly process and corresponding
nanostructures.® Additionally, experimental variables such as pH,
temperature, light, ionic strength, solvent interactions and salt
concentration are known to strongly affect the aggregation path-
ways, mechanism and morphology of peptide assemblies.* More
importantly, the self-assembly of peptides is largely dominated by
the subtle interplay between different attractive non-covalent inter-
actions (such as aromatic, van der Waals, hydrogen bonding
(H-bonding) and electrostatic interactions) and repulsive interac-
tions (such as electrostatic interactions among similar charges and
steric effects).” Among all non-covalent interactions, aromatic
interactions not only play a significant role in self-assembly and
gelation processes of peptides, but they can also balance the
hydrophobicity of the systems.® Recently, peptide amphiphiles
bearing chromophores such as pyrene,* naphthalene,”*
anthracene,” perylene diimide’® and naphthalene diimide” have
received considerable attention for the bottom-up construction of
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tunable luminescent nanomaterials. However, understanding the
relationship between aromatic interactions and mechanistic path-
ways of peptide self-assembly remains elusive.®

To address this issue, we herein unravel the role of
aromatic interactions on tuning the self-assembly mechanism
of peptide assemblies in aqueous media. To demonstrate this
approach, we have rationally designed a well-known dipeptide
sequence “Phe-Phe” (FF)’ and conjugated it with different
n-chromophores such as pyrene (Py-FF) and naphthalene
(Nap-FF) (Scheme 1). Furthermore, a control molecule without
chromophore (Ac-FF) has also been prepared (Scheme S3 in
ESIT). Detailed experimental studies of both peptides unveiled
a dramatic change in their mechanistic pathways of supramo-
lecular polymerization (SP) depending on the extent of aro-
matic interactions (cooperative SP for Py-FF vs. isodesmic SP
for Nap-FF). Intriguingly, despite the different assembly
mechanism, both molecules self-assemble into the same
aggregate morphology (1D nanofibers), which is a rare phe-
nomenon in self-assembly.*°
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Scheme 1 Chemical structures of Py-FF and Nap-FF (top) and schematic
representation of their packing modes upon aqueous self-assembly
(bottom).
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The comparative self-assembly studies of Py-FF and Nap-FF
were investigated by different spectroscopic and microscopic
techniques such as UV-vis, fluorescence, circular dichroism
(CD), Fourier-transform infrared spectroscopy (FTIR), nuclear
magnetic resonance (NMR) and atomic force microscopy
(AFM). The UV-vis spectra of Py-FF at 1 x 10~* M and room
temperature (RT) in a ‘good’ solvent such as tetrahydrofuran
(THF) shows three sharp bands at 341, 276 and 243 nm
(Fig. 1a), indicating a monomeric state."' On the other hand,
a broad UV-vis spectrum with significant reduction of absorp-
tion is observed for Py-FF in aqueous media (H,O/THF = 9/1),
suggestive of a plausible self-assembly through strong n-n
interactions (Fig. 1a). By contrast, the UV-vis spectra of Nap-
FF in THF and H,0 (or in H,O/THF = 9/1) at 1 x 10_* M and RT
exhibit no significant changes, suggesting weak aromatic inter-
actions (Fig. 1e). Fluorescence studies of monomeric Py-FF in
THF reveal two strong emission bands at 385 and 404 nm that
are considerably reduced upon aggregation in H,O/THF (9/1)
(Fig. 1b), suggesting aggregation-caused quenching (ACQ) due
to strong m-stacking.'? This behaviour strongly differs for Nap-
FF in H,0, where an enhanced emission intensity was observed
compared to THF (Fig. 1f). This behaviour may possibly result
from aggregation-induced emission (AIE)'?> owing to weak aro-
matic interactions between the chromophores, which further
corroborates the findings noticed by UV-vis spectroscopy. The
significant differences in the strength of aromatic interactions
for both peptides are further supported by the observation of
up field shifts for the aromatic protons of Py-FF in solvent-
dependent "H NMR studies (Fig. S7, ESI{), whereas no such
shifts were noticed for Nap-FF (Fig. S8, ESIt). FT-IR spectra of
both Py-FF and Nap-FF in THF reveal two sharp peaks at 3569
and 3511 cm™ ', corresponding to two different non-hydrogen
bonded NH protons (Fig. 1c and g). Notably, these two bands
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merge into a single band at lower frequency (3410 cm™") in
D,0, demonstrating the involvement of strong H-bonding. The
self-assembly of Py-FF and Nap-FF was also investigated by CD
spectroscopy (Fig. 1d and h). While the solution of monomeric
Py-FF in THF is nearly CD silent, strong negative CD signals at
340, 285, 242 and 216 nm were observed upon aggregation in
H,O/THF (9/1). The bands at 340, 285 and 242 nm correspond
to absorption bands noticed in UV-vis spectroscopy, indicating
strong exciton coupling among the pyrene chromophores. The
additional intense negative band at 216 nm is suggestive of the
formation of B-sheet rich secondary structures. This is further
proven by the appearance of two intense peaks at 1634 and
1669 cm ' in the amide I region in FT-IR studies (Fig. S9,
ESIt).'*' Additionally, a thioflavin T (ThT) assay was also
performed to probe B-sheet formation (Fig. S10, ESIt). On the
other hand, the CD spectrum of Nap-FF in H,O exhibits an
intense single positive band at 222 nm, whereas only residual
bands are observed in the region where the naphthalene dye
absorbs (250-300 nm; Fig. 1h). These results suggest negligible
exciton coupling of the naphthalene chromophores during
aqueous self-assembly. The CD signal of Nap-FF originates
from the Ac-FF motif, as a similar positive band at 221 nm
arises for the latter in water (Fig. S11, ESIf), suggesting a
similar type of orientation. As expected, the nearly CD silent
spectrum observed for Nap-FF in THF indicates a lack of
aggregation in this media (Fig. 1h). Moreover, the CD spectra
and ThT assay (Fig. S12, ESI{) of Nap-FF rule out the possibility
of B-sheet formation, which is further supported by the position
of the amide I bands obtained in FT-IR spectra (Fig. S13,
ESI).'*'®> The FT-IR bands of Ac-FF (Fig. S14, ESI{) exhibit
similar trends as those found for Nap-FF, further indicating a
similar type of packing. Comparison of the CD spectra and ThT
assay of Py-FF and Nap-FF discloses clear differences in the
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Fig. 1 Solvent-dependent UV-vis spectra of (a) Py-FF and (e) Nap-FF (the peak below 250 nm corresponds to n—n* band of amides of FF motif);
fluorescence spectra of (b) Py-FF (excitation wavelength = 340 nm) and (f) Nap-FF (excitation wavelength = 290 nm); FTIR spectra of (c) Py-FF and
(g) Nap-FF; CD spectra of (d) Py-FF and (h) Nap-FF [C =1 x 107% M; T = 298 KI.
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Fig. 2 (a) VT UV-vis spectra of Py-FF in H,O/THF (9/1); (b) cooling curves
of Py-FF monitored at 243 nm and fitted to the cooperative model; (c) VT
UV-vis spectra of Nap-FF in H,O (inset image corresponds to zoomed area
of the absorption of naphthalene moiety); (d) cooling curves of
Nap-FF monitored at 219 nm and fitted to the isodesmic model [cooling
rate = 1Kmin% C =1 x 1074 M].

supramolecular organization for both systems,'® which agrees
well with the observations described earlier.

From these observations, we conclude that the self-assembly
of Py-FF occurs by the synergistic effect of strong n-n interac-
tions between the pyrene motifs and H-bonding involving the
peptide groups via a parallel molecular organization (Scheme 1).
On the other hand, the self-assembly of Nap-FF is largely
stabilized by H-bonding between the peptide moieties, which
have to arrange in a way that no effective aromatic interactions
occur between the naphthalene moieties. The arrangement of
the Nap-FF monomers in an antiparallel fashion, as shown in
Scheme 1, might be one plausible possibility that accounts for
the experimental observations.

In order to investigate the mechanistic pathways of self-
assembly for both Py-FF and Nap-FF in aqueous media, variable
temperature (VT) experiments were carried out by monitoring
the UV-vis, fluorescence and CD spectral changes. For Py-FF,
cooling the solution from 343 to 288 K at a rate of 1 K min ™"
leads to similar spectral changes to those observed when
comparing the UV-vis spectra in THF and aqueous solution
(see Fig. 1a), indicating a transition from monomeric to aggregated
state (Fig. 2a). The obtained non-sigmoidal cooling curves at
different concentrations (Fig. 2b) clearly suggest a coopera-
tive self-assembly pathway driven by synergistic aromatic and
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intermolecular H-bonding interactions. Global fitting of the cooling
curves to the nucleation-elongation (cooperative) model'” (Fig. 2b)
yields the following parameters: AH° = —64.45 kJ mol ?,
AS° = —127.31 J mol ' K!, AG° = —26.49 k] mol " and degree
of cooperativity (¢) = 4.5 x 10> (Table 1). The cooperative
mechanism was also supported by the non-sigmoidal cooling
curves extracted from VI-CD (Fig. S16, ESIf) and VI-fluorescence
studies (Fig. S17, ESI¥).

In contrast to Py-FF, VI-UV-vis cooling experiments for Nap-
FF (from 363 to 283 K; 1 K min ") disclose clear sigmoidal curves
at different concentrations (Fig. 2d), indicating an isodesmic
supramolecular polymerization."® This switch in mechanism
from cooperative (for Py-FF) to isodesmic (for Nap-FF) can be
rationalized by the lack of synergistic non-covalent interactions
for the latter, i.e. largely driven by intermolecular H-bonding."®
Application of the isodesmic model to the experimental data
allows the derivation of the corresponding thermo-
dynamic parameters (Fig. S19, ESIt): AH = —74.19 k] mol %,
AS = —151.31 J mol " K', AG® = —29.1 k] mol ™" (Table 1). In
analogy to Py-FF, the isodesmic mechanism for Nap-FF
was further supported by VT-CD (Fig. S20, ESIt) and VT-
fluorescence studies (Fig. S21, ESI¥).

Interestingly, in stark contrast to most examples of supra-
molecular assemblies reported to date, the different assembly
mechanism for Py-FF and Nap-FF is not accompanied by a
significant change in aggregate morphology. Microscopic stu-
dies by AFM on mica disclose similar type of fiber-like 1D
morphologies for both compounds. Whereas Py-FF self-
assembles into 1D nanofibers (height 2.5 + 0.3 nm and width
60-70 nm) with lengths of several micrometers (Fig. 3a and
Fig. S22, ESIY), bundled 1D nanofibers (Fig. 3b; height 3.0 +
0.5 nm and width 35 nm of single fiber, Fig. S23, ESIt) are
formed by Nap-FF. The higher tendency of Nap-FF to bundle
might be explained by the difficulty in shielding the hydro-
phobic naphthalene core from the polar solvent molecules in
the proposed antiparallel arrangement (see Scheme 1), leading
to a more pronounced lateral growth.

In summary, we have rationally designed two peptide
amphiphiles with different chromophores (pyrene: Py-FF and
naphthalene: Nap-FF) and studied their comparative aqueous
self-assembly by various techniques. Interestingly, the different
extent of aromatic interactions of the pyrene and naphthalene
groups governs the packing modes (parallel for Py-FF vs. anti-
parallel for Nap-FF) and the resulting self-assembly mechanism
(cooperative for Py-FF vs. isodesmic for Nap-FF). Despite these
marked differences, both molecules form the same type of
aggregate morphology (1D nanofibers), a phenomenon that is

Table 1 Thermodynamic parameters obtained from temperature-dependent UV-vis experiments of Py-FF and Nap-FF

Compound AH° [K) mol™'] AS°[Jmol " K™'] AH, ,[klmol™"] TJK AG°[kJmol "] KM "'[298K] Knua/M '[298K] o

Py-FF —64.45 —127.31 —24.81 316.1 —26.49 4.4 x 10* 1.98 4.5 x 107°
AH [k] mol '] AS [J mol ' K] AG° [k] mol '] KM " [298 K]

Nap-FF —74.19 —151.31 —29.10 1.7 x 10°
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Fig. 3 AFM images of (a) Py-FF and (b) Nap-FF [C = 1 x 107* M].

rare in self-assembly. Our experimental findings highlight the
importance of aromatic interactions in controlling the mecha-
nism of peptide self-assembly and, consequently, the properties
of the secondary structures, which may have important impli-
cations in the biomedical field.
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